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Abstract. Approximate normalizing transformations
are derived for Poisson counting systems affected by
nonparalyzable and paralyzable dead time. In the
“nonparalyzable case the transformation takes the form
of a simple inverse hyperbolic function whereas in the
paralyzable case it is an inverse trigonometric function.
The results are expected to find use in neural counting,
photon counting, and nuclear counting, as well as in
queuing theory.

1 Introduction

The dead-time-modified Poisson counting distri-
bution has found application in a number of scientific
disciplines including neural counting (Ricciardi and
Esposito 1966; Teich et al. 1978; Teich and Diament
1980; Prucnal and Teich 1983; Lachs et al. 1984),
photon counting (Bédard 1967; Cantor and Teich
1975; Teich and Cantor 1978; Teich and Vannucci
1978; Vannucci and Teich 1979), and nuclear counting
(DeLotto et al. 1964; Miiller 1973, 1974; Libert 1976).
Many cases have been studied in detail, including
nonparalyzable (nonextended) and paralyzable (ex-
tended) dead-time counting under blocked, unblocked,
and equilibrium conditions of the onset of the counting
interval. Miiller (1981) has summarized the results of
many authors and has compiled a comprehensive and
useful bibliography of the effects of dead time on
various counting processes. In the biological sciences
literature the term refractoriness is often used syn-
onomously with the term dead time.

The object of this paper is to present normaliz-
ing transformations for nonparalyzable and para-
lyzable dead-time-modified Poisson counting distri-
butions. The results are derived in the regime where the
number of events recorded during a sampling time is
much greater than unity, so that the differences among

blocked, unblocked, and equilibrium counters are
negligible. The treatment is restricted to homogeneous
Poisson counting modified by fixed dead time. In
certain circumstances these results will be directly
applicable to problems involving stochastic dead time
and sick time, i.e., gradual recovery (Cox 1962; Parzen
1962; Teich et al. 1978; Teich and Diament 1980). This
will apply when many events are captured in the
counting interval. In other circumstances, more spe-
cialized results can be derived (Young and Barta
1985).

The normalizing transformation can be a useful
toolin dealing with a set of data because it increases the
degrees of approximation to which a number of
desirable properties hold (Tukey 1957). These include:
(1) Rendering nonadditive (signal-dependent) noise
additive (signal-independent). This permits traditional
signal estimation and detection techniques and mea-
sures, based on additive signal-independent Gaussian
noise, to be used (Prucnal and Teich 1980; Prucnal and
Saleh 1981). (2) Stabilizing the variance (error of
variability). This permits conventional measures, such
as signal-to-noise ratio and d’ to be used (Prucnal and

-Teich 1980). It thereby allows data to be analyzed more

effectively and a detection law to be framed (Prucnal
and Teich 1980). (3) Rendering the probability density
function of the data more symmetrical and more nearly
normal. This provides ease of calculation when the
probability density function is of interest. A trans-
formation suitable for improving one degree of
approximation often turns out to be suitable for im-
proving either or both of the others (Tukey 1957).
The exact normalizing transformation is known for
the lognormal (Pruncal and Teich 1980), chi-squared,
and noncentral chi-squared random variables (Saleh
1978). Approximate normalizing transformations have
been obtained for various other cases such as the
Poisson, binomial, and negative binomial distri-
butions (Mattick et al. 1935; Bartlett 1936; Cochran
1940; Curtiss 1943; Anscombe 1948; Freeman and
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Tukey 1950). The square-root transformation is often
used for the Poisson (Tukey 1957) and Neyman
Type-A (Prucnal and Teich 1982) distributions.

2 Approximate Normalizing Transformation

In cases where the count variance can be expressed as a
function of the count mean and some arbitrary set of
constants, it is often possible to derive an approximate
normalizing transformation (Kendall and Stuart
1966). This is the case for the dead-time-modified
Poisson counting distributions.

Consider a random variable x with mean N and
variance o> where the variance is expressible as a
function of the mean, viz.,

o*>=D*N) 1)

with D(-) a known function. A point transformation
y=g(x) is desired such that the variance is rendered
approximately independent of the mean count. The
resulting random variable will be nearly normally
distributed. Since dead-time-modified Poisson count-
ing distributions are generated from renewal processes,
they are asymptotically normal to begin with, but,
of course, the variance is a function of the mean
(Parzen 1962).

The normalizing transformation can be chosen to
be monotonic (Prucnal and Teich 1980) which implies
that the inverse transformation exists. The approxi-
mate solution (yielding o*>~1) is provided by the
expression :

dN
gx)=~ kjm

where k is a constant (Kendall and Stuart 1966;
Prucnal 1980; Prucnal and Saleh 1981). It is apparent
that Eq. (2) leads to the square-root transformation for
Poisson and Neyman Type-A counting distributions
since then D(N)=c=N""2.

@

E
x=N

3 Nonparalyzable Dead Time

The asymptotic mean and variance for the nonparalyz-
able dead-time-modified Poisson counting distri-
bution are given by (Feller 1948; Parzen 1962; Miiller
1974)

N~ <nd/(1+<{n)t/T) 3)
and
a2 = {n)/(1+<{n)T/T)?, )

respectively, where {n} is the mean initial (unmodified)
Poisson count, 7 is the dead time, and T is the counting

time. Combining Egs. (3) and (4) to eliminate (n)
provides :

o~ N1 —Nt/T), - 5)
where Nz/T <1. Tnserting Eq. (5) into Eq. (2), with the
substitutions w=NY? and a=(T/t)'/?, leads to the

expression (Dwight 1961, p. 35, Eq. 140.1)

dw
g~ 2ka2j 5

a’—w

—2ka?[(1/a) tanh~* (w/a)]. 6)

Note that a2>w? since Nt/T<1. Finally, therefore,
the normalizing transformation for nonparalyzable
dead-time-modified Poisson counting is given by

g(x)~2k(T/0)'"* tanh ™' (xt/T)"/?. )

The limiting case of vanishing dead time (Nt/T—0)
is recovered by using the first term of the Taylor series
expansion (Dwight 1961, p. 166, Eq. 708)

tanh~lo=v+0v*/3+0°/5+ ..., (8)
where v=(xt/T)"/2 In this special case
g(x,1=0)=2kx'?, )

as for the unmodified Poisson distribution.

4 Paralyzable Dead Time

For a paralyzable dead-time-modified Poisson count-
ing distribution, the mean and variance are given by
(Feller 1948; Mueller 1954 ; Parzen 1962; Miiller 1974)

N, ~<{nyexp(—<m1/T), (10)
and
o2 {(nyexp(—{n)y7/T)

—2(t/T)<ny? exp(—2{m>7/T), (11)

respectively, where again (n) is the mean initial
(unmodified) Poisson count, is now the paralyzable
dead time, and T is the counting interval. Expressing
Eq. (11) in terms of Eq. (10) to eliminate {(n) provides

0, ~NY*(1—-2N/T)'?, (12)

where 2N, z/T < 1. Inserting Eq. (12) into Eq. (2), and
with the help of the substitutions u=N 12 and
b=(T/271)"*, we
Eq. 320.01)

du
Jr ~ Zkbj(—bfuz)’l/z‘

—2kbsin~ ! (u/b). 13)

obtain (Dwight 1961, p.67,




Here b*>u” since 2N,t/T < 1. The normalizing trans-
formation for the paralyzable dead-time-modified
Poisson counter therefore turns out to be

g.(x)~2k(T/27) 2 sin~ 1 (2x1/T)'/2. (14)

The character of Eq. (14) is not unlike that of Eq. (7) for
the nonparalyzable counter.

In this case, the limiting result for vanishing dead
time (2N, 7/T—0)is obtained by substituting in Eq. (14)
the first term of the Taylor series expansion (Dwight
1961, p. 118, Eq. 501)

sin”ls=s+5%/64+3s%/40+ ..., (15)
where s=(2xt/T)'/?. This leads to
ga.(x, 7=0)=2kx'/?, (16)

again in accord with the unmodified Poisson distri-
bution and with Eq. (9).

5 Discussion

We have previously shown that the normalizing
transformation can be a useful tool in determining the
detection (increment-threshold) law for sensory sys-
tems (Prucnal and Teich 1980). At low stimulus levels,
dead-time-modified Poisson counting leads approxi-
mately to the square-root transformation, as illus-
trated by the limits derived here. As a result, something
close to the deVries-Rose increment-threshold law
emerges (Prucnal and Teich 1980). At high stimulus
levels, the result for the nonparalyzable counter turns
out to be Weber’s detection law (Teich and Lachs 1979,
1983). The variance-stabilizing transformations pre-
sented here, which are appropriate for neural systems
obeying dead-time-modified Poisson counting, pro-
vide a direct path to the detection law for arbitrary
stimulus levels.

In many neural systems, saturation and refractori-
ness are simultaneously present (Teich et al. 1978;
Lachs et al. 1984). In cases such as these, the normaliz-
ing transformation can be useful in disentangling the
two effects although this can also be accomplished by
direct calculation as illustrated by Teich et al. (1978) for
data from the cat’s retinal ganglion cell.

A great deal of neural data can be understood best
on the presumption that the refractoriness is stochastic
(Teich et al. 1978; Young and Barta 1985) or relative
(Teich and Diament 1980), rather than fixed as as-
sumed here. Normalizing transformations for these
situations can also be derived. Indeed Young and
Barta (1985) recently obtained the normalizing trans-
formation for a Poisson process modified by exponen-
tially distributed nonparalyzable dead time.
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In terms of future generalizations, it might be of
interest to examine the normalizing transformation for
the general type-p counter, which reduces to nonpara-
lyzable and paralyzable behavior as special cases
(Albert and Nelson 1953; Parzen 1962).
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