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Abstract. We previously reported experimental short-
and long-counting-time pulse-number distributions
(PND’s) for the neural spike train in cat primary
auditory nerve fibers. Data were obtained for sponta-
neous activity, pure-tone stimuli with a wide range of
frequencies and intensity levels, and Gaussian noise.
The irregular shapes of the PND’s are an indication of
the presence of spike clusters of various sizes in the
neural impulse train. We develop a family of theoret-
ical cluster counting distributions and examine their
suitability for describing the experimental PND’s. The
reduced-quintinomial distribution provides theoret-
ical results that describe the characteristics of the
PND’s quite well, accounting for the smooth or
scalloped behavior of short-counting-time data, the
jagged nature of long-counting-time data, and the
Poisson-like character of very-short-counting-time
data. This family of distributions admits values for the
spike-number mean-to-variance ratio that are inde-
pendent of stimulus level, in agreement with experi-
mental observation. A number of procedures for fitting
the theoretical distributions to the experimental
PND’s are studied. These include the use of a minimum
mean-square error criterion, the factorial moments of
the data, and the discrete Fourier transform of the
PND. The first of these techniques appears to be the
most useful.

1 Introduction

We recently reported the results of a series of nerve-
spike experiments carried out on cat primary auditory
fibers (Teich and Khanna 1985; Teich 1988). Particular
attention was focused on the pulse-number distri-
bution (PND), which represents the relative frequency
p(n, T) for the occurrence of n spikes in an arbitrary
counting time T, Two counting (observation) windows

T were used in collecting the data: a short counting
window (T=51.2ms) and a long counting window
(T'=204.8 ms). The appearance of the experimental
short- and long-counting-time PND’s were quite dif-
ferent even though both were simultaneously construc-
ted from the same spike trains. The short-counting-
time PND’s were relatively smooth in comparison
with their long-counting-time counterparts, which
generally had an irregular or jagged appearance
(multiple sub-peaks and valleys). Scalloping of this kind
in the PND can be an indication of the presence of
spike clusters in the neural pulse train. Such clusters
are present in the cat optic-nerve pulse train at low
light levels (Barlow et al. 1971; Mastronarde 1983;
Saleh and Teich 1985). Westerman and Smith (1984)
collected auditory-nerve PND’s with a very-short
counting window (7'~ 1 ms). These data displayed a
mean-to-variance ratio (MVR) of order unity, as for
the Poisson distribution.

The object of this paper is to investigate the
suitability of a theoretical family of counting distri-
butions for describing the experimentally observed
PND’s. These theoretical distributions are derived
from the multinomial family, of which the binomial is
the most widely known. In such distributions, each
event of a primary process (which may be derived, for
example, from level crossings or the onset of
relaxation-type oscillations) generates a cluster of
secondary events. The number of events in each cluster
is specified by a particular probability law, i.e., proba-
bilities for zeros, singlets, pairs, triplets, etc. In the
general case, the secondary events are splayed out in
time with respect to the primary event. These distri-
butions are closely associated with those derivable
from cluster point processes (see, €.g., Neyman and
Scott 1958).

The reduced-quintinomial probability distri-
bution, described in Sect. 2, generates PND’s with
behavior that is in good accord with experimental
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observations. The procedure used to fit the reduced-
quintinomial distribution to the experimental PND’s
is presented in Sect. 3. The parameters of the theoret-
ical distribution that most closely describe experi-
mental PND’s are presented and discussed in Sect. 4.
The conclusions are provided in Sect. 5.

2 The Reduced-Quintinomial Probability Distribution

It is well known that the binomial probability distri-
bution describes the results of a probabilistic experi-
ment in which each of L trials has two possible
outcomes. An example of such an experiment is L
tosses of a coin, where the result is either heads or tails
on any given toss. The binomial distribution p,(n, L)
represents the probability of observing a given out-
come (heads or tails) n times out of L tosses.

In a similar way, the quintinomial distribution
provides the probability of observing various combi-
nations of five possible outcomes of L repeated trials
(Thomas 1971; Scheaffer and McClave 1986). In apply-
ing the quintinomial to the neural spike train, we
consider each trial as capable of generating a cluster of
0, 1, 2, 3, or 4 spikes; these are the five possible
outcomes. This is illustrated in Fig. 1, where L trial
occurrences are shown on the first line and the
(randomly delayed) spike clusters associated with each
occurrence appear on the second line. In this hypothet-
ical example, the 10 repeated trials (L) give rise to the
spike-cluster sequence {2, 1, 2, 3, 4, 3, 1, 2, 0, 3}.

The occurrences of spike clusters has been reported
by Kiang et al. (1965) for a sequence of click stimuli.
Typically, a single click elicits somewhere between 0
and 4 spikes. In the continuous-stimulus case, the
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consecutive trials provide a shorthand way to charac-
terize successive impulse responses of the auditory
system which occur at its own natural period. For
simplicity of illustration in Fig. 1, the trials are shown
as a deterministic sequence of events and the clusters
associated with each trial are shown as occurring
sequentially. This idealization, which enables us to
present the notion clearly in graphical form, is not
required in the mathematical model. Indeed, the
occurrence times of the trials are expected to exhibit
randomness and the clusters may well overlap so that
the spikes residing in different clusters will interdigitate
with each other.

The use of the quintinomial, rather than the
binomial, trinomial, or quadrinomial results from the
following reasoning. The higher the order of the
reduced-multinomial distribution, the more jagged the
behavior that is possible. All of the short-counting-
time PND’s (which are either smooth or exhibit spike
pairs that are evidenced by enhanced probabilities at
even numbers of counts; see Teich and Khanna 1985)
can, in fact, be described by the reduced-trinomial
distribution. This suggests that a counting time of
50 ms is insufficient to easily capture clusters of three or
four spikes. However, the long-counting-time PND’s
are not well fit by the reduced-trinomial and reduced-
quadrinomial distributions. Apparently these PND’s
can capture clusters of three or four spikes (as well as
smaller clusters). This encouraged us to use the
reduced-quintinomial which admits spike clusters up
to size 4 which is the maximum cluster size observed by
Kiang et al. (1965) for click stimuli.

If N, is a random variable representing the number
of spikes i generated on a single trial, the quintinomial
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Fig. 1. Ltrial occurrences are shown on the first line. The spike clusters associated with each occurrence appear on the second line. In this
idealized case, the trials are considered to be a deterministic sequence of events and the clusters associated with each trial are taken to
occur sequentially. Realistically, the occurrence times of the trials are expected to exhibit some degree of randomness and the clusters
may interdigitate. The 10 repeated trials () give rise to a hypothetical sequence of spike clusters with the following sizes: {2,1, 2, 3,4, 3,1,
2,0, 3}. Both short (T 50 ms) and long (T~ 200 ms) counting windows are shown. In recording a short-counting-time PND more of the
spike clusters are cut apart than in recording a long-counting-time PND. In the limit in which the window is so short (T~ 1 ms) that only
zero spikes or one spike may be counted, all of the clusters are cut apart into zeros and singlets. This leads to a Bernoulli (Poisson-like)
counting distribution with a mean-to-variance ratio of unity, as experimentally observed by Westerman and Smith (1984)



distribution expresses the joint probability Pr(N,=n,,
N,=ny,...,N,=n,) of observing zero spikes n, times,
one spike n, times, etc. Since each trial must give rise to
one of the permissible outcomes N;, we have Zn,=L
(the analog for the binomial is that the number of heads
plus the number of tails equals the number of trials L).

However, individual spike clusters are not ob-
served; rather the observable is the total number of
spikes N measured in the counting time T by the PND,
as seen in Fig. 1. Thus, the five random variables N; of
the quintinomial distribution must be mapped onto a
single random variable N representing the total num-
ber of spikes observed in L trials. This mapping is
accomplished by considering the outcome of each of
the L trials as contributing i counts to the total N, so
that n=2X,in,=0ny+ 1n, 4+ 2n,+ 3n; +4n,.

For a given number of trials L and a given value of
the spike number n, it turns out that specifying the
values of N,, N3, and N, for a quintinomial distri-
bution uniquely indentifies a combination of outcomes
since L=ny+ny; +n,+ny+n, (the total number of
outcomes equals the number of trials) and n=(n, + 2n,
+3ny+4n,) (the total number of spikes generated is
equal to n). The reduced-quintinomial probability
distribution p,(n, L) is then obtained by summing the
quintinomial across all configurations that satisfy the
condition 2n, +3n;-+4n,<n, ie.

L—n+ny+2n3+3n4  n—2n—3n3—4ng n> n3_ny
Lirng 2T Em T gl TR AP Ty
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fibers (Teich and Khanna 1985; Teich 1988; Wester-
man and Smith 1984)].

Both short and long counting windows are shown
in Fig. 1. It is apparent that the short window cuts
apart more of the spike clusters than does the long
window. Indeed, each of the four short windows
illustrated in Fig. 1 cuts spike clusters apart. In the
limit in which the window is so short that only zero or
one spike may be counted, all of the clusters are cut
apart into zeros and singlets. This leads to the Ber-
noulli distribution which, with #; small, gives a mean-
to-variance ratio of unity and Poisson-like behavior.
This is indeed the result that was experimentally
observed by Westerman and Smith (1984). The pre-
sence of phase locking (Rose et al. 1967) does not affect
the PND to a great extent (as time jitter and time
quantization do not affect it). This is because the details
of precise spike occurrence times on a short time scale
do not affect the spike count, as can be seen from Fig. 1.

In the special case of deterministic clusters, each
trial would always produce the same outcome and a
given cluster size would always appear, i.., ;=1 with
m;+;=0. For example, if triplets are consistently pro-
duced on every trial then ;=1 and ny=7n,=n,=7,
=0. Equation (3) then gives zero variance, as expected
for a deterministic situation.

I ZUNDEDIWY
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where n, is summed from 0 to n/4, n, is summed from 0
to n/3—4n,/3, and n, is summed from 0 to n/2—2n,
—3n,/2.

Here it suffices to consider the results for the
reduced-quintinomial spike-number mean and va-
riance which are, respectively,

{ny=L(n,+2n,+3n;+4n,), (2)
Var(n)=L[n,+4n,+97,+ 167,
—(my 421, +3n5+41,)%], (3)

where 7; is the probability of observing outcome i for a
given trial. These expressions are reaildy obtained
from the moment-generating function. For this class of
models the theoretical mean-to-variance ratio R is

R={n)/Var(n), 4)

which is independent of L. Thus, if stimulus level were
encoded into the number of trials L, R would be
independent of stimulus level. This family of distri-
butions therefore admits behavior that is in agreement
with experiment [the mean-to-variance ratio is rela-
tively independent of stimulus level for all of the
PND’s that have been measured in primary auditory

SNV

In Figs. 2 and 3, we display a number of reduced-
quintinomial distributions, p(n, L) vs n. Various values
of L and n;=mn,, n,, n,, 73, 74, Were specially selected
for the purposes of illustration and are indicated at the
side of each of the panels. These plots reveal a number
of characteristics of these distributions that are neither
obvious from the expression for p,(n, L) in (1) nor from
the underlying probability model: (a) Although the
various distributions in Fig. 2 have quite different
appearances, all have the same mean ({n)>=12); (b) In
the deterministic limit (7;=1, 7, ;=0), different sets of
parameters are capable of generating distributions that
are identical, asillustrated in the topmost row of Fig. 2.
However in the probabilistic case, different sets of
parameters will always generate distinct distributions
even though they may have similar appearance; (c) If
only spike doublets and quadruplets are possible, the
result is always an even spike count. Similarly, the
exclusive presence of singlets and triplets leads to an
even spike count if L is even (see Fig. 2e, f and h); (d) If
only zeros and a particular cluster size i are present, the
reduced-quintinomial distribution displays nonzero
probability only for counts that are integral multiples
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Fig. 2a-l. Theoretical reduced-
quintinomial distributions, p.(n, L) vs.
n. Various values of L and =n;=n,, 7,
7y, 3, T, (indicated beside the
individual panels) were specially
selected to illustrate the range of
behavior exhibited by this
distribution. It can display smooth,
scalloped, or jagged behavior. In all
cases, the mean count {n)=12

Fig. 3a-1. Additional reduced-
quintinomial distributions, p,(n, L) vs.
n. Different values of L and #;=n,,
Ty, Ty, T3, T, (indicated beside the
individual panels) were selected to
further illustrate the range of
behavior exhibited by this
distribution



of i. For example, if only zeros and triplets are
permitted, p,(n,L) displays nonzero values only at
n=3,6,9, 12, etc. This situation is shown approxi-
mately in Fig. 2g; in this particular example, however,
the small admixture of quadruplets permits small
probabilities at intermediate values of n; and (e) The
admixture of substantial probabilities for even and odd
cluster sizes reduces the extreme scalloping of the
distributions, as is evident from the third row of Fig. 2.
Equal probabilities for every cluster size leads to the
smooth distribution shown in Fig. 21.

The role of various combinations of spike cluster
sizes on the reduced-quintinomial distribution is
further clarified in Fig. 3. Scanning across the first row
first sees singlets admitted, then singlets and doublets,
followed by singlets and triplets, and finally singlets
and quadruplets. The variance increases as we pass
from left to right. A similar pattern is followed in the
second row where distributions for various combi-
nations of doublets, triplets and quadruplets are dis-
played. Other instructive combinations are presented
in the third row.

It is clear from these results that irregular pulse-
number distributions can (but need not) be generated
by the reduced-quintinomial model, depending on the
cluster probabilities and L. Furthermore, different
shaped distributions will be produced as the value of T
is changed and the clusters are cut apart to different
degrees. For very small T (<1ms) the reduced-
quintinomial reduces to a Poisson-like distribution,
for small T (~50ms) it reduces to a binomial-like or
trinomial-like distribution (the latter if spike pairs are
permitted), whereas for larger T (2 200 ms) it can take
on a jagged character.

3 Procedures for Fitting Reduced-Quintinomial
Distributions to Experimental PND’s

A minimum-mean-squared error (MMSE) criterion
was used to numerically estimate the parameters of the
reduced-quintinomial distribution that best fits a given
experimental PND. Briefly, the allowed cluster proba-
bilities m, through =m, were quantized to integer
multiples of 0.1, from 0 to 1.0. Theoretical reduced-
quintinomial distributions, with all reasonable values
of these cluster probabilities and with the number of
trials L ranging from 1 to 15, were computed with
extended precision (15 decimal digits) and compared
with each PND. This range of L was found to be
adequate for achieving good fits to the data. Since the
experimental uncertainty of the data is lowest where
the sample size is largest, the theoretical distributions
were fit across one standard deviation of the PND to
either side of the mean rather than across its entire
width. In this way the high-uncertainty tails of the
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distribution were ignored and the fit was based on the
central portion of the PND where the scalloping was
most pronounced and the spike-cluster information
richest. Typically, the mean of the best-fitting
reduced-quintinomial was within half a count of the
PND mean.

There are other ways of fitting the theoretical
distributions to the PND’s, and two of these deserve
discussion. In principle, one way in which this can be
achieved is by analytically matching the first five
theoretical and experimental factorial moments (Saleh
1978; Olkin et al. 1980). Because a fitting procedure of
this kind relies on higher moments, however, it em-
phasizes the tails of the PND where accuracy is
problematical in nerve-fiber experiments. The MMSE
numerical fitting procedure, which relies on only one
standard deviation to either side of the mean, turns out
to be superior with data of limited accuracy.

Another estimation technique is suggested by the
scalloped appearance of the PND’s, in particular the
periodically spaced maxima of the short-counting time
data for units displaying spike pairs. This suggests that
frequency analysis may be useful for gaining insight
into the structure of the PND (Cox and Lewis 1966).
Indeed, complete information about a set of discrete
samples is contained in its discrete Fourier transform
(DFT). Since there is a unique set of underlying
parameters  associated with each reduced-
quintinomial distribution, it follows that these para-
meters can also be obtained from the DFT of the
distribution. The DFT is calculated by means of the
fast Fourier transform (FFT) method (Schwartz and
Shaw 1975). The procedure we used, i.e., calculating the
DFT of an experimental PND (Cox and Lewis 1966),
should not be confused with the periodogram
(Schwartz and Shaw 1975).

Typical theoretical frequency-analysis results are
illustrated in Fig. 4. In Fig. 4a we present a reduced-
quintinomial distribution, p(n, L) vs count number n,
with parameters L =6 and ;= {0.35, 0.0, 0.0, 0.6, 0.05}.
This is an expanded plot of the distribution represent-
ed in Fig, 2g. The cluster probability for triplets was
purposely chosen to be quite high. The DFT magni-
tude of p,(n, L) is shown in Fig. 4b. It readily displays
the dominant frequency component of this distri-
bution, i.e. a period of 3 counts (lower abscissa) or
equivalently w=2x/3 radians/count (upper abscissa).
The zero-frequency component of the DFT (at dc)
results from the rather broad envelope of the reduced-
quintinomial distribution, about which the probability
values fluctuate. The maximum value of the DFT is
unity since the reduced-quintinomial distribution is
normalized.

The envelope of the distribution illustrated in
Fig. 4a has an approximately binomial shape. The
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Fig. 4. a Theoretical reduced-quintinomial distribution, p,(n, L) vs. count number », with parameters L =6, and =;= {0.35, 0.0, 0.0, 0.6,
0.05}. The cluster probability for triplets is quite high. b The DFT magnitude of p,(n, L). The dominant frequency component with a
period of 3 counts (lower abscissa), or equivalently w=2x/3 radians/count (upper abscissa), is clearly visible. The low-frequency
component of the DFT results from the rather broad binomial-like envelope of the reduced-quintinomial distribution, about which the
probability fluctuates. The maximum value of the DFT is unity since the reduced-quintinomial distribution is normalized. ¢ Deviation
of the reduced-quintinomial from a binomial distribution. The filtering leaves the probability fluctuations intact but removes the
smooth envelope of the PND. d DFT (relative scale) of the binomial-filtered distribution in ¢. Comparison with b reveals that the low-
frequency component is removed and the component with a period of three counts is enhanced. Binomial filtering can therefore be
useful for increasing the prominence of the cluster components

scallops of the PND, which carry information about and

tt}e spi.ke clusters, can be accentuateq by spbtractipg a Veo=Lon,(1—7,). 6)
binomial envelope from the PND (binomial filtering).

This procedure converts the PND into a zero-sum These equations can be inverted to provide n; and L,
distribution with no dc (zero-frequency) component, in terms of the short-counting-time empirical spike
thereby increasing the prominence of the cluster ~ mean and variance, ie.,

components. 4
Short-counting-time PND’s, by virtue of their my=1=Vso/Mso, Y
tendency to minimize the observation of clusters, were ~ Lso=Ms¢/7; . ()

used to estimate the appropriate binomial distribution
to be subtracted from the long-counting-time PND’s,
Most short-counting-time PND’s exhibit a lack of
structure and are adequately approximated by the
binomial distribution, which has count mean and
variance given by

The number of trials Ls, is then multiplied by 4 to
obtain the appropriate long-counting-time parameter
L,00- The probability of a spike =, is taken to be
independent of the counting time T. The long-
counting-time binomial distribution generated by
these parameters was then subtracted from the
M =Ls,m, %) T'=204.8 ms PND’s, and the result was Fourier trans-



formed to provide the filtered DFT’s. The subscripts
50 and 200 stand for Ta~50ms and T=~200 ms,
respectively.

The deviation of the counting distribution from the
binomial is shown in Fig. 4c. This processing elimi-
nates the dc (zero-frequency) component in the DFT,
as is evident in Fig. 4d, which is the DFT of Fig. 4c.
Binomial filtering can therefore be used to increase the
prominence of the cluster components of interest.
Indeed, comparing Fig. 4d with Fig. 4b shows that the
component with a period of three counts is emphasized
and the zero-frequency component is removed. How-
ever, this nonlinear filtering technique introduces a
new peak near 12 counts. Although the DFT techni-
que is of interest from a theoretical point of view, we
have concluded that it is useful principally when
scalloping is plainly apparent by visual inspection of
the PND. The MMSE fitting procedure discussed
above turns out to operate in a more effective manner.
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4 Results

All of the long-counting-time experimental PND’s
display jagged behavior, regardless of the character-
istics of the unit or the stimulus conditions (Teich
1988). We present a detailed comparison of the best
fitting reduced-quintinomial theoretical distributions
with the experimental PND’s for two units. One of
these units (No. 8/52304.PN, 5/5/82), shown in Figs. 5
and 6, did not display visually apparent spike pairs in
the short-counting-time PND’. The other unit
(No. 44/81426.PN, 2/17/82), shown in Figs. 7 and 8,
did display such spike pairs in the short-counting-
time PND’s.

The solid curves in Figs. 5 and 7 represent experi-
mental short-counting-time PND’s drawn from Teich
and Khanna (1985) whereas the solid curves in Figs. 6
and 8 are long-counting-time PND’s drawn from
Teich (1988). The data in Figs. 5 and 6 are from a high-
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Srequency (CF =6113 Hz) unit (No. 8/52304.PN, 5/5/82) with a threshold of about 20dB SPL. The data are drawn from Teich and
Khanna (1985). The corresponding long-counting-time PND’s for this unit are shown in Fig. 6. The upper-left element in the figure
represents the PND collected in the absence of external stimulus (spontaneous PND, denoted SP). The other elements in the figure
represent PND’s recorded with a pure-tone stimulus applied at the CF; the stimulus level (in dB:re FTC) is indicated in each element.
The relatively smooth character of the distributions means that this unit did not display visually apparent spike pairs in the short-
counting-time PND’s (Teich and Khanna 1985). The best-fitting reduced-quintinomial distributions are shown as the dotted curves. The
reduced-quintinomial distribution is capable of taking on the smooth bell-shaped forms shown here for appropriate parameter values.

The fits of the theory to the data are quite good
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Fig. 6. The solid curves represent experimental long-counting-time (7 =204.8 ms) PND’s for a high-spontaneous (53.7 counts/s), high-
frequency (CF =6113 Hz) unit (N0.8/52304.PN, 5/5/82) with a threshold of about 20dB:re SPL. The data are drawn from Teich (1988).
The corresponding short-counting-time PND’s for this unit are shown in Fig. 5; this unit did not display visually apparent spike pairs.
Nevertheless, the long-counting-time PND’s exhibit irregular shapes indicating the presence of spike clusters. The best-fitting reduced-
quintinomial distributions (dotted curves) take on the jagged character of the data for appropriate parameter values. The fits of the
theory to the data are reasonably good. Other counting distributions commonly used in auditory modeling, such as the binomial or the
dead-time-modified Poisson distribution, cannot exhibit such inflections or local extrema
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Fig. 7. The solid curves represent
experimental short-counting-time
(T=51.2ms) PND’s for a medium-
spontaneous (4.1 counts/s), high-
frequency (CF =7227 Hz) unit (No.
44/81426.PN, 2/17/82) with a
threshold of about 23dB SPL. The
data are drawn from Teich and
Khanna (1985). The short-counting-
time PND’s indicate the presence of
spike pairs (even spike numbers are
enhanced). The corresponding long-
counting-time PND’s for this unit are
shown in Fig. 8. The best-fitting
reduced-quintinomial distributions
(dotted curves) take on the scalloped
character of the data for appropriate
parameter values. The fits of the
theory to the data are excellent.
Counting distributions commonly
used in auditory modeling, such as
the binomial or the dead-time-
modified Poisson distribution, do not
exhibit scallops
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spontaneous (53.7 counts/s), high-frequency (character-
istic frequency CF=6113 Hz) unit with a threshold of
about 20dB sound pressure level (SPL). The data in
Figs. 7 and 8 data are from a medium-spontaneous (4.1
counts/s), high-frequency (CF="7227 Hz) unit with a
threshold of about 23 dB SPL.

The upper-left element in each figure represents the
PND collected in the absence of external stimulus
(spontaneous PND, denoted SP) and the best-fitting
reduced-quintinomial distribution (dotted curve). The
other elements represent PND’s recorded with a pure-
tone stimulus applied at the CF. The stimulus level (in
dB:re FTC, ie., dB with respect to the unit rate
threshold) is indicated in each element of the figure.
The same procedure was carried out for PND’s
generated by Gaussian noise, and by pure tones above
and below CF. We do not explicitly present these data
since the results shown in Figs. 5-8 are representative
for these stimuli as well. Furthermore, the fits of
reduced-quintinomial distributions to PND’s collect-
ed from other units, including low-frequency units,
are similar to those displayed in Figs. 5-8.

The fits of theory to the data are reasonably good;
the reduced-quintinomial distribution follows many of
the inflections and local extrema present in the data. It
can assume a broad variety of shapes depending on its
parameters (including a smooth bell-shaped distri-
bution). Other counting distributions commonly used
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Fig. 8. The solid curves represent
experimental long-counting-time
(T'=204.8 ms) PND’s for a medium-
1 spontaneous (4.1 counts/s), high-
frequency (CF=7227Hz) unit (No.

o

2

A AdAALRSASASARE

.0 40.0

44/81426.PN, 2/17/82) with a
threshold of about 23dB SPL. The

. 4 r p
2.0 | o.eb-m-u‘ 0.0

0.9 40.0
0.3 Frrvrrrrrrrrrrerey @+ 3 rreverrerrreneren 8.3

AASAALS LA LA SRS S AN

data are drawn from Teich (1988).
X 30 The corresponding short-counting-
time PND’s for this unit are shown in
3 4 Fig. 7. The spike pairs evident in the
K: E short-counting-time PND’s are
‘ masked by the presence of other
clusters in the long-counting-time

\ASARSAZAASS LS 2

data. The best-fitting reduced-

50 quintinomial distributions (dotted
curves) take on some of the jagged
character of the data for appropriate
parameter values. The fits of the

[
.
[

theory to the data are satisfactory

in auditory modeling, such as the binomial or the dead-
time-modified Poisson distribution, cannot display
inflections or local extrema.

Two observations emerge from an examination of
the parameters of the reduced-quintinomial that best
describe the experimental PND’s represented in
Figs. 5-8. The cluster probabilities for triplets and
quadruplets, 7, and 7, as well as the number of trials
L, generally increase with increasing counting time
and increasing stimulus level. The increase in 75 and
n, with counting time can be understood in terms of
the presentation in Fig. 1. In particular, an example is
provided in which a cluster of 4 spikes is split between
two adjacent 50 ms counting periods. Large clusters
are therefore more likely to appear in long-counting-
time PND’s, explaining the increase of n; and n, with
increasing counting time. This suggests, by the way,
that the reduced-quintinomial parameters that de-
scribe the long-counting-time PND’s more accurately
portray the character of the underlying neural spike
train. The increase in n; and n, with stimulus level
reflects the fact that spike rate generally increases with
stimulus level, in accordance with (2). The weighting
factors associated with n; and n, demonstrate that
their increase with stimulus level can maintain good
fits of theory to data.

For the long-counting-time data, the best fitting
number of trials L generally takes on values between 5
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Fig. 9. a Long-counting-time (T =204.8 ms) PND for Unit No. 44/81426.PN stimulated by a pure-tone at 7227 Hz (CF) at 40 dB:re FTC.
b The DFT magnitude of the PND shown in a. Several dominant frequency components are visible in the DFT. The low-frequency
component results from the rather broad binomial-like envelope of the PND, about which the probability fluctuates. The maximum
value is unity since the reduced-quintinomial distribution is normalized. ¢ Deviation of the PND from a binomial distribution. The
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filtered distribution in ¢. Comparison with b reveals that the low-frequency component is removed and that the strong frequency

components at periods of 2, 3, 4, and 9 counts are enhanced

and 12, whereas for the short-counting-time data the
average value of Lis about 4. The optimally fitted value
of L is rarely at either extreme of the range that was
tested (1=<L=<15). At first thought, it might be
expected that L should increase in approximately
linear fashion with T because the longer counting time
captures a greater number of trials, as schematically
displayed in Fig. 1. However, L will be overestimated
for the short-counting-time data because the large
clusters are cut apart by the measuring window and
therefore the data appear as a larger number of smaller
clusters (i.e., Lis overestimated and the large-cluster
probabilities are underestimated). This is analogous to
the quadrat-sampling problem of spatial processes in
ecology (Pielou 1957; Gleeson and Douglas 1975).
Thus L should increase with counting time, but at a
rate less than linear, in accordance with our obser-
vations. The increase in L with stimulus level again
reflects the fact that spike rate generally increases with
stimulus level, in accordance with (2).

A characteristic inter-trial time can be roughly
estimated by taking the ratio of the long counting time
T (=204.8ms) to the empirical average number of
trials L, (&10), as portrayed in Fig. 1. The typical
time splay-out of neural spikes within an individual
cluster therefore has a duration of the order of
204.8/10 ms ~20 ms. This time course is not unlike the
characteristic auditory response times determined in a
broad variety of other experiments such as click
responses (Kiang et al. 1965), impulse-response func-
tion measurements (Littlefield 1973), and relative-
refractory periods (Gray 1967). It is also of the same
order of magnitude as the value experimentally ob-
served in the cat’s retinal ganglion cell, which is
~27ms (Barlow et al. 1971; Saleh and Teich 1985).

We could not discern any special relationships
between the parameters of the theory (z;’s and L) and
the parameters of the experiment (unit type, unit CF,
stimulus level, stimulus frequency), aside from those
expected on the basis of constraints on the mean,



variance, and maximum count number associated with
the reduced-quintinomial distribution. Furthermore,
all of the data that we fitted were collected from
experiments of duration D=>51.2 or 102.4s. Since an
increase in the experimental duration leads to an
increase in the count variance, and a decrease in the
count mean and mean-to-variance ratio (Teich 1988),
the results obtained here are likely to be specific to the
experimental duration D as well as the counting time T

Finally, we carried out a frequency analysis of the
experimental PND’s, using the FFT procedure discus-
sed earlier. This technique is useful for PND’s that
exhibit structure, i.e., principally the long-counting-
time PND’s. In Fig. 9, we display a long-counting-time
PND (Fig. 9a) and its DFT (Fig. 9b), along with their
binomially filtered versions (Fig. 9¢ and d), for Unit
No. 44/81426.PN (stimulated by a 40dB:re FTC pure
tone at 7227 Hz). This is the same distribution repre-
sented in the last row/first column of Fig. 8. The DFT
magnitude, particularly the filtered version, shows a
substantial degree of structure (at or near 2, 3,4, and 9
counts) which is associated with the rather large and
quasi-regularly spaced fluctuations present in the
PND. Although the cluster probabilities can be es-
timated from these DFT’s, these estimates are likely to
be less accurate than those obtained from the numer-
ical fit, as indicated earlier.

5 Conclusion

We have investigated the reduced-multinomial family
of theoretical cluster counting distributions in terms of
their suitability as a model for neural-spike counting
distributions in primary auditory fibers. These distri-
butions are generalizations of the binomial distri-
bution. The reduced-quintinomial distribution pro-
vides theoretical results that describe the character-
istics of the PND’s quite well, accounting for the
smooth or scalloped (spike-pair) behavior of short-
counting-time PND’s, the jagged nature of long-
counting-time PND’s, and the Poisson-like character
of very-short-counting-time PND’s. The theory ap-
pears to be applicable for a broad variety of unit types
and stimulus conditions. The results are far more
satisfactory than those achievable with other common-
ly used auditory counting distributions, such as the
binomial or the dead-time-modified Poisson distri-
bution (Teich et al. 1978). They may also be useful for
describing the spike counting distributions in other
neural systems. Nevertheless, a model that specifies
only the counting distribution is necessarily incom-
plete. Ideally, it is desirable to identify the underlying
neural point process in terms of its moment generating
functional. This, in turn, would permit any desired
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measure (e.g., the PND, PST, and PID) to be calculated
and, in the auditory case, the mapping between the
space p(n, L) and p(n, T) to be rigorously established.

The reduced-multinomial family of distributions
admits values for the spike-number mean-to-variance
ratio that are independent of stimulus level, in agree-
ment with experimental observation. A number of
procedures for fitting the theoretical distributions to
the experimental PND’s were studied. These include
the use of a minimum-mean-square error criterion, the
factorial moments of the data, and the discrete Fourier
transform of the PND. The first of these techniques
appears to be the most useful.

Use of the theory permits a characteristic time
course for the splay-out of neural spikes within a
cluster to be extracted from the data. This time turns
out to be &~ 20 ms which is not unlike the characteristic
response times determined by a broad variety of other
auditory experiments such as click responses, impulse-
response functions, and relative-refractory periods.

By extending the calculations to a reduced-
multinomial of higher order than the quintinomial, the
theoretical treatment could be expanded to allow for
the possible presence of spike clusters of size larger
than 4 in the time window. However, this would
involve the introduction of another parameter into the
model and would be somewhat tedious from an
algebraic point of view. But it could improve the fits of
theory to data, and might be useful in describing the
PND’s for yet longer-counting-time experiments and
for other neural systems. It is our view that, on balance,
the reduced-quintinomial distribution represents an
appropriate theoretical middle ground that is capa-
ble of suggesting an explanation for the nature of
204.8 ms experimental PND’s in the auditory system
without invoking undue computational complexity.

Finally, we point out that a mathematical model
for the point process underlying the reduced-
quintinomial distribution could be developed. One
way to achieve this would be to construct a cascade of
two stochastic processes in the form of a primary
process driving a secondary process. An appealing
alternative theoretical approach to achieving spike
clusters that we have pursued involves compounding
a simple discrete distribution with a fractal stochastic
process. This has the merit of accounting for both the
T and D dependences of our data.
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