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Abstract. Several kinds of light used in vision experi-
ments produce photon statistics that are distinctly
non-Poisson. Representative examples are light from a
cathode-ray tube and an image-intensifier device. For
the class of vision experiments in which the photon
statistics play an important role, excess fluctuations
produced by such light sources can alter the observed
results and obscure the visual mechanisms being
studied. They must therefore be accounted for in a
proper way. We use the results of a Hecht-Shlaer-
Pirenne type experiment, carried out with modulated
Poisson light, to illustrate the point. Sensitivity and
modulation depth, as well as sensitivity and reliability,
are shown to be traded against each other. Finally, we
demonstrate that number-state light, which is com-
prised of photons of an ideal kind, provides the
ultimate tool for extracting information about the
intrinsic noise distribution in the visual system at
threshold. The state of the art in producing such light
is discussed.

1. Introduction

Vision experiments are conducted with many different
kinds of light sources. These include incandescent
filaments, lasers, light-emitting diodes (LEDs), and
cathode-ray tubes. In some experiments, particularly
those conducted at low light levels, the statistical
character of the light source is a matter of some
importance. The quintessential example is the experi-
ment of Hecht et al. (1942). It is generally assumed in
the vision literature, usually tacitly, that the photon
statistics for all light sources are Poisson. For Poisson
light, the ratio R of count variance {(4n)*> to count
mean {n) is precisely unity.

*  This work was carried out at Columbia University and was
supported by the National Science Foundation and the National
Institutes of Health

The purpose of this paper is threefold. First we
wish to demonstrate that the photon statistics for some
commonly used light sources are distinctly non-
Poisson. A principal example is cathodoluminescence
light (e.g., light from a cathode-ray screen such as an
oscilloscope). Because of the generation mechanism,
cathodoluminescence photons result from a multipli-
cation or cascade of two Poisson processes, and are
emitted in clusters. Thus R can be substantially greater
than unity. Radiation of this character is sometimes
called multiplied-Poisson light or shot-noise light
(Teich and Saleh, 1981a).

Second, we point out that a Hecht-Shlaer-Pirenne
(HSP) experiment conducted with multiplied-Poisson
light or, indeed, with any kind of bunched light (R > 1),
will generate psychometric functions that differ in
shape from those obtained with Poisson light. To
illustrate the effect, we carried out a series of experi-
ments with light that was purposely modified from its
Poisson form by triangular intensity modulation. Our
results show that the excess fluctuations associated
with such light cannot be used constructively to pro-
vide information about the workings of the visual
system, beyond that provided with Poisson light.

Third, we show that such additional information
could be made available by carrying out an HSP-type
experiment with a kind of ideal light called number-
state light. The photons from such a source are spread
perfectly evenly in time so that R=0. Though number-
state light has not yet been generated in the laboratory,
recent theoretical and experimental results in quantum
electrodynamics show that it is possible to produce
light for which 0<R<1. Such light is called “anti-
bunched”, indicating that the emitted photons are less
clustered than those for Poisson light.

In Part 1 of this set of papers (Teich et al., 1982), we
dealt with Poisson quantum fluctuations and the
minimum-detectable energy; in Part 2 (Prucnal and
Teich, 1982), we used the normalizing transform and
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Fig. 1. Photon-counting distribution p(n) vs number of photon
counts » for radioluminescence light (solid dots). The solid curve
represents the Neyman type-A counting distribution with the same
values of count mean and variance. A Poisson distribution with the
same mean is shown as the dashed curve. (After Teich and Saleh,
1981a)

L 4
[
%
.'0
107 F .Q E
%
..o
- ()
* \
F
A
Y ootep N, -
: N\
& L}
z \
w
o X
>
|- - [
S 107 \o 7
m
s L)
e N o
a [ (]
° °
e N
10 o;\o .
) °
LY
No o
o oo
1075 1 1 L
¢} 5 10 15

NORMALIZED FORWARD RECURRENCE TIME t/<T>

Fig. 2. Forward-recurrence-time probability density (t)P,(1) vs
time, for cathodoluminescence light (solid dots). The solid curve
represents the theoretically expected result. Poisson light would obey
an exponential density function, a straight line on this plot. (After
Saleh and Teich, 1982a)

probit analysis to provide improved estimates of
threshold parameters for Poisson light.

2. Statistical Properties of Multiplied-Poisson Light

We have recently carried out an extensive study of
multiplied-Poisson light (Teich, 1981 ; Teich and Saleh,
1981a, b; Saleh and Teich, 1982a, b). Cathodolumi-
nescence, the phenomenon responsible for the oscillo-
scope image, provides an example of how light with
these statistical properties is generated. A primary
beam of electrons, with Poisson arrival times, impinges
on a phosphor. Each electron produces a Poisson
number of photons, with the average number of pho-
tons per electron given by o'. The emission times are
determined by the lifetime of the phosphor, 7. If the
detector counting time T’ is > 1, and the quantum
efficiency for detection is #’, the resultant photon-
counting distribution is describable by the Neyman
Type-A (NTA) counting distribution, for which
(Neyman, 1939; Teich, 1981; Teich and Saleh, 1982)

R=14+n'a'>1. (1)

Image-intensified light (van Meeteren, 1978) behaves
similarly.

To demonstrate this, we provide two experimental
results for luminescence light. In Fig. 1, the solid dots
represent the observed photon-counting distribution
p(n) vs the number of photon counts » for radiolumi-
nescence photon registrations from the glass faceplate
of a photomultiplier tube (Teich and Saleh, 1981a).
The counting time (T'=0.4 ms) was chosen to be much
greater than the typical decay time of the glass (z,
~5us). The experimental count mean and variance
arc 85.89 and 429.58, respectively, indicating the non-
Poisson nature of this light. The solid curve represents
the Neyman Type-A theoretical counting distribution,
with the experimental values of count mean and
variance (#'o’ =4.0), which provides an excellent fit to
the data. The Poisson distribution with mean 85.89
(indicated by arrow) is shown as the dashed curve;
clearly it bears no relation to the data.

In Fig. 2, the solid dots represent the observed
normalized forward-recurrence-time probability densi-
ty {t>P,(7) (ie., the time to the first cathodolumines-
cent photon arrival from an arbitrary starting time)
measured by van Rijswijk (1976). The YVO,:Eu®*
phosphor was excited by a 10.2keV electron beam.
The solid curve is a plot of the theoretically expected
result (Saleh and Teich, 1982a), which yields parameter
values'o’ =9.6 and 7, = 0.5 ms. The curved character of
{t)P,(t) on this semilogarithmic plot immediately
indicates the non-Poisson nature of the photon emis-
sions. It is well known that a Poisson process exhibits
an exponential forward-recurrence-time probability
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density function (Cox, 1962), yielding a straight line on
such a plot.

The Neyman Type-A counting distribution is ap-
propriate for stationary sources of light when T'> 1. It
is also appropriate for nonstationary sources, such as a
pulse of light, provided only that t, <), + T, where 7, is
the duration of the light pulse (Saleh and Teich, 1982b).
Since 7,~0.5ms for light from a cathode-ray tube
phosphor, and since the integration time of the eye
> 50 ms, the NTA is expected in both cases. For light
from the YVO,:Eu®* phosphor excited by 10.2keV
electrons, the counting distribution in the eye will be
substantially broader than the Poisson.

3. Frequency of Seeing with Triangularly Modulated
Poisson Light

3.1. Description of Experiments

We conducted a series of experiments identical to those
reported in Part 1 (Teich et al.,, 1982) with the excep-
tion that the modulation depth M in these experiments
was set equal to unity, rather than zero (see Fig. 3).
Since the experimental procedure and results were
previously reported in detail, only the essentials are
repeated here.

The subject viewed a small dim red fixation target
produced by a Maxwellian system and received a 5
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disk-shaped plane-polarized light stimulus in the left
eye at 173° horizontal eccentricity on the temporal
retina. The stimulus was generated by a feedback-
stabilized Spectra-Physics Model 162 Ar* ion laser
that oscillated at 514.5nm. The flash energy was
controlled by an acousto-optic light modulator and
the light was attenuated by neutral-density filters. An
electronic shutter was opened just before, and closed
just after, the presentation of the stimulus, to minimize
the transmission of stray light to the subject. Three
subject’s switches were used to START the trial, and to
indicate YES and NO responses. Absolute photo-
metric calibrations were made using an EG&G ra-
diometer with a silicon photodiode at the front end,
substituted in place of the subject’s eye.

Subjects were four males ranging in age from 23 to
38 years. All had normal vision. Alignment in the
apparatus was maintained by the use of a dental-
impression mouthbite. A trial consisted of the pre-
sentation of a 1-ms flash of light or of a blank. The
occurrence of the 1-ms pulse was randomized with
respect to the phase of the slow triangular wave (see
Fig. 3); this led to a set of light intensities that were
uniformly distributed over a specified range. The aver-
age flash energy was chosen quasi-randomly from one
of 10 mean levels of the triangularly modulated light,
separated by 0.1151og units; this yielded a total range
of about 1log unit. A block of trials consisted of 5
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trials at each mean energy level plus 10 blanks, for a
total of 60 trials per block. A session began with 35 min
of dark adaptation, interrupted only by 2-4 blocks of
preliminary experimental trials with M =0, to allow
the subject to re-acquaint with the task. An experimen-
tal session was typically comprised of 6 blocks of trials
and lasted from 1 to 1.5h. A preliminary report of our
experimental results was presented in abstract form
(Teich et al.,, 1979).

3.2. Experimental Photocounting Distribution

The experimental photocounting  distributions
[p(m) vs. m] registered by the photomultiplier tube (see
Fig. 3) in the absence, and in the presence, of triangular
modulation are presented in Fig.4. These provide us
with a measure of the distribution of photons sent to
the subject. The data were gathered with a modulation
period T,,=1s and with a sampling time T'=1ms.
There were N =2 x 10° observation samples. The solid
triangles (A) represent data for M =0 (unmodulated
light), the open squares (0) represent data for an
intermediate modulation depth (M =0.74), and the
crosses ( X ) represent data for nearly unity modulation
depth (M =0.99). The mean number of counts for the
three distributions is approximately the same

({m)=~15). It is evident that the theoretically calcu-
lated results represented by the solid curves (Teich and
Diament, 1969, 1970) are in excellent agreement with
the experimentally observed photocounting distri-
butions for the three values of modulation depth
employed (see Teich and Vannucci, 1978, for a com-
plete discussion of these experiments). As anticipated,
the unmodulated light (M =0) generated the Poisson
photon-counting distribution (used for the experiments
reported in Parts 1 and 2), whereas the triangularly
modulated light with uniform sampling and nearly
unity modulation depth (and with T'<T,,) produced
the flattest photon-counting distribution.

3.3. Frequency-of-Seeing Curves

Frequency-of-seeing data were collected from the same
four subjects as in Part 1, where Poisson light was used.
The experimental frequency-of-seeing curves generated
by subject PRP for unity modulation depth (M ~1) are
represented by the solid dots in Fig. 5a and b, for low-
and high-false-positive rate (FPR) conditions, respec-
tively. Again, the left-most open circle is the experi-
mental false-positive rate P, and the vertical bars
surrounding each data point are the +1-0 brackets.
The data exhibit very much the same behavior for
all four subjects.



Comparing Fig. 5a with Fig. 2a of Part 1, and Fig.
5b with Fig. 3a of Part 1, it is apparent that the data
obtained with modulated light are perceptibly shal-
lower than those obtained with Poisson light; indeed,
the highest values of the frequency of seeing lie well
below unity. The physical reason for this is as follows.
At any average energy level supplied to the cornea
{E>, the flat-counting distribution provides a greater
number of trials with very low photon numbers than
does the Poisson (see Fig. 4). A smaller fraction of these
flashes are therefore detectable and this results in a
decreased frequency of seeing. It is also important to
note that, at this same average energy, some of the
flashes will have energies up to a factor of 2 greater
than with Poisson light (see Fig.4). The subject is
therefore physically exposed to flashes with greater
numbers of photons, in an experiment using modu-
lation. The only other physical distinction experienced
by a subject in such an experiment is the greater
randomization of flash energies. This arises because
the variance of the flat-counting distribution for any
level {E) is greater than that of the Poisson distri-
bution (at the same level E), so that the number of
photons delivered in that flash is more uncertain.

Considering, for the moment, the solid curves in
Fig. 5 as empirical fits to the frequency-of-seeing data
for triangularly modulated light, their shallowness
relative to those for Poisson light means that the
average number of photons at the cornea for 60%
frequency of seeing is increased. Thus sensitivity and
modulation depth are traded against other. Subject
PRP, for example, required 162 photons with M =1
triangularly modulated Poisson light (see Fig. 5a) but
only 147 photons with Poisson light (see Fig. 2a of
Part 1). The FPRs are identical in the two cases (1.0 %).
The statistical character of the light, therefore, is a
variable that must be considered in the list of condi-
tions for optimal seeing. Comparing Fig. 5a and b,
we see that there is also a substantial tradeoff between
sensitivity and reliability, as observed in Part 1 for
Poisson light.

3.4. Theory

In the context of the model presented in Part 1, the
theoretical probability-of-detection curves are obtain-
able directly from our previous development. For all
trials of fixed average energy {E), corresponding to a
given point along the abscissa in Fig. 5, the light
modulator (see upper portion of Fig. 3) provides
different light-intensity (energy) values on each trial.
These are drawn randomly, in accordance with a
specified probability density function P(E) with mean
{E)>. Thus, the Poisson process (PP) generated by the
laser is converted into a mixed or doubly stochastic
Poisson process (DSPP) at the output of the modu-
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lator. For the modulation format at hand, P(E) is
uniformly distributed over a range of values specified
by the modulation depth, and this leads to the family
of flat-counting distributions (see Fig. 4).

Absorption and scattering at the cornea, and in the
ocular medium and rods, reduces the energy by the
factor u (see upper path in Fig. 6). If we assume that
the quantum efficiency # is constant over the range of
energy values encountered, the number of photons m
registered at the retina, in the time T, will also satisfy
the flat counting distribution (Teich and Diament,
1969, 1970; Teich and Vannucci, 1978)

= | p(mlnE)P(nE)d(nE)
_ exp[—{my(1—M)] i [<m> 1 M)]
2M<m> i=0
exp[— <(m>(1+M)] & [{m)( 1+M)]l
B 2M{m) ; ’ @
with mean count
(my=n{E) ©)
and variance (Prucnal and Teich, 1979)
{(Am)*y = {m) + M*mH?/3. 4

Of course, the variance is always greater than the
mean. For triangularly modulated Poisson light,
Eq. (2) above replaces Eq. (1b) in Part 1.

By analogy with the development presented in Part
1, we will probably not go far astray in supposing that
the stimulus-induced counting distributions, both at
the retinal ganglion cell level and at the output of the
central processing and counting center, will be doubly
stochastic versions of the Neyman Type-A (DSNTA)
(see upper path in Fig.6). This distribution is ma-
thematically generated by simply replacing p(m|nE),
which appears in the summation of Eq. (2) of Part 1, by
p(m) as set forth in Eq. (2) above. Most simply, then, we
view the central counting signal distribution as arising
from a flat-counting stimulus distribution p(m), associ-
ated with the modulated laser light, driving an inde-
pendent Poisson neural counting distribution p(s|m),
associated with retinal and central multiplicative noise.
The properties and moments of this class of distri-
butions have recently been considered by Teich (1981).

If the stimulus is multiplied-Poisson light, instead
of triangularly modulated light, the appropriate stim-
ulus distribution will itself be the Neyman Type-A.
In that case, the stimulus count variance retains a
proportionality to the count mean [see Eq. (1)], and
the assumed signal distribution at the counting center
results from a cascade of three Poisson processes, as
considered by Matsuo et al. (1982).
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Fig. 6. Block diagram of model for visual system processing at threshold. The upper light path refers to DSPP light. (After Teich et al., 1982)

The characterizations described above will only be
valid as long as the expanded energy excursions of the
modulated light do not drive the statistical character of
the underlying neural counting distribution away from
its nominal form. If that occurs, the marginal probabil-
ity obtained in the fashion described above would not
be correct.

The noise distribution at the central processing and
counting center is not subject to the light modulation,
and clearly remains Neyman Type-A by the arguments
presented previously. We are now in a position to
generate our theoretical curves. We calculate the
signal-plus-noise distribution, the false-positive proba-
bility, and the probability of detection from Egs. (4),
(5), and (6) of Part 1, respectively. The mathematics is
not quite as tidy as it was in the case of Poisson light,
and the computer calculations required for the various
curves can become tedious. The asymptotic normality
of the Neyman Type-A distribution (Teich, 1981)
might be useful in some cases. But we’ve set it all down
very directly, and it can be done.

3.5. Discussion

Instead, we choose to approach the problem from a
rather different point of view. We break it into small
and separable pieces, examine their interrelationships
and then synthesize them, hoping to learn something
about the relative importance of various mechanisms
associated with threshold vision along the way. We
begin by noting a special property of the modulated
light that will enable us to make some drastic simplifi-
cations that will be instructive; it is the large excess
variance introduced by the energy fluctuations of the
stimulus. For reasonable values of the average number
of absorbed photons at the retina (say {m)>=6), and
unity modulation depth (M =1), the second term on
the right-hand side of Eq.(4) dominates the first term,

which represents the irreducible Poisson fluctuations
of the light. A similar expression exists for the DSNTA
variance [Teich, 1981, Eq.(25b)] and it turns out that
for «=1/2, the multiplicative noise (Neyman) fluc-
tuations are also negligible in this regime. If we ignore
both the irreducible Poisson and multiplicative fluc-
tuations then, and also forget about additive noise, we
end up with a set of theoretical probability-of-
detection curves derived from summated uniform
distributions (since E is uniformly distributed). Plotted
out, these look pretty much like ordinary psychometric
functions except that their rise above zero at a specified
value of (E) has a discontinuous first derivative. We
understand this to be because of the sharp edge of the
uniform P(E) distribution. The same approximation
for Poisson light doesn’t appear to make any sense, at
first blush, because P(E) is a Dirac delta function which
produces step psychometric functions. We shall return
to this point in Sect. 4. '

With very little additional work, we can be a bit
more sophisticated, and explore an interesting con-
nection. Since the magnitude of the Neyman fluc-
tuations is just about half that of the Poisson fluc-
tuations (for a=1/2), a slightly better approximation
can be constructed by including the stimulus-energy
and irreducible Poisson fluctuations, still ignoring the
multiplicative and additive noise. The theoretical
probability-of-detection curves are then derived from
summated flat-counting distributions (see Fig. 4).
These strongly resemble the set derived from the
uniform distributions, but they rise gradually with a
continuous first derivative. For high modulation
depths M, both of these families of curves are sub-
stantially shallower than the summated Poissons that
we are used to seeing. The same approximation for
Poisson light contains no contribution from stimulus
energy fluctuations, since there are none, so the



psychometric functions are simply derived from
summated Poisson distributions.

This is, of course, precisely the model used by HSP
in connection with their Poisson light experiments
reported in 1942, and so we decided to examine this
approximation for both modulated and Poisson light
in one of our early studies (Matin et al., 1978). The
mean energy of the modulated light was maintained
equal to the energy of the unmodulated light ((E> =E)
for all values of E. It turned out that we were able to
provide quite good theoretical fits to low-FPR
frequency-of-seeing data for all 3 modulation depths
employed (M =0, le/ﬂ, and M=1), simul-
taneously, with a fixed value of the threshold count ¢
for each subject. (Curves for the different modulation
depths are distinguished by their different shapes and
slopes.) The values of t extracted from the data for our
four subjects fell between 4 and 6, and a photometric
measurement of the light energy at the cornea allowed
us to infer a psychophysical quantum efficiency
n=~5% (Matin et al, 1978). Of course the theory
predicted zero falsereport probability.

The experimental results are such, that it appears
we are getting the same information from the data
without modulation and with modulation, ie., both
sets fit well ;  and # are the same. (A minor point is that
the data with modulation are, and should be, some-
what more erratic because the frequency of seeing
increases more slowly and the data samples therefore
have larger standard deviations.) It would be er-
roneous to conclude, however, that the agreement of
these probability-of-detection curves with the data for
different values of M provides independent justifi-
cation for an HSP-type model in which stimulus
fluctuations are the dominant source of variability.
Indeed it does not. As indicated in Sect. 3.3, the two
physical distinctions experienced by a subject undergo-
ing an experiment with different values of M are: (1) a
greater randomization of the light intensities for ex-
periments conducted with large M and (2) a greater
range of flash energies for experiments conducted with
large M (up to a factor of 2 for M =1 see Fig. 4). The
only conclusion that we may draw is that neither of
these two factors produces a resolvable deviation of
this theory with experiment, and therefore that experi-
ments with modulated light do not provide additional
information about threshold visual mechanisms here.
Indeed, the usual shortcomings associated with a
model at this level of approximation appear for all
values of M: (1) the inability to account for nonzero
false-positive rates and (2) a psychophysical value for
that is inconsistent with the photometric value.

The next step may come as no surprise to the
reader. We include Poisson additive dark noise with
our stimulus-energy and Poisson-photon fluctuations,
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leaving aside only the multiplicative noise. This is a
convenient step for us. In the first place, it permits a
false-positive probability to be incorporated into our
mathematical structure in a straightforward manner,
and in the second place, all of the theoretical calcu-
lations have already been carried out in connection
with another study (Teich and Cantor, 1978).
Furthermore, this is analogous to the model used by
Barlow (1956) for Poisson light (in which case the
stimulus energy is constant) so that it affords us an
opportunity to examine the role of stimulus energy
fluctuations at this level of approximation.

The solid curves and crosses ( x ) in Fig. 5 represent
the results of a 3-parameter fit of the theoretical
probability-of-detection curves, discussed in the pre-
vious paragraph, to the frequency-of-seeing data. The
procedure was designed to minimize the sum of squa-
res. The model parameters associated with the best-
fitting curves in Fig. 5a and b are {#=3.9%, (n>=2.7,
t=8} and {y=8%, (n)=8.6, t=14}, respectively.
Because of the complexity involved in dealing with all
of the parameters, we did not attempt to simul-
taneously fit data for different values of M ; (we also

collected data for M=1/ ﬂ, and for sinusoidally
modulated light with M=1.)

The fits turn out to be excellent for all subjects,
providing yet another illustration of the many ways
in which virtually identical probability-of-detection
curves can be generated. But, just as for the case of
Poisson light discussed in Part 1, the model parameters
jump about unpredictably from data set to data set,
showing no particular pattern. The associated theoreti-
cal false-positive probabilities also appear to be smal-
ler than the measured FPRs, and it may be that the use
of Poisson noise again causes difficulties. It therefore
seems that here, too, the modulated data provide us
with no new information regarding threshold mecha-
nisms and should not be considered as in any way
validating this model.

We could, of course, proceed yet another step and
incorporate the multiplicative noise to account for the
statistical behavior of the ganglion cell, and for central
loss and noise, in the manner described in Sect. 3.4.
That would bring us full circle. Indeed we have little
doubt that this is a proper theory, and will pro-
vide very good agreement with the data because of
what we have already learned; the expanded energy
excursions associated with the modulated light appear
to leave the statistical character of the underlying
neural counting distribution intact, within the resolu-
tion of our experiments. We therefore avoid the com-
plications associated with extracting model parameters
from the modulated-light data. But we point out, as is
clear from our earlier discussion, that the sensitivity-
reliability curve presented in Fig, 6 of Part 1 is specific
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to Poisson light. The appropriate curve for DSPP light
of arbitrary statistical character can be constructed by
the methods outlined above.

We conclude that an HSP-type experiment, con-
ducted with bunched light, such as triangularly modu-
lated light or multiplied-Poisson light, generates
psychometric functions that differ in shape from those
observed with Poisson light (they are not as steep). The
use of such light sources should therefore be avoided
when conducting threshold experiments, since the ex-
cess fluctuations tend to obscure the visual mecha-
nisms of interest. In the next section, we discuss the
prospects for using antibunched light, in our attempts
to unravel the operation of the visual system at low
light levels.

4. Theoretical Probability-of-Detection Curves with
Antibunched Light

Frequency-of-seeing experiments carried out with anti-
bunched light can, in principle, provide a great deal of
information about the operation of the visual system
near threshold. Unfortunately, sources emitting fixed
numbers of quanta in a given time interval are not yet
available as black boxes that can be plugged into the
nearest wall outlet, and there are problems relating to
the absorption of such radiation that we will deal with
at the end of this section. There is an extensive current
research effort in quantum optics to develop sources
with at least some antibunched (R<1) behavior
(Glauber, 1963a, b; Pefina, 1972; Stoler, 1974 ; Kimble
et al, 1977; Mandel, 1979). In the following we con-
sider, from a theoretical point of view, some of the
consequences of using antibunched light in frequency-
of-seeing experiments.

The ideal antibunched source emits a constant
number of photons {j», in the time interval T”, so that
the counting distribution is given by the Dirac delta
function

p()=35(—<G2), (5)

with mean count <j> and variance {(4j)*> =0. This is
the so-called Fock or number state (Pefina, 1972). For
the moment, let us assume that these photons are
delivered directly to the retina, and that the number of
photons absorbed by the rods also obeys this distri-
bution, so that

p(m)=o(m— {m)) (6)

with mean count {m) and variance {(4dm)?>>=0. We
shall return to this point later. It is now routine to
calculate the behavior of any particular model of
threshold visual detection by simply letting Eg.(6)
replace Eq.(1b) in Part 1 [much as we let Eq.(2)

replace Eq.(1b) in Part 1, for the bunched light con-
sidered earlier]. Because of the mathematical proper-
ties of the Dirac delta function, this is a very simple
enterprise, and so we will run through the heirarchy of
models considered previously.

By definition, there are neither stimulus-energy nor
Poisson fluctuations in this case. A moment’s thought,
and our previous discussion, tells us that the HSP
model with such perfectly antibunched rod excitations
leads to step psychometric functions. The threshold ¢ is
exactly determined by the value {m) at which the step
occurs, and there is nothing more to be known.

If we now include additive independent dark light,
of arbitrary statistical properties, py(n|<{d>), the signal-
plus-noise distribution pgy(x|<d),{m}) is, of course,
the convolution of the noise distribution with a delta-
function signal distribution. This signal-plus-noise dis-
tribution then exhibits precisely the same shape as the
noise distribution alone, but translates by integer
increments along the abscissa x as the rod excitation
number (and therefore, by assumption, the signal
photon number) increases. Psychometric functions
plotted on an abscissa linear in {m) will, in this case,
maintain a constant shape regardless of the threshold.
For a threshold value greater than the maximum noise
count (in which case the false-positive probability will
be zero), that shape will be precisely the mirror image
of the integral of the noise distribution, so that the
form of the noise probability distribution itself is
exactly recoverable. Furthermore, since P, and Py, are
measurable for each value of {m), the mean of the
noise distribution {n) and the threshold t can also be
determined. In the context of this model, then,
number-state rod excitations provide the ultimate tool
in extracting all of the characteristics of the visual
system at threshold.

Finally, we consider what happens when multipli-
cative noise is included. This, of course, is the model
presented in Fig. 6, but now the rod excitations are
described neither by Poisson nor by doubly stochastic
Poisson distributions, but rather by the delta-function
distribution presented in Eq.(6). Replacing p(m|nE) in
the summation of Eq.(2) in Part 1, by p(m), as given in
Eq. (6), we see immediately that the central-counting
signal distribution is

9] s, —aim)
PKmY) = 3 plompim— )= ITE

7)

This is a simple Poisson distribution with mean
{5y =alm).

The outcome is understood most simply as follows.
There are neither stimulus-energy nor Poisson photon
fluctuations, so that the fixed number of rods excited
on every trial (a{m)) drives an independent Poisson
neural counting distribution associated with retinal
and central processing. The noise distribution at the



central processing and counting center is unaffected by
the presence, or absence, of the signal so it remains
Neyman Type-A. The result is a signal-plus-noise
distribution that is the convolution of a Poisson and a
Neyman Type-A, with parameters o, (d>, and t. The
false-positive probability is calculated from Eq.(5) of
Part 1, and the probability of detection from Eq. {6) of
Part 1. The outcome in this case is no simpler to
calculate than when Poisson light is delivered to the
retina. However, since the psychometric functions will
change shape for different values of the threshold, the
three models discussed in this section may be experi-
mentally distinguishable. Of course, similar calcula-
tions could be carried out with any model we choose
to investigate.

The alert reader will have noted that we have not
yet introduced the quantum efficiency # into our
discussion. We have assumed to this point, rather, that
the number distribution of excited rods could be
precisely controlled [Eq.(6)]. The reason for this is
straightforward: Unlike its effect on the DSPP, an
absorption medium will substantially alter the statisti-
cal properties of antibunched light. This can be most
easily visualized in terms of random deletions from a
deterministic pulse train, which convert it into a
process with a binomial distribution, whose value of
R will be closer to, but still below, unity (Teich and
Saleh, 1982). Thus, the ocular medium, and the
imperfect absorption by the rods, become crucial
factors in this case. We would therefore expect that in
an ordinary frequency-of-seeing experiment, it will be
difficult to direct antibunched light through the ocular
medium and retina, and still have it produce sub-
stantially antibunched rod excitations. Nevertheless,
it is certainly reasonable to believe that the future will
bring more than one cleverly designed experiment,
perhaps using yet-to-be-developed fiber-quantum-
optic techniques, that will permit the use of anti-
bunched light to probe the workings of the visual
system near threshold.
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