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Abstract. The behavior of lateral-superior-olive (LSO)
auditory neurons over large time scales was investigated.
Of particular interest was the determination as to
whether LSO neurons exhibit the same type of fractal
behavior as that observed in primary VIII-nerve audi-
tory neurons. It has been suggested that this fractal
behavior, apparent on long time scales, may play a role in
optimally coding natural sounds. We found that a non-
fractal model, the nonstationary dead-time-modified
Poisson point process (DTMP), describes the LSO firing
patterns well for time scales greater than a few tens of
milliseconds, a region where the specific details of refrac-
toriness are unimportant. The rate is given by the sum of
two decaying exponential functions. The process is com-
pletely specified by the initial values and time constants
of the two exponentials and by the dead-time relation.
Specific measures of the firing patterns investigated were
the interspike-interval (iSI) histogram, the Fano-factor
time curve (FFC), and the serial count correlation coeffic-
ient (SCC) with the number of action potentials in suc-
cessive counting times serving as the random variable.
For all the data sets we examined, the latter portion of
the recording was well approximated by a single ex-
ponential rate function since the initial exponential por-
tion rapidly decreases to a negligible value. Analytical
expressions available for the statistics of a DTMP with
a single exponential rate function can therefore be used
for this portion of the data. Good agreement was ob-
tained among the analytical results, the computer simula-
tion, and the experimental data on time scales where the
details of refractoriness are insignificant. For counting
times that are sufficiently large, yet much smaller than
the largest time constant in the rate function, the Fano
factor is directly proportional to the counting time. The
nonstationarity may thus mask fractal fluctuations, for
which the Fano factor increases as a fractional power
(less than unity) of the counting time.

Correspondence to. M. C. Teich

1 Introduction

The sequence of action potentials propagating down the
axon of a neuron can be mathematically modeled as
a point process in which the action potentials are viewed
as points on the time axis. Point processes are character-
ized in terms of a counting process, which is a record of
the number of points N;(¢) in the counting interval
(t,t + T7], orin terms of a sequence of interevent times t;
between points i — 1 and i (Cox and Lewis 1966; Teich
and Khanna 1985).

Extensive work has been carried out in investigating
the short time properties of lateral-superior-olive (LSO)
neural firing patterns, such as refractoriness and chopper
activity (Tsuchitani and Johnson 1985; Johnson et al.
1986).

In this paper, we specifically address the long time
behavior of the stream of neural impulses in LSO units.
To our knowledge, this behavior has not been previously
investigated. VIII-nerve units exhibit fractal behavior;
the sequence of action potentials, for both spontaneous
and pure-tone stimuli, is well modeled by a stationary
point process with fractional power-law correlation
(Teich 1989, 1992; Teich et al. 1990a, b). Since naturally
occurring sounds exhibit this same kind of correlation,
the fractal aspect of the VIII-nerve firing patterns may
play a role in the optimal sampling of sound (Teich 1989).
One of the principal purposes of this study was to deter-
mine whether LSO units exhibit the same type of a long-
duration fractal behavior as do VIlI-nerve units. We
found, however, that a nonfractal, nonstationary point-
process model is adequate for describing the long time
scale statistics of the firing patterns of the LSO units we
investigated.

After discussion of the experimental methods and
results, the model is presented in Sect. 4. The results
predicted by the model are compared with the experi-
mental results in Sect. 5, and the salient points are sum-
marized in Sect. 6. The derivation of analytical results is
presented in the Appendix.
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2 Methods

2.1 Experimental arrangement

The LSO nucleus is one of the first stations in the ascend-
ing auditory pathway directly involved in processing
binaural signals. It is one of the three main nuclei of the
cat’s superior olivary complex involved in the processing
of interaural cues used in binaural perceptual tasks.
While all LSO units are excited by stimulation of the
ipsilateral ear, in the cat the ipsilaterally elicited dis-
charges of those LSO units with characteristic frequen-
cies (CFs, to which the unit is most sensitive} above
1 kHz can also be inhibited by simultaneous stimulation
of the contralateral ear (Tsuchitani and Boudreau 1966;
Guinan et al. 1972). Consequently, the LSO units most
sensitive to mid- to high-frequency signals are capable of
encoding the interaural level difference created by the
sound shadowing effects of the head and pinna to shorter
wavelength stimuli. The ipsilateral excitatory input is
supplied by neurons in the anteroventral cochlear nu-
cleus (Cant and Casseday 1986), and the contralateral
inhibitory input by neurons in the medial nucleus of the
trapezoid body (Zook and DiCaprio 1988). The dis-
charge statistics of LSO unit discharges to monaural and
binaural tone bursts have been described elsewhere
(Tsuchitani 1982; Johnson et al. 1986; Zacksenhouse et
al. 1993).

In the experiments reported here, single-unit dis-
charges were recorded from units histologically localized
in the LSO of barbiturate-anesthetized cats. Long-dura-
tion tones set to ipsilateral CF were delivered monaurally
at 25-30 dB above unit CF threshold. Details of the
preparation and experiment, and a number of short time
scale statistical measures, have been described elsewhere
(Tsuchitani and Johnson 1985; Tsuchitani 1988).

2.2 Statistical measures

Several well-known statistical measures that are valid
over a wide range of time scales are used in the analysis, of
the data presented here and are briefly described.

The interspike-interval (IST) probability density func-
tion completely describes the behavior of the point pro-
cess only if the interevent times are independent and
identically distributed random variables, in which case
the process is called a renewal point process. The ISI
histogram is an estimate of this function from a finite set
of data. When the interevent times are not independent of
each other, the ISI still yields information about the
process over short time scales, but it fails to provide
information about the behavior of the process over lon-
ger time scales (i.e., times much greater than the average
interevent time). This is clearly true for data such as those
examined here, where the rate varies. It also holds for
data with a constant average rate, but with correlation
among the events.

The Fano-factor time curve (FFC) and the serial
count correlation coefficient (SCC) time curve comp-
lement the IST by providing information about the pro-
cess over longer time scales (Teich 1989; Teich et al.

1990a, b; Teich 1992). The Fano factor for a given count-
ing time T is the ratio of the variance to the mean of the
number of counts in that counting time. The homogene-
ous Poisson point process (HPP}) is a ubiquitous math-
ematical model; it plays the role in point process theory
that Gaussian noise plays in the theory of continuous
stochastic processes (Saleh and Teich 1982). For the HPP
the variance is equal to the mean for all counting times,
giving a Fano factor of unity (see Sect. 4.1). The FFC
therefore provides a convenient comparison between an
arbitrary point process and the HPP. A Fano factor less
than unity indicates that the process has more regularity
than the HPP at that particular counting time; the statis-
tics are then said to be sub-Poisson. Dead time (refrac-
toriness) typically imposes such regularity on a point
process. A Fano factor greater than unity indicates more
variability than the HPP at that particular counting
time, as observed with a nonstationary Poisson point
process (€.g., the model presented in this paper) or with
an inhomogeneous, stationary Poisson point process
(e.g., the fractal shot-noise-driven Poisson point process,
which has a stochastically varying rate, but whose statis-
tics are independent of time; see Teich et al. 1990a, b;
Lowen and Teich 1991). Aside from the magnitude of the
Fano factor at a particular counting time, the functional
dependence of the Fano factor on the counting time gives
further information about the process, such as the form
of the temporal correlation (Teich 1989). In particular,
for many inhomogeneous Poisson point processes with
deterministic rate functions, the FFC is directly propor-
tional to the counting time 7 for a certain range of
T (Teich and Diament 1969; Prucnal and Teich 1979).

The SCC is an estimate of the correlation between the
number of events in successive counting intervals and is
calculated as a function of the counting time. An SCC of
zero implies that the number of events in successive
intervals are uncorrelated. A negative SCC indicates that
the number is negatively correlated, so that an above-
average count in one interval is usually preceded or
followed by a below average count in the adjacent inter-
vals. This type of behavior is typically observed when the
counting time is on the order of the dead time. Converse-
ly, positive correlation is indicated by a positive SCC.
The closer the SCC approaches =1, the more strongly
the counting process is positively or negatively corre-
lated. The SCC and the FFC are related since both are
obtained from the first and second moments of the count-
ing process. It can be shown that for a process whose
FFC has a fractional power-law dependence on the
counting time, i.e., FFC oc T*, 2 €[0, 1), the SCC is con-
stant and equal to 2* — 1 (Cox and Lewis 1966; Teich
et al. 1990b). A typical nonstationary Poisson process with
a deterministic rate function yields & close to unity; for
sufficiently large 7'we then expect FFC oc T'and SCC = 1.

Since all joint statistics are necessary to define
uniquely a stochastic process, the ISI histogram, the
FFC, and SCC, being first- and second-order measures,
do not provide complete information about the process.
Nevertheless, when used in conjunction they are useful
for providing a basic characterization of the process on
all time scales.



3 Results

The average intensity (firing rate) as a function of time,
ISI histogram, FFC, and SCC were estimated from five
long-duration recordings from the three LSO units. Two
of these were fast-chopper cells, and one was a slow-
chopper cell. All had unimodal ISI histograms. In
Figs. 1-4 we present these four measures from a single
recording (t176-1E.r2, denoted r2 for brevity); these
curves are representative of the statistical measures es-
timated from the recordings we examined. The duration
of the recording for this particular data set was approx-
imately 555s.

Figure 1 shows an estimate of the average intensity
obtained by recording the number of action potentials
that fall in successive 1-s counting intervals. After the
onset of the stimulus the rate falls quickly to about
100 s, then decays more slowly over the remainder of
the recording. The rapid fluctuations in the rate estimate
result from the randomness inherent in the spike train.

The ISI histogram was estimated from the entire
duration of the recording. It is presented in Fig. 2a, where
the solid curve corresponds to the data. The effect of
refractoriness is apparent in the reduced probability of
short intervals. The approximately straight-line behavior
of the data for interevent times greater than 10 ms, on
this semilogarithmic plot, suggests that the intervals are
exponentially distributed, which would be consistent
with an HPP. However, the time-varying rate function
shown in Fig. 1 clearly indicates that the process is in fact
not homogeneous.
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Fig. 1. The average intensity 1,(¢) as a function of time from the onset
of the recording estimated from unit r2 (solid curve) and the exponenti-
ally decaying model rate function obtained from the best-fitting para-
meters presented in Table 1 (dotted curve). The rate functions of the
lateral-superior-olive (LSO) units were obtained by counting the num-
ber of action potentials that fell in successive 1.0-s intervals using the
entire duration of the recording. The results for this unit are typical of
those examined. The first few seconds of the data were ignored in
obtaining the best-fitting rate parameters because the recording was
initiated slightly before the stimulus was applied
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Fig. 2. a Interval density functions (ISI histograms) p.(x) estimated
from the entire data set of unit r2 (solid curve) and from a simulated
spike train (dashed curve) of the same duration, using the model
developed in Sect. 4, with the best fitting parameters shown in Table 1.
b The interspike interval (ISI) histograms obtained with the first 75 s of
data ignored. Also shown, but partially obscured by the dashed curve, is
the analytical ISI probability density function derived in the Appendix
(dotted). The straight-line appearance on this semilogarithmic plot for
interevent times greater than 10 ms is consistent with the ISI histogram
of a homogeneous Poisson process, but this process is clearly in-
homogeneous. This illustrates the danger of drawing conclusions about
a point process based solely on the ISI histogram
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Fig. 3a,b. Fano-factor time curves (FFCs) obtained from the same
spike trains that were used to generate the ISI histograms in Fig. 2
(unit r2). a The FFC for the data (solid) and the simulation (dashed)
were generated from the entire data set. b The results obtained from the
truncated data and simulated spike trains, along with the analytical
results. For large counting times the Fano factor is proportional to the
counting time 7, as is typical for an inhomogeneous Poisson process
with a deterministic rate function. The dip of the FFC below unity in
the vicinity of 20 ms reflects regularity in the spike train imposed by
refractoriness. At larger counting times, this regularity is overwhelmed
by excess variance introduced by the correlation present at these time
scales. This correlation is a result of the deterministic rate function. The
analytical results (dotted) agree with the data (solid) and simulation
(dashed) for T > 1, (which was assumed to hold in the analytical
derivation), where 7, is the dead time or refractory period
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Fig. 4a, b. Serial count-correlation coefficient curves (SCCs) obtained
from the same spike trains that provided the other statistical measures
(unit r2). a The entire recording was used to generate the SCC for the
data (solid) and simulation (dashed). b The analytical results are pres-
ented (dotted), along with the results from the truncated spike trains.
Refractoriness imposes a depression in the correlation for counting
times less than approximately 10 ms. Sinice the analytical results do not
include the effects of dead time, they do not predict the negative
correlation apparent in the data and simulation. For longer time scales,
the positive correlation imposed by the deterministic rate function is
apparent. The results for the data and simulation differ slightly at
intermediate time scales because of the simple way in which the dead
time was modeled. At longer time scales, the data, simulation, and
analytical curves all converge to unity as predicted by the theory

The FFC for this unit is presented in Fig. 3a (solid
curve). The regularity imposed by refractoriness results in
a variance-to-mean ratio (Fano factor) less than unity for
counting times less than about 40 ms. The increase in the
Fano factor for large counting time suggests that there is
correlation in the spike train. The decaying rate function
is the likely source of this correlation.

The SCC is shown in Fig. 4a, where again the solid
curve corresponds to the data. The negative correlation
imposed by refractoriness is evident at short time scales.
For counting times greater than about 100 ms, the SCC,
like the FFC, indicates that long-term correlation is
present, overwhelming the negative correlation imparted
by refractoriness.

4 Theory

4.1 Background

The Poisson point process is a memoryless point process
whose interevent times are determined by a single para-
meter A(t), which is associated with the density of points.
The well-known homogeneous (constant-rate) Poisson
process (HPP) gives rise to a sequence of independent,
identically distributed (exponential) random variables
corresponding to the intervals between adjacent points
on the time axis. For the HPP, A(t) is a constant, 4. The
process is renewal since all interevent times are indepen-

dently generated from the same probability density func-
tion. The number of points in nonoverlapping counting
intervals are independent, so that the joint statistics of
the interevent times, as well as the numbers of counts in
nonoverlapping counting intervals, are determined solely
by their marginal statistics. The marginal count distribu-
tion is Poisson with parameter My = AT.

The nonstationary Poisson process is a Poisson point
process whose rate has statistics that vary time. In con-
trast, the doubly stochastic Poisson point process
(DSPP) is a stationary Poisson process with a rate (inten-
sity) function that varies stochastically, but whose statis-
tics are constant with time (Saleh 1978). For example, the
rate runction for a DSPP will have a constant expected
value. We focus on a particular kind of nonstationary
Poisson point process, one with a deterministic time-
varying rate A(t). Since the generation of events is mem-
oryless, the value of any interevent time depends only on
the time course of the rate function following the pre-
vious event. This property allows the statistics of the
interevent times to be obtained, conditioned on the oc-

‘currence of an event at an arbitrary time ¢,. It also allows

the joint count statistics of nonoverlapping counting
periods to be specified in terms of the marginal distribu-
tions. The marginal distribution of counts in the interval
(1,1 + T7] is still Poisson, but with the parameter given
by the integrated rate Mr(¢) (Saleh 1978):

t+T

Mp(t)= | A(x)dx Q)

The linearity of (1) implies that the superposition
(sum) of point processes generated from different rate
functions is equivalent to the point process generated
from the sum of the rate functions. The point processes
described so far lend themselves to relatively straightfor-
ward ‘analysis because they are both memoryless and
linear in the sense described above. Dead time introduces
both memory and a nonlinear element, however, so the
statistics of a process with dead time are in general
difficult to obtain. The homogeneous dead-time-modi-
fied Poisson peint process (DTMP) exhibits independent,
identically distributed (truncated exponential) interevent
times, but the dead time imposes negative correlation
among the numbers of events in closely spaced nonover-
lapping counting intervals. For this process, the effect of
dead time 7, reduces the rate parameter from its original
value A (the rate without dead time) to a new value (Teich
1985) given by

A

. —
T+ gh

2
The quantity 4 can be thought of as the instantaneous
intensity of the process if it is set to zero for 7, seconds
after the occurrence of an impulse. The marginal count-
ing distribution is no longer Poisson, but the counts in
nonoverlapping intervals are nearly independent when
the separation of the intervals is greater than the dead
time. As with the HPP, the renewal nature of the DTMP
process allows the joint interval distributions to be ex-
pressed entirely in terms of the marginal distribution.



Table 1. Summary of data sets examined

Data set ri(s7h) 71 (8) ry (s71) 7, (8) Duration (s) k

Fast chopper t176-1E.r2 170.0 14.5 1434 734.8 555 1.75
t187-2A.r3 725 16.1 69.5 383.0 450 225
t187-2A.r4 53.6 139 87.8 315.6 325 20
t187-2A.r5 69.2 15.6 82.1 274.6 125 1.75

Slow chopper t162-1A.r10 44.75 10.9 105.6 780.2 553 1.5

The values of ry, 7, r,, and 7, were obtained by fitting (3) to an estimate of the data rate function, which was generated by
counting the number of impulses in successive 1-s counting times. The value of k was that which provided the best overall
agreement between the data and model for the statistical measures used. The coefficients r, and r, were normalized so that the
time origin corresponds approximately to the point when the stimulus was applied. Data prior to this point were ignored in

finding the best-fitting parameters

The nonstationary DTMP is more complex. Never-
theless, the interspike-interval statistics, conditioned on
the occurrence of an event at time t,, are determined
solely by the time course of the rate function and the
nature of the dead time. The behavior of the process prior
to ty has no bearing on these conditional statistics. This
property makes analytical treatment easier and simula-
tion straightforward.

4.2 Model

The average firing rates of the processes recorded from
the LSO units examined are well approximated by
a function of the form

Aq(t) = riexp(—t/t1) + r2exp(— 1/15) 3)

where ¢ is the time since the onset of the recording. Since
the stimulus was applied after data acquisition was in-
itiated, the first few seconds of data are ignored in fitting
the parameters and in obtaining statistical measures.
Figure 1 presents a comparison of the estimated rate
function and (3), using the best-fitting parameters pres-
ented in Table 1 (the duration of the data set is also
shown in the table). The exponential with the smaller
time constant dominates the rate function at the onset of
the recording, but its effect decreases rapidly, so that for
approximately 80% of the recording the rate essentially
comprises a single exponential function.

The DTMP has been successfully employed i
modeling auditory neural firing patterns over short time
scales (Teich and Khanna 1985; Young and Barta 1986).
That the LSO firings exhibit refractoriness is apparent
from the ISI histogram, which shows a low probability of
short (less than a few milliseconds) interevent times; the
FFC, which shows a variance-to-mean ratio less than
unity on these time scales; and the negative correlation
apparent in the SCC time curve for these counting times.
These characteristics are all consistent with the presence
of refractoriness. The data exhibit shorter dead time at
the onset of the recording, when the rate is high, than
later, when the rate is low (compare Fig.2a and b);
a similar effect has been noted by Tsuchitani and John-
son (1985). This precludes the use of a simple fixed-
dead-time model. As a better approximation, the value of
the dead time was taken to be inversely proportional to

the rate with dead time, ie.,

1

T a0 @

Extensive work has been carried out in modeling refrac-
toriness in neural firing patterns {Teich et al. 1978; Teich
and Diament 1980; Johnson and Swami 1983; Prucnal
and Teich 1983; Teich 1985; Young and Barta 1986;
Johnson et al. 1986). We choose the simple form of (4) for
dead time because it is analytically tractable, and our
focus is on the behavior of the spike train on time scales
greater than a few tens of milliseconds, a regime where
the particular details of dead time are of diminishing
significance. It is preferable not to ignore dead time
altogether, however, since it influences the magnitude of
the count variance even on large time scales. For these
reasons we employ this simple treatment which accounts
for the average effect of dead time while allowing the
derivation of analytical expressions for various statistical
measures to proceed in a straightforward manner.

A single constant of proportionality 1/k was obtained
for each data set by selecting the value that provided the
best overall agreement between the statistical measures
(IST histogram, FFC, SCC) of the data and the model.
These values are presented in Table 1.

Analytical expressions for this model, subject to cer-
tain restrictions, are derived in the Appendix. We also
have performed a computer simulation of the model.
Because of the essential Poisson nature of the process,
each interevent time depends only on the time course of
the instantaneous rate since the expiration of the dead
time of the previous spike (Saleh 1978). A nonconstant
rate during ISIs can be simulated; however, in the LSO
data, there is a high probability that the interevent times
are small relative to the time constants of the rate. There-
fore the rate can be taken to be constant during the
duration of the interval, so the simulation is a straightfor-
ward transformation of uniform random variables.

5 Discussion

A comparison of the model rate function in (3) and
the estimate from the data is shown in Fig. 1. The model
rate function (dotted) describes the estimate from the
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data (solid curve) quite well, diverging from the estimate
slightly after the decay of the first exponential (around
100 s) and again at the end of the recording.

The ISI histogram, FFC, and SCC were obtained
from the data, and from the simulation of the model,
using the entire duration of the recording. These
measures were also obtained by ignoring the first 75 s in
the data and simulation, so that the exponential with the
shorter time constant had decayed to a negligible value.
In this case we can also compare the analytical results for
a single exponential with those of the simulation and the
data. All of the data analyses make use of the same spike
train.

The ISI histograms using the entire duration of the
experiment are presented in Fig. 2a. Results from the
data are shown as solid curves, while those from the
simulation are dashed. The model describes the data
quite well over three decades of probability. The ISI
histograms shown in Fig. 2b were obtained with the first
75s of data ignored. The dotted curve, which is very
similar to, and therefore partially hidden by, the dashed
curve, corresponds to the analytical formulas derived in
the Appendix. The model and data differ most signifi-
cantly for interevent times in the vicinity of 5 ms. Com-
parison of the ISI histograms for the experimental data in
Fig. 2a and b clearly indicates that our model overesti-
mates the dead time when the rate is low. This is to be
expected since a large absolute refractoriness is necessary
to model a smaller dead-time region followed by a region
of relative refractoriness. Additionally, results obtained
using the entire duration of the simulation (Fig. 2a) show
a slight dip in the simulated-data histogram (dashed
curve) near 2 ms. This irregularity occurs because only
the early portion of the entire simulation can generate
those interevent times which fall between 7, .;, and
Ts.max LS€€ (4) and (A15)]. For the estimates from the
truncated data (lacking the first 75 s), the change in rate is
small so that 7, in & T4 max, and the change in 7, does not
produce a significant dip in the curve.

Since our focus is on the long-term behavior of the
process, we have used a simple model for dead time. One
refinement that improves the fit on short time scales is
a modification of the dead-time model such as that used
by Young and Barta (1986), which has a random com-
ponent (specifically, we also used an exponential random
variable, but one whose expected value is inversely pro-
portional to the rate) and an absolute component (con-
sisting of a fixed portion and a portion that is inversely
proportional to the rate). Johnson et al. (1986) present
a higher-order (nonrenewal) model of dead time that
accounts for negative serial correlation between success-
ive intervals. These more complex treatments of dead
time are useful for understanding the short-term behav-
ior of the spike train. However, they add little under-
standing to the long-time behavior of the LSO activity,
which is our focus, and impose substantial complexity on
the model.

Figure 3b shows the FFCs obtained from the data
(solid), simulation (dashd), and analytical results (dotted).
As with the ISI histogram, the model describes the data
quite well. Of particular significance is the agreement over

long time scales (7 > 0.1 s) where the ISI fails to give any
meaningful information about the process (see discussion
of the ISI histogram in Sect. 2.2). The analytical result
converges to the data and simulation when the counting
time T becomes much larger than the dead time 74, as
should be the case because of the assumption T > 1, used
in the derivation. The Fano factor is approximately pro-
portional to the counting time, i.., F(T)oc T

The SCCs are presented in Fig, 4. Again, the model
and data only differ markedly in the region where the
role of dead time is significant. The constant correlation
indicated by the SCC for large counting times is consis-
tent with the power-law behavior of the FFC. Further-
more, the actual value of the SCC for T sufficiently large
tends to unity in agreement with the theory. The deriv-
ation of the analytical results neglected the effects of dead
time; consequently, the analytical curve in Fig. 4b (dot-
ted) does not show the negative correlation imposed by
dead time. '

6 Conclusion

The comparison of data, simulation, and analytical re-
sults indicates that the inhomogeneous DTMP describes
the LSO recordings well, particularly over all time scales
longer than 10 ms. Closer agreement with the data on
short time scales could be obtained by refining the dead
time rule, as indicated in the previous section.

As illustrated by the results, the ISI is useful for
describing the short-term characteristics of the process.
Indeed, the straight-line form (on semilogarithmic plots)
of the ISI histograms shown in Fig. 2 are indistinguish-
able from those of an HPP. The FFC and SCC capture
the long-term behavior of the process; both reflect the
correlation imposed by the deterministic rate function.
The results suggest that correlation in the data extends
beyond the largest observable time scales in our record-
ings.

Of particular interest is whether the LSO firings ex-
hibit the kind of fractal patterns that are apparent in
VIII-nerve fiber recordings (Teich 1989, 1992; Teich et al.
1990a, b). A number of analysis procedures were used in
an attempt to separate deterministic, nonstationary rate
fluctuations from possible fractal fluctuations. These in-
cluded Fourier- and wavelet-transform methods, rate
normalization, and a quantitative measure of rate fluctu-
ation as a function of counting time. None of these
revealed a significant difference between the LSO data
and a simulated nonstationary, nonfractal Poisson pro-
cess. Although the results obtained from the statistical
measures described above indicate that a nonfractal,
nonstationary Poisson point process models the LSO
firings well, it is possible that an underlying fractal com-
ponent is masked in these measures.
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Appendix
Derivation of the ISI histogram, FFC, and SCC

To obtain expressions for the unmodified rate parameter
A(t) in terms of the rate with deal time A,(t), we use the
fact that the rate varies slowly over the duration of
typical ISIs. Specifically, since the average interevent
time (1) is small relative to the rate time constants [i.e.,
{1) < 14,7,in (3)], the rate is approximately constant
over an ISI, and we can combine (4) and (2) to obtain

A(t) = Aa(2) (A1)

k—1

so that both 1 and 1, are given by the sum of two
decaying exponentials.

An analytical expression for the ISI is readily ob-
tained in the case when A(¢) is a single exponential

A(t) = Arexp(— t/t1) (A2)

We define the conditional distribution function F,(x|to)
of the interevent time 7, conditioned on the occurrence of
an event at time ¢,, as

F.(x|to) = Pr{r < x|event at time t,} (A3)

and the density of counts py(n, x[f,) in the interval
(to,to + x] as

pn(n, x| to) = Pr{number of events N in
(to, to + x] = n} (A4)

F.(x|ty) is related to the distribution of counts
pn(n, x[to) by

F(x|to)=1— pn(n,x[t0)ln=o0 (AS)

px(0, x| to) depends solely on the integrated rate M, (to)
(Saleh 1978)

px(0,x o) = exp[— M(to)] (A6)
so that
Ft(xltO) =1- CXp[— Mx(tO)] (A7)

Since we are considering the integrated rate M,(1o)
between events, we can include the effects of dead time by
a simple modification to (1), namely,

to+x

M(to)= | Ay)dy (A8)

totta

The conditional probability density function p.(x|t,) is
then

OF (x|t0) _

oM, (¢
pxlto) = 2% ()
X

ox

exp[— M.(o)] (A9)

Since the rate is a monotonic, deterministic function of
time, conditioning on t, is equivalent to conditioning on
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Ao, With Ay = A(%o). Hence,

0
pu(x120) = expL— (1) T (A1)
where, from (A2),
fo = 7;1n (j—i) (A11)

With A(t) approximately constant over the duration of
an interval, then (A10), using (4) and (A8), becomes

1
p(x| o) = Ao€Xp (-— xAo + k——I> X > 1, (A12)

To remove the conditioning we exhaustively sample
all values attained by A(t) over the duration of the experi-
ment [t;,t; + L] (Teich and Card 1979). The corres-
ponding density function p;o(4o) is then.

T1
). = ). i < ,1 < /q-max A13
Pao(4o) AL min 0 ( )

where

Amax = A1 €Xp(— 11/T1)

and

Amin = A1 €xp[— (t; + L)/14]

Finally, removing the conditioning from (A12) we obtain

Amax
p(x) oc ,[ Aopo(x]A0)pro(40)dAo (A14)

Amin

with the scale factor A, introduced because the number of
intervals generated with a particular rate 4 is directly
proportional to A. This scale factor is necessary because
the distribution corresponds to intervals generated dur-
ing a single realization of the process. Alternatively, if
each of an ensemble of realizations were to be sampled,
with the sample time uniformly distributed over the
duration of the realization, then the scale factor would
not be necessary. In this latter case, however, the effects of
length-biased sampling would have to be corrected (Cox
and Lewis 1966).
Returning to our formalism, (A14) yields

~

0

X < Tg,min

c k-t —
pr(x) = ﬁ ; k—1 ek-1—¢€ max(xj'max + 1)
Td,min < X < Td,max

Lo (XA + 1) — € (XAmae + 1)}

-
x > Td, max

(A15)
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where

1
Famin = (k - l)lmax

1
T =
o max (k - 1)’lmin

and ¢ is a normalizing constant, implicitly defined by
requiring p.(x) to have unity area. This is the final result
for the interevent time probability density function.

Analytical results have been obtained (Vannucci
and Teich 1978; Prucnal and Teich 1983) for the count
distribution, and the mean and variance, of an inhomo-
geneous DTMP with dead time 7, subject to the
conditions 14 <€ 7.; 7, < T} and { E[A]7,}%7,/6 < 7., where
7. is the characteristic time of the rate function
and T is the counting time. The first and last restric-
tions are satisfied by the parameters shown in Table 1,
and our analysis will apply only for counting times
sufficiently large such that the second condition is obeyed
as well. With an exponential rate

Aalt) = (%)A(t) - (5—;—1 ) Iy exp(— tfe)

[see (A1)] and a counting interval T initiated at t,, where
to is a random time uniformly distributed over the dura-
tion of the experiment [1,,t; + L], we obtain (Prucnal
and Teich 1983, Table 1)

71 Aa(t1)
L

E{N}= (1 — e~ Thiy(1 — e~ Lim) (A16)

Aa(ti)7}

Var{N} = E{N} {(k; ! )2 +=5;

x[<r£—2>+ <T£+2)e‘”ﬁ]} (A17)

This provides the analytical result for the Fano factor,
which is simply the ratio of the count variance to mean,
subject to the condition T » 1,.

The results developed above can be used in the dexiv-
ation of an analytical expression for the SCC:

(1 —e T

Cov(Ny, N,)
[Var(N,)Var(N,)]'/2

SCC(T) =

[Var(N,)Var(N,)]'"?
with N; the number of counts in (¢, t, + T, and N, the
number of counts in (¢, + 7, t, + 27T, where ¢, is a ran-
dom variable uniformly distributed over the duration of
the experiment, [¢;, t; + L]. Expressing the expectation
of N;N, as

E{N;N,} = E{E(N N, |t,)} (A19)

N, and N,, conditioned on t,, can be treated as indepen-
dent if the effects of dead time are neglected. After some
calculation we obtain

SCC(T)
{‘61/1;(t1)(1 _ e_T/“)(l + e~L/t1) . E[Nl] }C—T/Zu
k—1 2 1/2 k—1 2 Ty 1/2
() o ) e
(A20)
where

R P (s s

The SCC analytical result accounts for the correlation
introduced by the time-varying rate, but it neglects the
(negative) correlation imposed by dead time.
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