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I. Introduction

The sequence of action potentials produced by a neuron is best characterized in
terms of a stochastic point process (Teich, 1989; Teich and Khanna, 1985). This
is because the information is encoded in the occurrence times, rather than in the
magnitudes, of the unitary neural events, and these occurrence times are random.
The mathematical process that has been traditionally used in auditory, and other
branches, of sensory neurophysiology has been the dead-time-modified Poisson
point process, denoted DTMP (Gaumond et al., 1982; Gray, 1967; Kuffler et
al., 1957; Mueller, 1954; Prucnal and Teich, 1983; Teich et al., 1978; Young
and Barta, 1986). Theoretical results for the DTMP process are widely available
in the literature (Cox, 1962; Miiller, 1974; Prucnal and Teich, 1983; Ricciardi
and Esposito, 1966; Teich, 1985). This model of neuronal firing achieved its
principal successes in describing interspike-interval histograms (or pulse-interval
distributions, PIDs) and post-stimulus-time histograms (PSTs), measures that
reset at relatively short times and are therefore insensitive to long-time corre-
lations in spike occurrences. The predictions of the DTMP model tumn out to be
at odds with many other observed statistical measures of neurophysiological
data. In particular, it is now quite clear that the DTMP fails to provide a proper
characterization of the sequence of action potentials in the auditory neurons of
a number of species (Teich et al., 1990a).

Auditory signals transmitted from the hair-cell receptor in the cochlea to the
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590 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

cortex (and beyond) pass through many way stations located along the auditory
pathways. In recent years, the responses of receptor cells, as well as the primary
auditory-nerve-fiber neurons that attach to them, have been studied in great detail
in many species, both in the presence and in the absence of various kinds of
acoustic stimulation. The patterns of neuronal firing have been examined in
single mammalian neurons at various locations along this pathway, including
the auditory nerve (AN), the cochlear nucleus (CN), which is the first way
station, and the lateral superior olivary complex (LSO).

The sequences of action potentials observed from 'single neurons at the AN,
CN, and LSO turn out to exhibit long-term correlations that are not captured in
the interspike-interval and post-stimulus-time histograms (Teich, 1989; Teich
and Khanna, 1985). The properties of these spike trains are unusual. They
manifest highly irregular spike rates, even when the integration time is very
long; broad pulse-number distributions (which are histograms of the relative
frequency of observing a given number of spikes versus the spike number);
fractional power-law growth of the variance-to-mean ratio with the counting time
T (Fano-factor time curve) with an exponent that depends on the level of stim-
ulation; and 1/f~type behavior in the spectrum (Teich, 1989; Teich et al., 1990a,
b; Woo et al., 1992a).

The firing patterns of these neurons are characterized as fractal because the
spike-rate fluctuations are self-similar over a large range of integration times.
This self-similarity is also evident in the spectrum. These properties bespeak
correlation that decays in power-law fashion, and therefore long-term memory,
at the periphery of the auditory system.

Fractal patterns exhibit order within apparent randomness, and reveal the
presence of multiple scales of time and/or space. All primary auditory neurons
examined to date, both in the presence and in the absence of an acoustic stimulus,
exhibit this behavior for sufficiently large observation times, as has now been
confirmed in cat and chinchilla in a number of laboratories (Powers, 1991; Powers
etal., 1991; Teich et al., 1990b; Woo, 1991; Woo et al., 1992). Fractal behavior
also appears to be present at the CN (Shofner and Dye, 1989) and may be present
at the LSO (Turcott et al., 1991).

In contrast to this behavior, the patterns associated with primary vestibular
neurons have not been found to exhibit long-term correlations and appear to be
non-fractal (Teich, 1989). It may be that fractal neural firings in the auditory

—

FIGURE 1. (a) Spontaneous firing rate of a primary auditory neuron (unit A, CF = 10.2
kHz). Two different time windows were used to compute the rate: T = 0.5 s (solid curve)
and T = 5.0 s (dashed curve). (b) The firing rate of a simulated dead-time-modified
Poisson (DTMP) point process with the same time windows. From Teich et al. (1990b).
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Chapter 22 Fractal Neuronal Firing Patterns 593

system serve to provide efficient sampling of natural fractal sounds. Several
biophysical mechanisms present themselves as possible origins of this behavior,
as discussed later in this chapter.

In seeking to identify the point process that properly models auditory neural
firings, we have constructed a doubly stochastic Poisson point process (DSPP)
driven by fractal shot noise (FSN), abbreviated FDSPP, or FSNDP (Lowen and
Teich, 1990, 1991). With the incorporation of dead-time effects (absolute re-
fractoriness) and/or sick-time effects (relative refractoriness), this process appears
to work remarkably well in describing the fractal firing patterns of primary
auditory-nerve neurons, both in the presence of a pure-tone stimulus and in its
absence (spontaneous firings) (Teich et al., 1990a).

II. Self-Similarity of Neuronal Firing Rates

Perhaps the simplest measure of a sequence of action potentials is its rate, i.e.,
the number of spikes registered per unit time. In primary auditory neurons, even
this straightforward measure has unusual properties; the magnitude of the fluc-
tuations of the rate does not decrease appreciably, even when a very long av-
eraging period (time window) is used to compute the rate. This property reflects
fractal behavior and is in direct opposition to the predictions of the DTMP
process.

In Fig. 1a, we illustrate the firing rate of a spontaneously active adult-cat
auditory neuron (unit A) with a characteristic frequency (CF) = 10.2 kHz. Two
different time windows were used to compute the rate: T = 0.5 s (solid curve)
and T = 5.0 s (dashed curve). The total time duration of the solid curve is 15
s (30 consecutive time windows, each of 0.5 s), whereas the total time duration
of the dashed curve is 150 s (30 consecutive time windows, each of 5.0 s).
Evidently, increasing the averaging time by a factor of 10 does not appreciably
reduce the magnitude of the fluctuations.

The firing rate of a simulated DTMP point process is illustrated in Fig. 1b.
The rate and time windows were chosen to be the same as those for the auditory
data shown in Fig. 1a, and the (fixed, nonparalyzable) dead time was taken to
be 14 = 2.95 ms (for reasons that will become apparent in Section III). The
T = 5.0 s computer data (dashed curve) exhibits noticeably smaller fluctuations
than does the T = 0.5 s computer data (solid curve). This smoothing with
increased averaging time does not occur with the neural data.

The contrast is even more dramatic in the case of driven activity, as illustrated
in Fig. 2a. Firing-rate data are shown for the same neuron as illustrated in Fig.
la, but now with continuous-tone stimulation at the CF. The rate is generally
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594 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

higher than that in Fig. 1a because the neuron is driven. Three different time
windows are used to compute the rate: 7 = 0.5 s (solid curve), T = 5.0 s
(dashed curve), and T = 50 s (dotted curve). The total time duration of the
solid curve is 15 s (30 consecutive time windows, each of 0.5 s), the total time
duration of the dashed curve is 150 s (30 consecutive time windows, each of
5.0 s), and the total time duration of the dotted curve is 550 s (11 consecutive
time windows, each of 50 s). To minimize the effects of nonstationarity arising
from adaptation, the data presented in Fig. 2a begins 250 s after the onset of
the stimulus. The fluctuations of the rate do not appear to be smoothed, even
though the change of time scale is a factor of 100 (from 7 = 0.5sto T = 50
s); the process may be said to be self-similar (Mandelbrot, 1983; Teich, 1989).

The firing rate of a simulated DTMP process with the same rate, but now
with a dead time 74 = 2.48 ms, is illustrated in Fig. 2b for comparison. The
time windows are the same as those used in Fig. 2a. The substantial smoothing
of the rate fluctuations with increasing counting time is in dramatic contrast to
the self-similar behavior apparent in the auditory data. This clearly shows that
the DTMP is not a satisfactory model for the auditory data.

III. Power-Law Growth of the Spike-Number Variance-to-Mean Ratio

The pulse-number distribution (PND) is a commonly used characteristic of a
point process. It is an estimate of the probability p(n,T) of observing n spikes
in the observation time T versus the number of spikes n. A useful statistic of
the PND is provided by the spike-number (count) variance-to-mean ratio

_ Var(n)

F = w 6))

FiGURE 2. (a) Firing rate of an auditory neuron (unit A, same cell as displayed in Fig.
1) driven by a continuous tone at the characteristic frequency. Three time windows were
used to compute the rate: T = 0.5 s (solid curve), T = 5.0 s (dashed curve), and T =
50 s (dotted curve). Increasing the averaging time by a factor of 100 does not appreciably
decrease the magnitude of the fluctuations; the continuous-tone-driven process is self-
similar. (b) The firing rate of a simulated dead-time-modified Poisson point process with
the same time windows as in a. The evident smoothing of the rate fluctuations with
increasing counting time is in dramatic contrast to the self-similar behavior observed in
the auditory data. From Teich er al. (1990b).
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Chapter 22 Fractal Neuronal Firing Patterns 597

This quantity is often referred to as the Fano factor, since it was first used by
Fano (1947) as a measure of the statistical fluctuations of the number of ions
generated by individual fast charged particles.

The Fano-factor time curve (FFC) is the ratio of the count variance to the
count mean for different counting times T. It is designated F(T'), and is shown
in Fig. 3 for unit A under conditions of spontaneous firing (dashed curve). This
plot is obtained using the same spike train that provided the firing rates shown
in Figs. 1a and 2a. (The spontaneous firing rate was about 60 s™' and the overall
duration of the experiment was L = 400 s.) The FFC is seen to assume a value
of unity at short counting times, dip below unity for counting times above about
1 ms (where refractoriness comes into play), and finally to increase with T in
power-law fashion (with an exponent o = 0.68 for this particular neuron) when
the counting time exceeds 400 ms. All primary auditory neurons examined
exhibited this characteristic FFC shape. For spontaneous activity in the absence
of a stimulus, F typically assumes a minimum value F;, between about 0.6
and 1.0 at counting times in the tens of ms. The onset of pure power-law behavior
(with exponents in the range between about 0.3 and 0.9) occurs at counting
times between about 0.1 and 1.0 s. The fractal nature of the process manifests
itself in the power-law regime.

The FFC for a simulated dead-time-modified Poisson process (DTMP) is
shown for comparison (solid curve). It assumes a value of unity when T <€ 74
(as expected for a Bernoulli process with low probability of success), dips below
unity when the counting time T approaches 74, and remains approximately con-
stant, at a value below unity, for all values of T > 74. The asymptotic value
assumed by the DTMP Fano factor F, for counting times large in comparison
with the dead time is (Teich, 1985):

Fa=(1 — \o?, @

where M\ represents the post-dead-time firing rate. The minimum value of the
Fano factor observed for unit A, Fy = 0.68, requires 14 = 2.95 ms, since A =
60 s7!. The dead-time simulations exhibited in Figs. 3, 1b, and 2b all make use
of values of 74 that satisfy Eq. (2) when the observed values of A\ and F,;, are
used.

Poisson processes modified by stochastic dead time or by sick time, which
are physiologically more realistic, lead to Fano-factor time curves similar to
those for fixed dead time (Teich and Diament, 1980; Teich et al., 1978; Young
and Barta, 1986). The fixed dead-time approximation is usually adequate when
considering count (as opposed to interval) measures of the spike train.
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Chapter 22 Fractal Neuronal Firing Patterns 599

IV. Fractal Dimension of the Firing Pattern

The fractal dimension of the firing pattern is a measure of the degree of spike
correlations that is preserved over different time scales. It falls between the
topological dimension D1 = 0 and the Euclidian dimension £ = 1 of a one-
dimensional point process (or dust) (Mandelbrot, 1983). For the auditory neural
spike train, the fractal dimension is appropriately defined as the exponent o
in the Fano-factor time relation F(T) « T in the domain where it follows
this power-law behavior. If the Fano factor is measured at two sufficiently
large counting times, T) and T,, then o may be estimated from the relation
F(T) « T* as:

_ Jlog[F(TL)F(T))]

log (T»/T)) L)

Using this formula to calculate o for primary auditory neurons leads to values
lying between 0.3 and 1.0. (For the data illustrated in Fig. 3, a =~ 0.68.) It is
important to note that a spike train of sufficiently long duration, typically several
hundred seconds, is useful for obtaining a reliable estimate for a; the estimated
value of a usually increases, and the variance of the estimate apparently de-
creases, with increasing L (Woo, 1991, Table 3.6). Furthermore, the value of
o generally depends on which portion of a data set is examined.

V. Alteration of the Firing Pattern Engendered by Stimulation

The FFC (variance-to-mean ratio versus counting time T) for this same auditory
neuron (unit A) is shown in Fig. 4 for driven activity collected for L = 800 s
when the stimulus is a continuous tone at the CF (solid curve). The spontaneous
data shown in Fig. 3 are repeated for comparison (dashed curve). Although the

FIGURE 3. Fano-factor time curve (FFC) for the spontaneous firing (no stimulus) of a
primary auditory neuron (unit A) in an experiment of duration L = 400 s (dashed curve).
The spontaneous rate fluctuations for this neuron are displayed in Fig. l1a. The Fano-
factor time curve assumes a value of unity at short counting times, dips below unity for
counting times = 1 ms, and finally increases in pure power-law fashion when the counting
time exceeds about 400 ms. In contrast, the FFC for a simulated dead-time-modified
Poisson process (solid curve) remains approximately constant at a value below unity for
alt values of T larger than the dead time. The Fano factor for a Poisson point process in
the absence of dead time is always precisely unity, whatever the value of T. From Teich
et al. (1990b).
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Chapter 22 Fractal Neuronal Firing Patterns 601

shapes of the FFCs are similar, the minimum Fano factor F;, is lower under
stimulation (because dead time has a greater effect on F when the rate is higher),
and the power-law exponent is greater. (For this particular neuron, it increases
from 0.68 to 0.85 when the tone is applied.) This represents an increase in the
fractal dimension, indicating that an acoustic stimulus serves not only to alter
the rate of action-potential firing but the pattern of firing as well. The presence
of the stimulus results in larger rate fluctuations.

For driven firing, F typically assumes a minimum value F,;, between about
0.5 and 0.9 at counting times in the tens of ms. The onset of pure power-law
behavior (with exponents in the range between about 0.7 and 1.0) occurs at
counting times between about 0.1 and 0.5 s. Figure 5 illustrates the change in
the power-law exponent for several primary auditory neurons when continuous-
tone stimulation is applied. For primary auditory neurons, this exponent, rep-
resenting the fractal dimension, generally increases in the presence of such
stimulation.

Because the power-law exponent associated with driven activity is generally
greater than that associated with spontaneous activity, as shown in Fig. 5, es-
timates of the mean firing rate for driven activity will converge more slowly
than estimates for spontaneous activity for integration times longer than several
hundred milliseconds.

V1. Comparison of Auditory and Vestibular Firing Patterns

As a counterpoint to the behavior of primary auditory neurons, which have Fano
factors substantially larger than zero even when the counting time is relatively
short, spontaneously firing low-skew vestibular neurons have narrow PNDs and
very small Fano factors. It is well-known that such neurons fire in a far more
regular pattern than do auditory neufons (Walsh ez al., 1972). Indeed, the firing
pattern of a low-skew vestibular neuron is similar to that of a mammalian retinal
ganglion cell at high luminance levels (Barlow and Levick, 1969). In Figs. 6a
and 6b, we present short-counting-time (T = 51.2 ms, 2,000 samples) and

FiGure 4. Fano-factor time curve for continuous-tone-driven firing of unit A in an
experiment of duration L = 800 s (solid curve). The Fano-factor time curve for the
spontaneous firing of this neuron, shown in Fig. 3, is repeated here for purposes of
comparison (dashed curve). The driven rate fluctuations for this cell are displayed in Fig.
2a. The shapes of the Fano-factor time curves are similar for the spontaneous and driven
firing; however, the power-law exponent increases from 0.68 for spontaneous firing to
0.85 for driven firing. From Teich et al. (1990b).
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FIGURE 5. Relationship of the power-law exponents for several auditory neurons, under
conditions of continuous-tone-driven and spontaneous firing. The exponent, which rep-
resents the fractal dimension of the process, generally increases under continuous-tone
stimulation.

slightly longer counting-time (T = 204.8 ms, 500 samples) spontaneous ves-
tibular PNDs (denoted VES), respectively, for one such low-skew cell. Both of
these PNDs were constructed from the same neural spike train. They exhibit
count means of 1.95 and 7.81, and Fano factors that are very low, F(T = 51.2
ms) = 0.04 and F(T = 204.8 ms) = 0.03, respectively. The small values of
F(T) indicate that these vestibular firings tick along with the near regularity of
a clock, at least for counting times <204.8 ms. It will be of interest to measure
vestibular PNDs using longer counting times.

The vestibular PNDs are compared with PNDs from auditory neurons (AUD),
and from simulated-Poisson data (POI), all with the same approximate spike
rate (=40 s™') for both counting times. Like the vestibular PNDs, the auditory
PNDs were constructed from the same underlying sequence of neural events. It
is clear from Fig. 6 that the vestibular PNDs are the narrowest of the three. For
these particular counting times, the auditory PNDs are narrower than the sim-
ulated-Poisson PNDs, but for longer counting times this reverses. The scalloping
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FIGURE 6. PNDs for cat vestibular (VES) and auditory (AUD) primary neurons, and

simulated-Poisson (POI) data, with the same approximate spike rate (=~ 40 s'). T =

51.2-ms PNDs are shown in a; T = 204.8-ms PNDs are shown in b. The vestibular
PNDs have count means of 1.95 and 7.81, and Fano factors of 0.04 and 0.03 in a and
b, respectively. The auditory data are drawn from Teich and Khanna (1985, Fig. 8) with
stimulation at a frequency of 1,445 Hz and a level of 6 dB SPL. The auditory PNDs
have count means of 2.01 and 8.03, and Fano factors of 0.70 and 0.81 in a and b,
respectively. This particular data set was chosen because its spike rate is quite close to
that of the vestibular neuron. The simulated-Poisson PNDs have count means of 1.92
and 7.85, and Fano factors of 1.02 and 1.08 in a and b, respectively. The number of
samples is 2,000 and 500 for the short and longer counting-time vestibular PNDs, re-
spectively, whereas it is 1,000 and 250 for the short and longer counting-time auditory
and simulated-Poisson PNDs, respectively. From Teich (1989), © IEEE.

evident in the auditory PNDs (Teich and Turcott, 1988; Teich, 1989) appears
to diminish as the number of samples increases.

VII. Fractal Firing Patterns at Higher Auditory Centers

Recent experiments carried out by Shofner and Dye (1989) in the gerbil (using
a counting time of 7 = 400 ms) reveal similar behavior in the spike train at the
cochlear nucleus, which derives its information from primary auditory nerve-
fiber inputs.

We have carried out a preliminary analysis of single-neuron firing at the LSO,
and fractal firing patterns may also be present at that locus (Turcott et al., 1991).
Because LSO neurons exhibit markedly nonstationary firing rates (in many cells
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the rate falls in approximately exponential fashion), we have had to remove the
nonstationarity to expose the stochastic nature of the underlying point process.

Thus, the sequence of action potentials at three distinct loci in the mammalian
auditory pathway (AN, CN, and LSO) all appear to share a similarity in the
underlying stochastic point process: fractal neuronal firing patterns when the
observation time is sufficiently large.

VIII. Neural Information Processing with Fractal Events

Why would auditory neuronal firing patterns exhibit fractal behavior and ves-
tibular patterns not? Since the auditory neural-spike train appears to sample an
information-carrying signal (Khanna and Teich, 1989a,b), we suggest that these
unusual patterns may serve to sample fractal signals and natural fractal noises
in an efficient correlated manner (Teich, 1989), Indeed, the instantaneous audio
power of music and speech, and the instantaneous frequency (rate of zero cross-
ings) of music, exhibit fractal (1/f~type) properties over a substantial range of
low frequencies (Voss and Clarke, 1978). The potential benefits to be gained
from such sampling, such as bandwidth compression, need to be established
from an information-theoretic point of view.

An analogous argument for the visual system would suggest that fractal firing
patterns may be present at loci where fractal image information is sampled, e.g.,
at the striate cortex. Indeed, spike bursts and recurrences of bursts do appear to
occur at that locus (Legéndy and Salcman, 1985).

The vestibular system is designed to estimate angular acceleration with high
accuracy. The information is slowly varying so that fractal behavior, if present,
would be evident only for extremely long counting times. It will be of use to
discover where fractal neuronal firing patterns do, and do not, occur as a prelude
to understanding why they occur.

If fractal firings are useful for the sampling and decoding of fractal information-
bearing signals, they are, by virtue of their noisiness, a liability for the detection
of weak acoustic signals. Psychophysical tasks involving the. detection of weak
signals, such as intensity discrimination and loudness estimation, can be under-
stood in terms of the relationship of the count variance to the count mean of an
underlying point process representing neural activity (McGill and Teich, 1991a,b).
Since the Fano-factor time curve for primary auditory fibers typically achieves
its minimum value for counting times in the range of 50 to 500 ms, it would
appear that the neural count at the periphery of the auditory system is least noisy
over this range of integration times. Information processing tasks that rely on
low variance for good performance would, it seems, be best served by using
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integration times in this range, and these psychophysical tasks do, indeed, exhibit
behavior that appears to accord with this. Perhaps the system has its cake—and
eats it, too—by making use of short integration times (to maximize signal-to-
noise ratio) for tasks involving the detection, discrimination, and estimation of
weak signals, and long integration times (to maximize memory) for tasks in-
volving the extraction of information from strong fractal signals.

IX. Biophysical Origins of the Fractal Behavior

The mathematical point process used to describe the sequence of action potentials
in the peripheral auditory system should be consistent with the underlying phys-
iological behavior of the system. There are a number of possible origins of the
observed fractal behavior, three of which appear to merit further consideration
(Teich et al., 1991):

1. Slow decay of intracellular calcium in the receptor hair cell.
2. Fractal ion-channel statistics (Liebovitch and Téth, 1990; Teich, 1989).
3. Self-organized criticality in ion-channel behavior.

The first two of these models may be cast in the form of a sick-time-modified
FDSPP.

X. Identifying the Mathematical Point Process

Three mathematical models are provided for describing the point process un-
derlying auditory neural firings. The first model is applicable for an arbitrary
stationary point process with constant rate; it therefore admits both correlation
and dead (or sick) time. However, its range of prediction is limited to second-
order statistics, e.g., quantities such as the FFC; it cannot be used to calculate
measures such as the PND or PID. The second model is a fractal doubly stochastic
Poisson point process (FDSPP) that we developed on the basis of plausible
physiological arguments (Teich et al., 1990a). The use of a specific model such
as this has the advantage that its range of prediction is unlimited; any measure
obtained from the neural events can, in principle, be calculated for the process.
Although the inclusion of dead (or sick) time destroys the DSPP character of
this process, thereby making it difficult to obtain analytical results, we have
managed to incorporate the effects of refractoriness in a simulated version of
the FDSPP. This process appears to behave very much like the neural events.
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606 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

The third model is a generalization of the first that is suitable for a time-varying
rate or stimulus.

A. General Stationary Point Process with Constant Rate

For an arbitrary stationary point process with constant rate, there is a unique
relation between the Fano-factor time curve F(T) and the joint probability of
event-pair coincidences A%g () (Cox and Lewis, 1966, pp. 72-75; Teich, 1989;
Teich and Saleh, 1988, Eq. (2.16)):

F(T) = 1 + 2\ LT <1 - %) [g(r) — 1] dr. @)

Here, A is the mean rate of the point process, and 7 is the delay time between
the events. The normalized coincidence rate g(7) plays the role of the correlation
function for continuous processes.

A simple coincidence rate may be constructed by including idealized models
of absolute refractoriness and correlation:

(1) For delay times less than the average refractory period 74, the coincidence
rate is taken to be zero, since action potentials cannot follow one another
within this time.

(2) At the termination of the refractoriness period, the normalized coincidence
rate rises abruptly to unity, since the event occurrences are then presumed
to be uncorrelated.

(3) Finally, for delay times longer than the fractal onset time 7¢, the normalized
coincidence rate increases above unity and falls in power-law fashion
toward unity, representing a slowly decreasing correlation of the spike
occurrences with increasing delay time.

The idealized normalized coincidence rate is then:

O, |T| < Td»
1, s <
gr) = ! )
8 |T| a—1
1 + —-|— ’ |T| > Te,
A Tr

where 8 is a constant (units of s7'), and a—1 (0 < o < 1) is the power-law
exponent of the normalized delay time. The correlation between a pair of spikes
is typically rather small; values of /A typically range from 0.02 to 0.04, and
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seldom stretch above 0.1. Equation (5) is a generalized form of Eq. (4) in Teich
(1989); the power-law exponent is a — 1 rather than —$#, and &/\ is used in place
of 8. A more realistic coincidence rate would rise gradually, rather than abruptly,
to account for relative refractoriness (Teich, 1989).

Substituting this coincidence rate into Eq. (4) leads to a Fano-factor time
function given by:

1 — AT, T <14
1 — A14[2 — 74T], =T =1
F(T) = ) (6)
1 — AN14[2 — 7/T] + ———— &7{(THp™ + af7dT)
ala + 1)

- (a + 1], T> 1.

Equation (6) is a generalization of Eq. (5) in Teich (1989); the power-law
exponent is a rather than 4, and the power-law term has a coefficient proportional
to &7 rather than dA1;. (This accommodates the empirical independence of 3,
as defined in Eq. (6), on A, and results from the use of the coefficient 8/A in
Eq. (5).) Each of the five panels in Fig. 7 illustrates the dependence of F(T),
as given in Eq. (6), on one of the essential parameters: A, 74, 8, T(, and a. For
purposes of illustration, we use parameters with physiologically reasonable val-
ues, viz., A = 100s!, 7y = 1.5ms,d =251, 74 =0.1s,and a = 0.5. As
expected, the theoretical curves always assume a value of unity as 7 — 0, and
dip below unity as T increases and dead time comes into play. The power-law
growth of the Fano factor for large T, F(T) = (T/7)*, follows from the delay-
time dependence of the coincidence rate for large T, g(t) — 1 « (|Jt)/7)*~".
Although the correlation between a single pair of spikes is typically rather small,
the Fano factor can become quite large since it integrates the many correlations
from different pairs of spikes within the time window T. (See Eq. (4).)

We have used Eq. (6) (with the value of X set at the experimental spike rate),
in conjunction with the curve-fitting routine in Jandel Scientific’s Sigma-Plot™
software package (version 4.0), to fit the FFCs of eight primary auditory nerve-
fiber spike trains, both in the presence and in the absence of a pure-tone stimulus.
The software routine makes use of the Marquardt—Levenberg algorithm, which
finds parameters that minimize the square difference of the theory and data. We
chose to minimize the square difference of the logarithms of the theory and data.
The results shown in Fig. 8 for unit A are typical; the theoretical variance-to-
mean ratio F(T) given in Eq. (6) nicely describes both the spontaneous and
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608 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

driven experimental data (which is the same data as shown in Fig. 4) with
reasonable physiological parameters. Evidently, the idealized coincidence rate
postulated in Eq. (5) captures the essential elements inherent in auditory neuronal
firing patterns (refractoriness and decaying power-law correlation with Poisson
underlying events), at least to second order. The theory is, of course, least
satisfactory in the region where relative refractoriness plays its principal role,
viz., from about 1 to 40 ms. The best-fitting parameters for all eight units, using
Eq. (6), are compared under conditions of continuous-tone stimulation at the
CF, and spontaneous firing, in Fig. 9. Aside from causing A to increase, the
presence of the tone generally causes a to increase; however, it appears to have
little effect on 74, 7¢, and 8. The durations of these experiments range from 50
to nearly 2,000 s.

The power spectral density S(f) of a random process, when it exists, is

10 T L) T T T
(a)

S

T 10

44
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2 0

210

L

10_1 1 £ . ——a 2l PP |
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COUNTING TIME T (sec)

FIGURE 7. Variance-to-mean ratio F(T) versus counting time 7 plotted in accordance
with Eq. (6), using the default parameters A = 100s™, 14 = 1.5ms, d = 257, 1y =
0.1s, and @ = 0.5. (a) Behavior of F(T) for different values of A. (b) Behavior of F(T)
for different values of 74. (c) Behavior of F(T) for different values of 8. (d) Behavior of
F(T) for different values of 1;. (¢) Behavior of F(T) for different values of a.
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FANO-FACTOR TIME CURVE (FFC)

FANO FACTOR F(T)

102 : : : : :
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1074 10~3 10-2 10-1 100 10! 102

COUNTING TIME T (sec)
FIGURE 8. Fit of the theoretical Fano factor given in Eq. (6) (dashed and solid curves)
to spontaneous and driven experimental data points for unit A. For the spontaneous fits,
the parameters take on the physiologically plausible values A = 65 s!, 74 = 2.4 ms,
d = 1345, 7t = 87 ms, and a = 0.68. For the driven fits, the parameter values are
A=113s, 7y =16ms,d=163s" 7= 88 ms, and a = 0.85.

determined from the coincidence rate by means of the Wiener—Khinchin theorem.
When g(7) takes the form indicated in Eq. (5), S(f) behaves as

SN = (UNf2, f=<fo )

in the low-frequency (large delay-time) regime. The quantity f; is the fractal
cutoff frequency; it is inversely proportional to 7¢. Since 0 < o < 1, this represents
1/f-type noise (Woo et al., 1992).

With this model in hand, we may now quantitatively consider the self-similarity
of the rate fluctuations illustrated in Figs. la and 2a. Our considerations are
restricted to counting times sufficiently long so that we are in the power-law
(fractal) regime. The degree to which a process with firing rate Ay may be
considered to be self-similar is established by determining the dependence of its
standard deviation o, on the time window T. Since Ar = n/T, where n is the ran-
dom number of neural spikes in the time T, the variance of the firing rate is
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COMPARISON OF BEST FITTING PARAMETERS
FOR GENERAL STATIONARY POINT PROCESS
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FIGURE 9. Comparison of best-fitting parameters for eight units, under driven and spon-
taneously active firing conditions, using Eq. (6) for the variance-to-mean ratio.

Var(Ay) = (I/T*»Var(n). By definition, however, Var(n) = {(n)F(T), where (n)
is the mean number of events in the time T, and F is the Fano factor, so that
Var(A;) = (U/T?) {mF(T). Since {n) « T and F(T) x T* for sufficiently large
T, we obtain:

1
Var(Ap) x i (3

The standard deviation of the rate therefore is given by

1
On * Ni—aw ®

Non-fractal processes have a fractal dimension & = 0, so that the standard
deviation of the rate is proportional to 1/T"?; thus, the rate converges relatively
quickly with increased averaging. Processes with o — 1 have a standard deviation
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that is independent of T so that there is no convergence with time averaging,
and the rate process is fully self-similar. Estimates of the mean rate, therefore,
converge more slowly with increasing T for fractal processes than for non-fractal
processes, with the rate of convergence depending on the fractal dimension a.
In the region where refractoriness is operative (below several hundred millisec-
onds), the process is non-fractal and the standard deviation of the rate behaves
as 1/T"2. The firing rate, therefore, is most accurately estimated by using counting
times in this range.

B. Fractal Doubly Stochastic Poisson Point Process

The approach presented in the preceding, though valid for an arbitrary stationary
point process, is based on a phenomenological construct for the coincidence rate
and is limited to providing second-order, and some first-order, statistics. We
have developed a particular type of fractal point process, the dead-time-modified
fractal doubly stochastic Poisson point process (FDSPP), that exhibits behavior
consistent with all of the experimental statistics of spontaneous and pure-tone-
driven VIIith-nerve action potentials examined to date, including the pulse-
number and interspike-interval distributions.

Particular attention is devoted to two specific examples of this process: the
fractal-shot-noise-driven (FSND) DSPP and one of its special cases, the fractal-
Gaussian-noise-driven (FGND) DSPP (Lowen and Teich, 1991). Fractal behay-
ior in the FSND DSPP is assured by choosing an impulse-response function that
decays in a power-law manner with a certain range of exponents. This particular
process is physiologically plausible for certain nerve-spike generation models,
as mentioned in Section IX. Analytical results have been derived for many
features of this process, including the coincidence rate, Fano factor, and spec-
trum. For the range of parameters of interest to the problem at hand, and for
sufficiently long delay and countil{g times, these latter quantities turn out to be
[Lowen and Teich, 1991, Egs. (37), (48), and (52)]:

g(m =1+ (k/Ml*"", (10)

F(T) =1 + k,T°, an
and

S(f) = (k/NfS, 12)

where k;, k,, and k; are constants. These equations assume the same form as
those set forth in Eqgs. (5)—(7) in Section X.A. This is expected, since we are
limiting our attention to long delay and counting times where the effects of dead
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614 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

time are negligible, and both approaches incorporate a power-law decreasing
coincidence rate. Since the phenomenological Fano factor developed in Section
X.A is in accord with the FFC data, obviously Eq. (11) will be too.

In the case of the FDSPP, however, we have knowledge of the full point
process. This allows us to calculate other measures (e.g., the PND and PID, as
well as the serial count correlation coefficient (SCC) and rescaled range analysis
(R/S), both of which will be explained shortly), and to compare them with the
neural data. We can, therefore, perform more stringent tests for identifying the
mathematical point process that characterizes auditory neuronal firings.

Indeed, the collection of data in the form of the PID, PND, FFC, SCC, and
R/S provides a rather comprehensive picture of a neural spike train and enables
us to make reasonable conjectures about the underlying mathematical point pro-
cess (Teich et al., 1990a). The PID, PND, and FFC are, by now, well-known
statistics that have been described in detail elsewhere (Teich, 1989; Teich and
Khanna, 1985; Teich and Turcott, 1988).

The SCC and R/S provide estimates of the degree of serial correlation in the
data set. The SCC gives the correlation between the numbers of neural spikes
in adjacent counting periods, and is generally a function of the counting time

FiGurE 10. (a) Pulse-number distribution (PND) constructed from the spontaneous spike
train of auditory unit A (as in Figs. la, 3, and 8), using a counting time T = 1 sec (solid
curve). PNDs obtained from simulations of three theoretical models are also shown. The
model parameters were chosen to give the same mean count as the data. The PND obtained
from the FDSPP resembles the data. On the other hand, the PND obtained from the dead-
time-modified Poisson point process (DTMP, denoted PP here) is narrower than the data,
while that obtained from the renewal fractal process (RFP) is far broader than the data.
(b) The Fano-factor time curve (FFC) is constructed from the PND. For auditory-nerve
data, F(T) typically grows in power-law fashion as 7* (0 < a < 1) for sufficiently large
counting times 7, implying a power-law-decreasing normalized coincidence rate and a
power-law form for the power spectral density at low frequencies. Again the FFC obtained
from the FDSPP resembles the data quite closely, whereas the FFCs of the PP and the
RFP deviate substantially from it, even though the latter does exhibit power-law behavior.
(¢) For the PP, a = 0, so that C(T) = 0 for the serial count correlation coefficient
(SCQC), as is evident in the figure for sufficiently large counting times. (The dip in the
curve in the vicinity of 2 msec, which arises from dead time, would be moderated were
sick time used instead.) Once again the SSC obtained from the FDSPP closely resembles
the data, while the SSCs associated with the PP and the RFP deviate substantially from
it. (d) In rescaled range (R/S) analysis, the renewal nature of the PP and RFP cause R (k)
to behave as k!, where k is the number of interspike intervals; the data and the results
from the FDSPP rise more steeply, indicating positive correlation for collections of large
numbers of interspike intervals. From Teich et al. (1990a).
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616 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

T. In the domain of counting times where the Fano-factor time curve behaves
as T*, the serial count correlation coefficient C(T) plateaus at the value 2% —1,
as required by the relation between these measures.

Whereas the SCC reflects correlations between successive counts, the R/S
parameter reflects correlations among interspike intervals. This measure is ob-
tained by first estimating the interval mean and standard deviation in a block of
interspike intervals of size k. For each of the & intervals, the difference between
the value of the interval and the mean value is obtained and the result is suc-
cessively added to a cumulative sum. The range is defined as the difference
between the maximum and minimum values achieved within the cumulative
sum, and this is normalized by the sample standard deviation to give R(k). The
normalized range of sums R (k) is estimated for increasing values of k and plotted
against k. With R(k) proportional to k*, A > 0.5 indicates positive correlation,
h < 0.5 indicates negative correlation, and 2 = 0.5 indicates uncorrelated
intervals (Hurst, 1951; Feller, 1951). This measure has the advantage of being
valid even when the data exhibit extremely long-term correlations, as well as
large (or infinite) variance; these are characteristics that can cause a process to
appear nonstationary and, consequently, seriously impair the usefulness of stan-
dard measures (Mandelbrot, 1983).

We have compared the experimental behavior of these various statistics with
those predicted by several theoretical models, including the dead-time-modified
Poisson point process (DTMP), the dead-time-modified renewal fractal point
process (RFP), as described by Teich et al. (1990a), and the dead-time-modified
FDSPP described here. We have performed simulations using various forms of
this latter process, and found that both the FSND DSPP and the FGND DSPP
exhibit behavior that accords with all of these statistics. The DTMP and RFP,
in contrast, do not.

The FDSPP—and, in particular, the FSND DSPP and the FGND DSPP—give
results that are largely indistinguishable from the experimental statistics both for
spontaneous firings (Fig. 10) and driven firings (Fig. 11), and we have identified

ey

FIGURE 11. (a) PND (T = 1 sec), (b) FFC, (¢) SCC, and (d) R/S constructed from the
same 800-s driven spike train of unit A as that used in Figs. 2a, 4, and 8. The renewal
processes are not represented, since their behavior is similar to that indicated in Fig. 10.
The fractal dimension revealed by the slope of the FFC curve is greater than the value
observed in Fig. 10b for spontaneous firing. The larger FFC exponent is reflected in a
larger serial count correlation estimate, as is evident in the SCC curve. (Compare with
Fig. 10c.) The increase in o and C(T') under stimulation has been observed in all primary
auditory-nerve cells examined to date. From Teich et al. (1990a).
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618 Part IV Multistate Neurons and Stochastic Models of Neuron Dynamics

the FDSPP as the point process that characterizes the auditory neural spike train
(Teich et al., 1990a). The essence of its behavior arises from Poisson underlying
events with decaying power-law correlations.

These correlations can be removed by randomly shuffling the interspike in-
tervals, for both spontaneous and driven data, as shown by Teich et al. (1990a).
The shuffling serves to destroy the long-term correlations inherent in the ordering
of the individual events. Indeed, shuffling alters the experimental measures, and
their FDSPP theoretical counterparts, in precisely the same way.

C. General Point Process with Variable Rate

The formulas provided in Sections X.A and X.B are not applicable when the
mean rate is varying (either deterministically or stochastically). This is the case,
for example, when the stimulus is Gaussian noise or an information-bearing
signal that varies with time, rather than a pure tone, or when adaptation is
present. The stimulus itself then introduces another degree of variability, and
the results described previously must be generalized to account for this. The
resulting process will be a triply stochastic Poisson point process (TSPP), with
three forms of stochasticity arising from:

1. Rate variations associated with adaptation and/or stimulus variability.

2. A biophysical mechanism involving long-term correlations.

3. An action-potential generation mechanism involving intrinsic auditory-
neuron fluctuations and refractoriness.

Consider an arbitrary counting distribution p(n,7IW) conditioned on an inte-
grated rate (energy) W given by:

10+ T
W= f A, dt, (13)
fo

where A, is the time-varying rate, f, is the beginning of the counting interval,
and T is the counting time (Cox and Lewis, 1966; Prucnal and Teich, 1979). If
the rate A, is constant (homogeneous) and fixed at Ao, the integrated rate W is
simply AoT.

On the other hand, if the rate A\, exhibits a stochastic or deterministic time
dependence, with characteristic time 7, the integrated rate W may be described
in terms of a probability density function P(W). When T > 7., depending on
the nature of the fluctuations of \,, W may become constant, in which case the
results become identical to those for a homogeneous rate; in the other limit,
when T < 7., A, may be considered to be slowly varying, so that it can be
removed from the integral, whereupon

M. C. Teich, "Fractal Neuronal Firing Patterns," in Single Neuron Computation,
edited by T. McKenna, J. Davis, and S. F. Zornetzer (Academic Press, Boston,
1992), ch. 22, pp. 589-625



Chapter 22 Fractal Neuronal Firing Patterns 619

W =AT, (14)

and the statistics of W mimic those of A,.

Removing the conditioning from p (n,T{W) provides the unconditional counting
distribution p(n,T) and the PND statistics in the presence of the stimulus or rate
fluctuations,

po1) = [ p(n,TIW) POW) W, (1s)

Equation (15) reveals that the counting distribution of the underlying kernel
obtained in the absence of rate variations is smeared (broadened) by these vari-
ations. Note that the kernel, although often taken to be Poisson (Cox and Lewis,
1966; Prucnal and Teich, 1979), can assume an arbitrary form, such as that
associated with the DTMP distribution (Cantor and Teich, 1975), a fractal count-
ing distribution, or the Neyman Type-A distribution (Teich, 1981).

Using Eq. (15) to calculate the unconditional mean of p(n,T), we find

=3 D) = [, W PW) [2 np(n,ﬂW)]

n=0 n=0

[ aw pawy alwy = [ aw pcwyw = ), (16)
w w

provided that
(W) = W. a7

This indicates that the mean integrated rate (W) is sufficient for calculating the
unconditional mean count {(n).

The unconditional variance is also readily calculated for processes with known
conditional variance. Again, using Eq. (15), the unconditional mean-square count
is:

®

W) = 3 wpnT) = [ aw POY) (W), (18)

n=0

The conditional mean-square count is, of course, expressible in terms of the
conditional variance and conditional mean as:

(W|W) = Var(nW) + (o]W)>. (19)

For auditory neurons with a constant mean rate, the conditional variance is related
to the conditional mean by the conditional Fano factor F(TIW) given in Eq. (6):

Var(n|W) = F(TIW)n|W). (20)
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Thus, since (n|W) = W,
(nW) = F(TW)(n|W) + (n[W)? = F(TIW)W + W2 (1)
Using Eq. (21) in Eq. (18) provides:

(n? = fw dW P(W) [F(TIW)W + W2}, 22)

We can now make use of an abbreviated form of Eq. (6), valid when the dead
time can be ignored,

FIwW) =1 + ¢y, 23)

where ¢, is a function of a, 8, 7, and T. To facilitate the analysis, ¢, is assumed
to be independent of A and therefore W, as is often the case. Inserting Eq. (23)
into Eq. (22), we obtain:

(n?) = (W) + (W) + (W2), 24

so that
Var(n) = (n®) — (n)* = (W) + c,(W) + (W?) — (W)). (25)
Finally, then, the Fano factor in the presence of rate variations turns out to be:

Var(n)
(n)

FT) = =1+c¢ + Fw, (26)

where

oo Ya(W) _ (W) — Wy’
Y (W) w
Equation (26) represents the Fano factor associated with a triply stochastic dis-
tribution: when the kemnel is Poisson (¢; = 0), we obtain the well-known doubly
stochastic Poisson result, F(T) = 1 + Fy (Teich and Saleh, 1988). When, in
addition, the rate is nonvarying, Fw = 0 and we obtain the homogeneous Poisson
result, F(T) = 1 forall T.
We may examine the dependence of the unconditional Fano factor in Eq. (26)
on the counting time by explicitly writing ¢, in terms of its dependence on T:

27

2 T\*
=]+ ——8l—) + Fw. 28

FT) =1 w@ + D) ’Tf<1_f> w (28)

For linearly and exponentially varying rates (Prucnal and Teich, 1979), and for

the intensity fluctuations of Gaussian noise (Teich and Saleh, 1988, Eq. (2.19)),
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Fw = (M\T/M, where M is a degrees-of-freedom parameter that is an increasing
function of T, so that Eq. (28) becomes:

F(Tzl+——3—a(zu+<—)‘)—T 29
) e + 1 T Tf> M (29)

Finally, then, the dependence of the unconditional Fano factor on the mean rate
(\) and on the counting time T is contained in the succinct expression:

F(T)~1+CT“+M 30
-~ 2 M’ ()

where c; = 281} " %a(a + 1).

We conclude that the dependence of the Fano-factor time curve on the counting
time T comprises two components in the long-counting time limit: The first
increases as T°, as in the case of pure-tone stimulation; the second increases
with T/M (where M itself depends on T') and arises from mean rate fluctuations.
This result is based on certain specific characteristics for the rate fluctuations
(e.g., exponential or linear variation, or integrated intensity fluctuations asso-
ciated with Gaussian noise) and is predicated on the counting time being large.
A more detailed analysis of this general case can be obtained on the basis of the
moment-generating functional for cascades of filtered Poisson point processes
(Matsuo et al., 1982).

We now explicitly consider a nonstationary rate arising from adaptation rather
than from a stochastic stimulus. In auditory theory, two useful examples emerge
in this context (Harrison, 1985; Liitkenhoner and Smith, 1986). The first is
provided by an instantaneous rate \, that linearly decreases from a maximum
value A, to a minimum value A ,;,. For a deterministic nonstationarity such as
this, the duration of the experiment L plays the role of 7. because the rate
continues to change continuously over L. In auditory experiments, T < L so that
the linearly advancing starting time t, of successive counting intervals serves to
uniformly and exhaustively sample the rate over its entire range. In this case,
the probability density function P(X) is easily shown to be uniformly distributed
on the interval [Anin,Amaxl, With mean (Prucnal and Teich, 1979; Teich and
Diament, 1969)

)\max + )‘min
\) = - 5 (31
and variance
)\max - )\min 2
Var()\) = (—T) (32)
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Alternatively, Anin can be expressed in terms of .., L, and the slope of the
decline.

The second example is embodied by a rate that decreases from a maximum
value A 10 @ minimum value A, in accordance with a simple time-decaying
exponential function of time constant T,

A(t) = ApaxeXxp(— /7). (33)

The probability density function P(\) is then distributed as 1/A over an appro-
priate range of A (Prucnal and Teich, 1983; Teich and Card, 1979), and, for an
experiment of duration L, the mean and variance turn out to be:

(A) = Amax(7/L)[1 — exp(—L/7)] (34)

Var(h) = xéu<,%)[<% - f) ¥ 2(1%) X <_ If) (35)
(e Dol %))

Since T < L, Eq. (15) can be written as:
posT) = | pla,TiN) POV a), (36)

and

so that all of the equations obtained thereafter can be considered as being con-
ditioned on A rather than on W. The unconditional Fano factor can then be
obtained from Eq. (28) by using F\r in place of Fy. A calculation of this type
has been carried out earlier (Teich, 1989).
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