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Summary

An energy-based neural-counting model, incorporating refractoriness and spread of excitation,
has recently been applied by the authors to intensity discrimination and loudness estimation for
pure-tone stimuli. We now examine the behaviour of this model when the stimulus is variable-
bandwidth noise rather than a pure tone. The theoretical predictions are in good agreement with
existing psychophysical data for intensity discrimination and loudness estimation. The functional
dependence of the theoretical intensity discrimination and loudness curves on the noise band-
width is established by the tuned-filter characteristics of the neural channels in conjunction with
the spectral properties of the stimulus. No appeal to stimulus intensity fluctuations or to external
critical bands is made in carrying out our analysis.

Ein neurales Zdhlmodell, welches die Refraktdrzeit und die Verbreiterung der Erregung einbezieht:

I11. Anwendung zur Intensitdisunterscheidung und Lautheitsschitzung
fiir Rauschen verdnderlicher Bandbreite
Zusammenfassung

Ein energiebezogenes neurales Zihlmodell, welches die Refraktirzeit und die Verbreiterung
der Erregung beriicksichtigt, wurde kiirzlich vom Autor zur Intensitidtsunterscheidung und Laut-
heitsschitzung von reinen Ténen als Reizen angewandt. Nunmehr wird das Verhalten dieses
Modells bei Reizen untersucht, die aus Rauschen mit variabler Bandbreite bestehen. Die theo-
retischen Vorhersagen stimmen gut mit vorliegenden psychophysikalischen Daten fiir die Inten-
sitdtsunterscheidung und die Lautheitsschitzung iberein.

Die funktionale Abhéngigkeit der theoretischen Intensitidtsunterscheidung und der Lautheits-
kurven von der Bandbreite des Rauschens wird hervorgerufen durch die ,,tuned-Filter‘-Charak-
teristik der neuralen Kanile in Verbindung mit den spektralen Eigenschaften des Reizes. Bei
der Durchfiihrung dieser Analysen blieben sowohl Intensitdtsschwankungen des Reizes als auch
die kritischen Bénder unberiicksichtigt.

Un modéle a comptage d’impulsions nerveuses incorporant le phénoméne de phase réfractaire
et Iétalement de Iexcitation.:

I11. Application & la discrimination d'intensité et & Uestimation de sonie de bruits & largeur
de bande variable
Sommaire

Les auteurs ont récemment appliqué & la discrimination d’intensité et & ’estimation de sonie
des sons purs un modéle de comptage des impulsions nerveuses basé sur des considérations d’éner-
gie et prenant en compte I’effet de la phase réfractaire ainsi que P’étalement de I’excitation le
long de la membrane basilaire. Ils étendent ici ce modéle aux cas olt les stimuli ne sont plus des
sons purs mais des bruits de largeurs spectrales quelconques.

Les prédictions théoriques obtenues ici sont en bon accord avec les résultats expérimentaux
établis antérieurement par divers auteurs aussi bien pour I'estimation de sonie que pour la dis-
crimination d’intensité. Les relations fonctionnelles reliant la discrimination d’intensité théorique
et les courbes de sonie & la largeur spectrale du bruit reposent sur les caractéristiques de filtres
adaptés des canaux nerveux en relation avec les propriétés spectrales du stimulus. La présente
analyse ne fait appel ni aux fluctuations d’intensité du stimulus ni 4 la notion de bande critique.
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1. Introduction

This is the third in a series of papers. In Part I
(Teich and Lachs [1], denoted I) we demonstrated
that an energy-based neural counting model in-
corporating refractoriness (dead time) and spread of
excitation satisfactorily described the results of
pure-tone intensity discrimination experiments. In
Part IT (Lachs and Teich [2], denoted IT) we showed
that the identical linear filter refractoriness model
(LFRM) also provided proper results for pure-tone
loudness estimation experiments at all stimulus
levels. In particular, as the stimulus intensity is
increased from very low to moderate values, the
model predicts that the slope of the intensity dis-
crimination curve climbs from 1/2 towards unity,
whereas the slope of the loudness function gradually
declines below 1 in this same region. For sufficiently
high values of the stimulus intensity, the slopes
calculated from a simplified (crude saturation) ver-
sion of the model are found to be 1 —1/4N for the
intensity discrimination curve and 1/2N for the
loudness function. The quantity N is the number of
pairs of complex poles associated with the tuned-
filter characteristic of the individual neural chan-
nels; it is the only important free parameter in the
modell. Appropriate values for IV were found to lie
between 2 and 4, providing an asymptotic slope for
the intensity discrimination curve bounded by 7/8
and 15/16 and an asymptotic slope for the loudness
function bounded by 1/4 and 1/8. Our model implies
that a single theoretical mechanism mediates both
pure-tone intensity discrimination and loudness
estimation. The near-miss to Weber's Law and
Stevens” Power Law emerge naturally along the
way.

Having investigated the performance of the
LFRM for intensity discrimination and loudness es-
timation in the pure-tone case, it is natural to con-
sider whether it is also useful for other stimuli. In this
work, we demonstrate that it is indeed useful when
the stimulus is variable-bandwidth white noise. In
Section 2 we describe the model. The theoretical
results are compared with experimental data for
loudness estimation and intensity discrimination in
Section 3, and the results are discussed in Section 4.

2. Model

Fig. 1 is a block diagram for the LFRM repro-
duced from papers I and 1I, where the elements of

1 In Parts I and IT (Teich and Lachs [1, 2]), we rather
loosely referred to N as the number of poles, rather than as
the number of pairs of complex poles. Thus, N =2 corre-
sponds to a system consisting of 2 pairs of complex poles,
which represents a fourth-order system (an example is the
series connection of 2 tuned circuits).
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Fig. 1. Block diagram for linear filter refractoriness model
(LFRM).

the model have been described in detail. The output
of the decision centre represents either loudness es-
timation or intensity discrimination, as the para-
digm dictates. All nenral channels are agsumed to
be independent in this energy-based model.

For loudness, we consider a scalar Ioudness ran-
dom variable given by (see II)

P =nX. (1)

The quantity X is a discrete random variable, well
represented by a Gaussian distribution, expressing
the total number of neural counts from all channels
in the fixed counting time T'; x is a constant. In our
characterization, we assume that the estimates are
statistically independent from trial to trial, and
that the loudness function L is obtained by forming
the expectation &() of eq. (1), i.e.,

L=¢&(%)=»%&(X)=nN,. (2)

Here N, = &(X) is the overall mean neural count.
The notation is identical to that used in I and IL

The typical intensity-discrimination experiment
employs a two-interval forced choice (2IFC) proce-
dure in which the subject is sequentially presented
with two short stimulus bursts at different levels.
The level of one burst is fixed while the level of the
other is adjusted until the subject makes a correct
decision on a pre-specified percentage of the trials.
An appropriate quantitative measure for this ex-
periment in the context of the LFRM is a detection
distance % given by (see I)

8Ky — &(Xu)
o [02(Xs) 4 o2 (X )]V
Here &(Xs), 02(Xg) and &(Xy), 02(Xy) are the

mean and variance of the total number of neural
counts for the stronger and weaker inputs, respec-

3)
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tively. The quantity % is selected to satisfy the
specified criterion for the probability of making a
correct decision. As an example, let’s suppose that
the stronger input level is fixed, and the level of the
weaker input is adjusted to satisfy eq. (3). This
procedure provides one data point. Other data
points are obtained by selecting different values for
the intensity of the stronger input (keeping A con-
stant), and repeating the process of varying the
weaker level until eq. (3) is satisfied.

The LFRM accounts for spread of excitation by
assigning an N-pole-pair tuned linear-filter charac-
teristic to the frequency response of each neural
channel, and it employs fixed non-paralyzable dead-
time (refractoriness) as a simple saturation mecha-
nism. Thus, the number of neural impulses observed
in the counting (observation) time 7', and the mean
and variance of this quantity which appear in eqs.
{2) and (3), involve refractoriness-modified counting
statistics. The overall dead-time-modified mean N,
and variance X2, of the number of neural counts,
are given by the following approximate formulas
when the inputs are non-random (see I and IT):

Jfu

NC:A’f

fu

E(fo) dfo
14 A" E(fo)(|T)

4)

and

. (o) dfo
= _Af/ 0 A B (o) T)F

L

)

The quantities f1, and fy represent the lower and up-
per frequency limits of the auditory response, re-
spectively, K (fo) is energy output of a linear filter
(which may have non-symmetric response) whose
characteristic or best frequency is fo, 7 is the dead-
time interval, and A’ is a fixed proportionality con-
stant that relates counts to energy at the ideal
Poisson converter (see Fig. 1).

A non-symmetric filter response yields the follow-
ing form for  (fo)

Jo
S(f) df
B(fo) = Alff [ -+ Q(f/fo — folH)ZIV
Ju

(6)

() af
+ Al/ [ @ (o — fol2TY

fo

Here S(f) represents the energy spectral density of
the input signal and A4; is a constant that is even-
tually absorbed into A’ of eqs. (4) and (5). The filter
is assigned an N-pole roll-off for f<fo and an r N-
pole roll-off for f > fy, for reasons described in T and
I1. The parameter @ is the usual 3-dB @ for a single-
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pole-pair tuned filter. A symmetric filter response is
obtained by setting » =1. When the stimulus con-
sists of short bursts, as is the case in all of the ex-
periments considered here, its magnitude may be
expressed in terms of energy (E), power (P), or in-
tensity ().

Loudness and intensity discrimination for general
input signals may be examined by using egs. (4) to
(6) in eqs. (2) and (3), respectively. In the special
case of a pure-tone signal

S{f) = Exd(f — fr), (7

where Bt and frrepresent the energy and frequency
of the tone, respectively. Substituting eq. (7) into
eqs. (2) to (6) leads to the results described previ-
ously (see Parts I and II). For an input signal con-
sisting of several tones, the energy spectrum is easily
written as a summation of several terms such as
those represented in eq. (7), but care must be taken
to incorporate the effects of combination tones gen-
erated in the ear. We have investigated input sig-
nals of this type in connection with tone masking,
and will report the results in a forthcoming paper.

The stimulus we consider in detail in this paper is
band-limited noise. The mathematical results de-
rived in this section may be directly applied to noise
stimuli, provided that the average energy and spec-
tral density (rather than the energy fluctuations of
the stimulus) are the crucial determinants for inten-
sity discrimination and loudness estimation. We be-
lieve that this is an appropriate assumption (see
Section 4) and therefore proceed by inserting the
following spectral density

N, hEf=Te
0, otherwise

st = ®)
in eq. {6). Here # is the average noise energy per
cycle of bandwidth (Hz), and f1 and fs represent,
respectively, the lower and upper cut-off frequen-
cies for the noise stimulus. The evaluation of eq. (6)
for the input spectrum represented by eq. (8) is car-
ried out in Appendix A. This result is then utilized
in the numerical calculation of the integrals in egs.
(4) and (5) which, in turn, provide the LEFRM pre-
dictions for loudness and intensity discrimination.
The results of our model are compared with various
experimental data in the next section.

Before proceeding, however, it is interesting to
point out that an analytical result can be obtained
for the intensity-discrimination law in the limit of
strong broadband stimuli of arbitrary spectra, if the
assumption is made that strong non-paralyzable
dead time is the sole saturation mechanism. The der-
ivation is carried out in Appendix B and leads to
Weber’s Law. The calculation is an extension of the
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single-channel result first derived by van der Vel-
den[4], and contains a number of limiting conditions.
Each channel is assumed to be strongly saturated as
a result of non-paralyzable dead-time. All channels
are taken to be independent and their outputs
summed. Finally, since all the neural channels are
strongly saturated, the effects of spread of excita-
tion are not experienced. In T it was shown that
spread of excitation is a basic ingredient in the
L¥RM formulation that leads to the near-miss to
Weber’s Law for pure-tone inputs. A cautionary
note regarding the blind use of these results must
be sounded, however. Experimental results for the
neural count mean and variance indicate that a
more plausible modal must involve the effects of
saturation as well as those of refractoriness.

3. Comparison with experimental data

3.1. Loudness summation for Gaussian noise stimuls

We first examine the behaviour of the LFRM in
the context of loudness summation data. These data
are usually represented in the form of sound pres-
sure level for an equivalently loud pure tone or pre-
specified band of noise, versus the half-power band-
width of the noise stimulus AF. Filtered Gaussian
noise is used as the stimulus, and its total energy is
constrained to be constant. Thus, as an example,
when the bandwidth is doubled, the energy density

-
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Fig. 2. Solid curves show the dependence of loudness on the
bandwidth AF of filtered white Gaussian noise of centre
frequency 1 kHz. The total noise energy was maintained
constant for each curve. The subjects adjusted the SPL of a
1-kHz pure tone to match the loudness at each noise band-
width AF. Experimental data adapted from Fig. 21.1 of
the book by Feldtkeller and Zwicker [6]. The solid triangles
represent, the predictions of the LFRM for the N =2 case.
They are seen to follow the trends of the curves at all sound
pressure levels.
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Fig. 3. Open circles (and straight-line segments fitted to
them) show the dependence of loudness on the bandwidth
AF of filtered Gaussian noise of centre frequency
1420 Hz. The total noise energy was maintained constant
for each curve. The subjects adjusted the SPL of a band
of noise of center frequency 1420 Hz and bandwidth 210Hz
to match the loudness at each noise bandwidth AF. Ex-
perimental data (open circles and solid curves) adapted
from Fig. 8 of the paper by Zwicker, Flottorp, and Stevens
[7]. The solid triangles represent the predictions of the
L¥RM for the N =2 case. As observed in Fig. 2, they follow
the trends of the curves at all sound pressure levels.

is halved. The energy density is usually centred
geometrically about a given frequency, and the
comparison tone frequency (or the geometric mean
of the comparison noise band) is chosen to be the
same as the geometric mean of the stimulus band.
Experimental studies of this kind were first carried
out by Zwicker and Feldtkeller [5], Feldtkeller and
Zwicker [6], and Zwicker, Flottorp, and Stevens[7].

In ¥ig. 2 we present a set of such data (solid
curves) reported by Feldtkeller and Zwicker ([6],
Fig. 21.1, p. 82) for a 1-kHz comparison tone. Fig. 3
shows a similar set of data (open circles and solid
curves) reported by Zwicker, Flottorp, and Stevens
([7], Fig. 8, p. 553); in this case, a band of noise of
centre frequency 1420 Hz and half-power band-
width 210 Hz served as the comparison. The theo-
retical predictions of the LERM are represented by
the solid triangles in Figs. 2 and 3 for the N =2
case. Because we are dealing with a matching para-
digm, the values of the model parameters B; and



ACUSTICA
Vol. 53 (1983)

By (see IT) are not critical. They are chosen to be of
similar magnitude to those used in the pure-tone
case, and to give a loudness of approximately 1
{(sone) for narrowband noise at the 40-dB intensity
level. In particular, the values used for both Figs. 2
and 3 were B1 —4.668 X 10-6 and Bs = 1.000 x 10-3.
The parameter @Qioqs was set equal to 4; this pro-
vided a reasonably good fit to both sets of data.

As pointed out in IT, it must be kept in mind that
the model constants providing a gocd fit to the
empirical data, for the simple LFRM presented here,
will change when the details of the peripheral
auditory system are incorporated into the model.

The experimental data show that loudness increas-
es with the bandwidth AF even thoughthetotal stim-
ulus energy is maintained constant. This so-called
loudness summation effect (LSE) represents inter-
esting and important behaviour. From Figs. 2 and
3, it is clear that the LSE is substantially smaller
for both low and high stimulus energies than it is for
intermediate stimulus energies. Furthermore, the
effect does not seem to occur until a particular band-
width is achieved (indicated by the breakpoints in
the solid curves). This behaviour is generally as-
cribed to the existence of critical bands (Fletcher [8];
Zwicker and Feldtkeller [5]; Feldtkeller and Zwicker
[6]; Zwicker, Flottorp, and Stevens [7]; Scharf [9,
10]; Zwislocki [11]).

The theoretical calculations based on the LFRM
(indicated by the solid triangles in Figs. 2 and 3)
clearly follow the general trend of the experimental
data. A substantially larger LSE is predicted for
intermediate stimulus energies than for low and
high stimulus energies, though the magnitude of the
predicted effect is too large at the upper values of
AF. It is important to note that the LFRM calcula-
tions also mimic the experimental results relating
to the bandwidth value at which the LSE becomes
significant.

The behaviour of the LFRM may be understood
in terms of refractoriness and spread of excitation
as follows. At low stimulus levels, refractoriness is
absent and the overall neural-count random vari-
able is Poisson. Its mean and variance are governed
purely by the total energy passed through the bank
of linear filters. Since this energy is independent of
AF, there is no loudness summation. In this region,
the loudness function will exhibit unity slope re-
gardless of the stimulus bandwidth (see IT).

For noise stimuli of intermediate level, neural
channels within the stimulus bandwidth will be
saturated only for narrow bandwidths. If the band-
width is increased while the energy is maintained
constant, the decrease in energy density results in
the individual channels being less saturated. Thus,
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the total neural count, and therefore the perceived
loudness, increases with increasing AF. In this re-
gion, the slope of the loudness function remains
unity for broadband stimuli but falls below unity
for narrowband stimuli (see IT). This is illustrated
vividly in Fig. 4, which presents loudness functions
generated by the LFRM for values of the stimulus
noise bandwidth ranging from AF =35 Hz (nar-
rowband) to AF ="7500 Hz (broadband). Al of the
other model parameters are identical with each
other, and with those used in Fig. 3 (fo = 1420 Hz,
N=2, @ioas—4, B;=4.668 x 10-6, Bs=1.000
x 10-8). The narrowband curve has a behaviour
virtually indistinguishable from that of a 1-kHz
pure-tone loudness function, including the power-
law behaviour at intensity levels above 35 dB SPL
(see II), whereas the broadband curve displays the
more rounded appearance that is characteristic of
experimental loudness functions for broadband
noise (see, e.g., [6], Fig. 21.4; [10], Fig. 7). This oe-
curs because of the expanded range of unity slope
(up to about 35 dB SPL in Fig. 4), and the later
onset of saturation. Furthermore, because of the
reduced overall saturation, the LFRM predicts that

100

Center Frequency = 1420 Hz

AF = 7500 Hz

Theoretical Loudness Function ———»
= 3

f=4
BN

1 i 1

|
20 30 4 5 60 70 80
Stimulus Intensity —=

1 1

90 dB 100

Fig. 4. Theoretical loudness functions for Gaussian noise of
various bandwidths versus total stimulus energy (intensity)
in dB. The curves have been generated by the LFRM with
all parameters identical except AF. The (geometric mean)
frequency is 1420 Hz and the parameter N =2. The char-
acteristic features of the narrowband and broadband curves
are in accord with experiment.
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broadband noise will elicit a substantially greater
loudness sensation for most stimulus levels, with
the maximum advantage occurring at about 50 dB
SPL (see Fig. 4). This behaviour is also in accord
with experiment (Brittain [12]; Stevens [13];
Zwicker [14]; Zwicker [15]). Theoretical loudness
functions for intermediate bandwidths fall between
the two extremes, exhibiting one or more points of
inflection.

Finally, at high stimulus levels, the channels
within the stimulus bandwidth remain saturated in
spite of the bandwidth increasing. Thus, the overall
neural count will grow as the stimulus bandwidth is
increased (see Figs. 2 and 3), but not as rapidly as
if the saturation were alleviated by the increase in
AF. Spread of excitation causes the pure-tone loud-
ness function to increase in accordance with Stevens’
power law in this region (see IT). The noise loudness
function, on the other hand, grows more slowly be-
cause the channels are more saturated and less
spread of excitation is available. The behaviour of
the slope of the broadband-stimulus loudness funec-
tion in this region is determined by eq. (B. 3) and
the expansion Ig(1 +z) =~z for |z| < 1.

3.2. Inlensity discrimination for Gaussian noise
stimuli

We now examine the behaviour of the LFRM in
the context of intensity discrimination. These data
may be displayed in a number of ways; the most
usual presentation is as a plot of lg AJ versus lg 7,
or of Ig (AI/I} versus lg I. Filtered Gaussian noise
is used as the stimulus. The energy density is usually
centred geometrically about the centre frequency
and is identical in form in both intervals of the two-
interval forced-choice procedure. The earliest ex-
perimental study of this kind was carried out by
Miller [3], for broadband Gaussian noise stimuli.
Related studies were conducted by Hawkins and
Stevens [16], Zwicker [17], Bos and de Boer [18],
and Raab and Goldberg [19], among others.

In Fig. 5 we present a set of such data in the form
of a plot of Ig (AI/I) versus lg I (open circles and
straight-line segments connecting them), reported
by Bos and de Boer ([18], Fig. 5, p.711)2. The stim-
ulus consisted of Gaussian noise bursts of 125 ms
duration with a (geometric mean) frequency of
1 kHz and a bandwidth of 800 Hz. Bos and de Boer
carried out their measurements in the presence of a
weak broadband background noise, the magnitude
of which was chosen in an attempt to eliminate off-
frequency listening and spread of excitation (thereby

2 To make contact with the notation used by Bos and
de Boer [18], note that our [ is their I and our Al is their
I;.

M. C. TEICH and G.LACHS: A NEURAL-COUNTING MODEL, PART IiI

ACUSTICA
Vol. 53 (1983)

A Center Frequencyb=1 kHz
Stimulus Noise Bandwidth =800 Hz

I o
N DO
T T T

|
[=2}
T

Weber Fraction 4I/]——»
&~
T

t
=5}
T

] 1 L 1 i ! 1 1
0 1 20 33 4 50 80 70 dBSPL 930
Magnitude of Stimulus Burst I —

Fig. 5. Open circles (and straight-line segments connecting
them) display the Weber fraction AI/I (in dB) versus the
power ratio per 1/3 octave of the stimulus burst I (in dB
re 0.0002 ybar). The Gaussian noise stimulus has a (geo-
metric mean) frequency of 1 kHz, a bandwidth of 800 Hz,
and a duration of 125 ms. A very weak broadband back-
ground noise (— 30 dB re I) was also present. Experimental
data adapted from Fig. 5 of the paper by Bos and de Boer
[18]. The solid triangles represent the predictions of the
LFRM for the N=2 case (theory and experiment are
matched at 50 dB SPL). The theoretical results follow the
trend of the experimental data very well.

leading to Weber’s Law). For the particular data
set illustrated, however, this noise was sufficiently
weak (—30dBre J) that it most likely can be
ignored.

The theoretical predictions of the LFRM with
N =2 are represented by the solid triangles in Fig. 5,
when the stimulus has the same (geometric mean)
frequency of 1 kHz and a bandwidth of 800 Hz.
The weak broadband noise was omitted from the
theory. The model parameters were selected to be
Qioas=4, ©/T=0.05, and k=1, which are similar
to those used in our other studies. As we observed
in Paper I, the slope of the theoretical intensity-
discrimination curve is relatively independent of
the choice of these parameters. The quantity A4’
appearing in eqs. (4) and (5) was chosen in such a
way that the calculated value of Ig (AI/I) at [ =
50 dB SPL was equal to the experimental value,
viz., —3dB. As in the case of loudness, discussed
earlier, the optimal model constants will change
when the details of the peripheral auditory system
are incorporated into the LFRM.

The experimental data show that lg (AI/I) is
relatively flat with I (i.e., Weber’s Law is approxi-
mately obeyed), for 20 dB SPL <1<50dB SPL.
A slight dip does appear in the data at 30 dB, how-
ever. For 50 dB SPL < I <80 dB SPL, the data lie
on a line whose slope is about — 0.1. In terms of the
standard intensity-discrimination curve (lg AI ver-
sus lg I), this corresponds to a slope of 0.9, repre-
genting the near miss to Weber’s Law. This is the
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same behaviour as that observed for pure-tone in-
tensity discrimination, but we note that the onset
of the near miss occurs at a higher value of I for the
800-Hz bandwidth noise than it does for a pure tone
(see Paper I; Rabinowitz et al. [20]; Jesteadt et al.
[21]). Bos and de Boer ([18], Fig. 5, p. 711) also
carried out intensity-discrimination experiments for
a noise stimulus with a centre frequency of 1 kHz,
and a bandwidth of 200 Hz. A near miss to Weber’s
Law (with slope =~ —0.1) is also observed in that
case, and the onset is at a lower value of I than for
the 800 Hz bandwidth data. The intensity-discrimi-
nation behaviour for noise is sometimes ascribed to
the existence of intensity fluctuations (Green [22];
Jeffress [23]; Pfafflin and Mathews [24]; de Boer
[25]; McGill [26]; Ronken [27]; Teich and McGill
[28]), and sometimes to other factors (Green and
Swets |29], pp. 2256—229).

The theoretical calculations based on the LFRM
(solid triangles in Fig. 5) are in good agreement with
the trend of the experimental data. The principal
discrepancy is at the lowest intensity-level data
point (I = 20 dB SPL). The behaviour of the LFRM
for intensity discrimination may be understood in
terms of refractoriness and spread of excitation. At
the lowest levels of excitation, refractoriness is ab-
sent, and the overall neural-count random variable
is Poisson regardless of the stimulus noise bandwidth
AF. This gives rise to the de Vries-Rose Law, yield-
ing a slope of —0.5 for the lg (AI/I) versus lg I
curve (see I). In this region, the loudness function
exhibits unity slope.

For noise stimuli of intermediate level, neural
channels within the stimulus bandwidth will remain
unsaturated for broad bandwidths, and the de
Vries-Rose Law will persist. If the stimulus band-
width is decreased while the energy is maintained
constant, however, the increase in energy density
will result in the individual channels being more
saturated. This drives the intensity discrimination
behaviour toward Weber’s Law (in accordance with
the calculations of van der Velden [4], Bouman, Vos,
and Walraven [30], and those presented in Appen-
dix B) or toward whatever law a specific saturation
function may specify. In this region, the slope of the
loudness function falls below unity.

At high stimulus levels, spread of excitation can
occur only for narrowband stimuli, where unsat-
urated channels are available beyond the saturated
excitation region. Thus, just as for the pure-tone
case treated in Paper I, the near miss to Weber’s
Law will take over for small AF, and the loudness
function will obey Stevens’ power Law. For broad-
band stimuli, where all channels are saturated, the
neural count will continue to grow, but spread of
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excitation can not take place and Weber’s Law will
persist (see Appendix B).

The theoretical results are in good qualitative
agreement with available data for Gaussian noise
stimuli. Miller’s ([3], Fig. 3) broadband intensity
discrimination data can be interpreted as obeying
the de Vries-Rose Law at the lowest levels of inten-
sity, making a smooth transition to Weber’s Law,
which takes over fully at about 30 dB SL. The near-
miss is never observed. Bos and de Boer’s ([18],
Fig. 5) AF =800 Hz data approximately obey
Weber’s Law from about 20 to 50 dB SPL, and fol-
low the near miss above 50 dB SPL. Bos and de
Boer’s ([18], Fig. 5) AF =200 Hz data appear to
obey Weber’s Law between 10 and 20 dB SPL, and
then follow the near miss above 20 dB SPL.

4. Discussion

We have found that the predictions of an energy-
based neural-counting model, incorporating refrac-
toriness and spread of excitation, are in good accord
with psychophysical data for loudness estimation
and intensity discrimination. This is true both for
the variable-bandwidth Gaussian noise stimuli
studied here, and for the pure-tone stimuli studied
previously (Teich and Lachs [1]; Lachs and Teich
[2]). We have appealed neither to external critical
bands nor to stimulus intensity fluctuations in
carrying out our study.

Our model makes use only of the energy spectral
density of the signal, so that we will want to know
its applicability for stimuli of various statistical
properties. A number of intensity-discrimination
studies using non-pure-tone, non-Gaussian stimuli
have been carried out. The agreement of the LFRM
calculations with most of these experimental results
appears to provide a sound basis for a broad appli-
cability of the theory, as discussed in the following.

Miller [3], in his classic study, performed inten-
sity-discrimination experiments using not only
broadband Gaussian noise, but also Gaussian noise
in which the peak amplitudes were clipped at a fixed
level (see Fig. 3 in his paper). The outcome of both
sets of experiments are indistinguishable; the data
obey the de Vries-Rose Law at the lowest stimulus
levels making a smooth transition to Weber’s Law,
which takes over fully at about 30 dB SL. Penner
and Viemeister [31] studied the intensity discrimi-
nation of filtered clicks. For two of the three sub-
jects they tested, the data for broadband clicks
(AF =10 kHz; see Fig. 2 in their paper, S1 and S3)
are virtually identical to the Miller data: a transi-
tion from the de Vries-Rose Law to Weber’s Law
occurs at about 30 dB SL. For narrowband clicks
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(AF =780 Hz, Fig. 1), the near miss to Weber’s
Law (with a slope of about 0.92) takes over at mod-
erate stimulus levels, just as in the Bos and de Boer
data for narrowband Gaussian noise (AF = 800 Hz,
Fig. 5). Raab and Goldberg [19] investigated inten-
sity discrimination using bursts of variable-band-
width reproducible Gaussian noise. Weber’s Law
was clearly obeyed for broadband noise of this
character (AF =5 kHz, Table ITI); the near miss
appeared to emerge for narrowband reproducible
noise (AF =500 Hz, Table TII).

Quite a few intensity-discrimination studies were
conducted in the presence of background noise of
various kinds. Bos and de Boer ([18], Fig. 5) showed
that broadband Gaussian background noise drove
the intensity discrimination curve for a narrow-
band Gaussian noise stimulus away from the near
miss toward Weber’s Law, and generally degraded
performance by increasing the Weber fraction. Sim-
ilar results were demonstrated for band-reject back-
ground noise by Viemeister [32], and by Moore and
Raab [33]. Viemeister [34], and Moore and Raab
[35], had earlier demonstrated that the slope of the
pure-tone intensity-discrimination curve was driven
toward unity by the presence of Gaussian back-
ground noise of various spectral properties. Broad-
band background noise also degraded the Weber
fraction for click intensity discrimination, according
to Penner and Viemeister [31], but Weber’s Law
again held fast.

All of these results can be understood in a uni-
form way, in terms of the LFRM. Saturated chan-
nels, however few or many there may be, and at
whatever frequencies they are excited, give rise to
Weber’s Law because of saturation and refractori-
ness effects. Unsaturated (off-frequency) channels
will, when they are excited, reduce the slope of the
intensity-discrimination curve below unity. The
slope of the near miss is determined by the slopes of
the tuning-curve tails. The use of broadband signals,
or the presence of background stimuli, of whatever
spectral distribution and statistical nature, will re-
duce the number of unsaturated channels and drive
the intensity-discrimination curve toward Weber’s
Law. Of course, the magnitude of the Weber frac-
tion will depend on the extent of the saturation
which, in turn, is determined by the signal and
background.

That is not to say that intensity fluctuations are
altogether unimportant in intensity-discrimination
tasks. Experiments such as those carried out by
Ronken [27] and Spiegel and Green [36] indicate
that intensity fluctuations do play a part, and we
know how to deal with them analytically (Prucnal
and Teich [37]). But their importance will diminish
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as the time-bandwidth product increases, because
of the averaging of the (energy) fluctuations (Green
[22]; Green and Swets [29]; MeGill [26]; Sorkin,
Woods, and Boggs [38]; Papoulis [39], pp. 378 —381),
because of saturation (Siebert [40]), and because
of refractoriness effects (Vannucci and Teich [41]).

The loudness function is simpler, in that it de-
pends only on the mean neural count, and not on
the count variance. As such, it provides a less dis-
criminating window on system operation. In any
case, the LFRM provides results that follow the
general trends of loudness summation data, without
appealing to an ad-hoc critical-band concept. We
do not imply that critical bands are unimportant
in this task, however. Scharf [10] has discussed var-
ious models of loudness that make use of the critical-
band concept and provide very good agreement
with experimental data. Zwicker and Scharf [42],
in particular, have developed a model for loudness
summation, incorporating Stevens’ power Law and
critical bands (see also [15]), that is eminently suc-
cessful. Our results do suggest, however, that much
of the behaviour of loudness summation can be
understood rather simply in terms of saturation due
to refractoriness and spread of excitation arising
from the tuned-filter characteristics of the neural
channels.

Finally, we reiterate that many known physio-
logical characteristics of the peripheral auditory
system have been omitted from our model. These
include the energy distribution along the cochlear
partition, the approximately logarithmic relation-
ship between distance along the basilar membrane
and best frequency, the nonlinear receptor response,
the nonuniform fibre innervation density, and the
nonlinear (with stimulus intensity) active fibre den-
sity arising from the spread in range over which
different fibres initiate firing. Other relevant factors
are symmetric versus nonsymmetric linear-filter
characteristics, monaural versus binaural processing,
spontaneous counts, the occurrence of phase locking,
the existence of relative refractoriness (Teich and
Diament [43]), and the middle-ear transmission
characteristic. We are in the process of incorporat-
ing a number of these properties into a more com-
prehensive model, on which we shall report shortly.

The character of the predictions, as reported
here, appear to be left basically unchanged by the
additions though the detailed predictions of the
model accord better with experiment. This provides
us with a measure of confidence that the essential
effects of saturation and refractoriness, along with
spread of excitation, capture the response of the
auditory system in the simple psychophysical tasks
discussed in this paper.
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Appendix A

Evaluation of linear-filter energy output for
band-limited noise input

We evaluate the total energy (intensity) at the
output of an r N-pole-pair (possibly non-symmetric)
linear filter [eq. (6)] stimulated by band-limited
noise [eq. (8)]. The quantity # is the average noise
energy per cycle of bandwidth (Hz), and f, and fe
are, respectively, the lower and upper cut-off fre-
quencies for the noise. Then, for a symmetric N-pole-
pair linear filter with characteristic frequency fo,

Je
E(fo) = 4, nff [14 Q%(f/fo — fo/H2I N df. (A.1)
Letting x = f/fo and df = fodx provides
E(fo) = Ainfo | [ + @2 — 122 ¥dz, (A.2)

where oy = fl/fO and oy — fg/f() .
We then substitute

r=1+4 Q%(x — 1/x)2 (A.3)
so that for
x>1 (A.4)
we obtain
(z—1Y2Q =0 —1/x. (A.5)
This is a quadratic equation with the solution
w=[(z— )24 (z — 1+ 4Q)V2)2Q (A.6)
which provides
do = dz[(z — 1)~1/2 (A.7)
F (214 4Q2)12)/4Q.
Similarly, for
0<x <1 (A.8)
we obtain
(z—112Q=1/x — x. (A.9)
In this case, the solution is
x=[(z— 14 4 Q22 (A.10)
—(E—1)M2]2Q
providing
dor =dz[(z — 1 4+ 4 Q2)-12 (A 11)

—(z—1)"12]4Q.
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When =1, 2= 1. We also effect the substitutions
z1 =1+ Q2(f1/fo — fo/f1)? (A.12a)

and

22 = 14 Q2(fa/fo — folf2)?. (A.12b)

The division into two regions represented by egs.
(A.4) and (A.8) is necessitated by the double-
valued nature of eq. (A. 3). Since the split occurs at
z=1, (f="fo), it is a simple matter to incorporate
the effects of a non-symmetric roll-off of the form

N-pole-pair for | < fg (A.13a)

and

7 N-pole-pair for f > fo. (A.13D)

The equations above yield the following specific
integrals for E (fo)
i) Case 1 (fi < fa < fo):
Ainfo
E =

lodn (22, 21) — 4gad w22, 21)];

(A.14)

ii) Case 2 (f1 < fo < f2):

A4
E(fO) - _%7% [OIN(la Zl) - 4QZIN(1’ 21)
+ olev (1, 22) 4+ 4o, (1, 22)];
(A.15)
iii) Case 3 (fo < f1 < f2):
A4
E(fo) = —;gﬁ (A.16)

“lolrwv (21, 22) 4 gqed,x (21, 29)] .
In all cases
aln(b,0) = [z7V(e—1+a)V2dz. (A.17)
b
Eq. (A. 17) is evaluated using the recurrence rela-
tion (Gradshteyn and Ryzhik [45], p. 73)

(c—1— a2

aln (b, ¢) = N —1)(a— 1)ev1 (A.18)
(b —14 )2
(N —1) (@ — 1)b¥-1
L @eN=3)
2N —2)(a — 1) aln-1(b,c),
“beginning with
al1(b,c) = a _im {tan-1[(c — 1 +a)1/2]

— tan—1[(b — 1 4 a)1/2]},
a<1 (A. 19)
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or

. e =14 a)? — (@ — DU — 1+ )2 (@ — 1))

al1(b,0) = (@ — 1)1/2 n [(c — 1+ a)l2 4 (@ — )V2][(b — 1+ a)/2 — (@ — 1)1/2]

This is not a difficult task since N and r are both
small integers. The quantity desired, F(fo), is then
obtained from eqgs. (A. 14) to (A. 20).

Appendix B
Derivation of Weber’s Law for broadband
noise stimuli using refractoriness model

We obtain an analytical expression for the inten-
sity-discrimination law in the limit of broadband
stimuli of arbitrary spectra. Our point of departure
is the first-order non-paralyzable dead-time-modi-
fied count mean and variance for a single channel.
The appropriate expressions are (Miiller [46]; Can-
tor and Teich [47]; Teich, Matin, and Cantor [48];
Teich and Lachs [1])

- iy o T|v
T At e(r/T) T 14 [#a(z/T) Y

(B.1)

fie
and
. i ERGD
T T (DB {1 [l T3

respectively. Here 7 is the refractoriness-modified
mean, o> is the refractoriness-modified variance,
7 is the dead-time interval, 7' is the counting-time
interval, and A is the unmodified count mean (which
is taken to be directly proportional to the stimulus
energy).

For a channel that is sufficiently strongly driven
(such that 7y (v/T)> 1) we can carry out Taylor
series expansions of egs. (B. 1) and (B. 2) to provide

Tl 1
TN T )T

(B.2)

(B.3)

and

5 T\ 1 3 T\ 1
O R\ — | =5 1—— ) o
T ] Ay Ay (7/T) T/ Ay

The detection law is obtained by considering a fixed
detection distance A, such as that represented in
eq. (3). The result is in the general form of a ratio
of the increment in mean to the standard deviation
of the neural count. We therefore form the differ-
ential of eq. (B. 3) to obtain

Afip = (T [7)2 Afiy 72 .

(B.4)

(B.5)
Then, using egs. (3), (B.4), (B.5), and the assump-

tion that o2(X;)a 02(Xy), we arrive at a single-
channel detection distance %; given by

by = Afie[)/2 00 = (1)/2) (T]7)V2 (Afiy/fiy) . (B.6)

}, a>1. (A.20)

The intensity-discrimination law is extracted by
forming the logarithm of eq. (B. 6), with the re-
cognition that A, is fixed and 7, is proportional to
the stimulus energy. The treatment is essentially
identical to that of van der Velden [4], and the out-
come is Weber’s Law.

We now strengthen the result by extending it to
a collection of k& parallel independent neural chan-
nels whose outputs (both count means and vari-
ances) are summed. Carrying out the summation
over the k channels, eq. (B. 5) becomes

~ T\? « A7
ANe = Afiy, = (__) > (B.7)
k T/ & Tu
whereas eq. (B.4) becomes
T\ 1
Zi=Soh=—) >—. B.8
=yt () 3w 59
We now let
foap = g (k) iy (B.9a)
and
Afiyp = g (k) Ay, (B.9b)

where g (k) is the strength of the stimulus as a func-
tion of frequency (represented in terms of the chan-
nel index k). The detection distance for the overall
neural-count random variable is then

1 /71\1/2 1
w1 2w

1 \l/2
(g g2 (k) )
(B.10)

Eq. (B. 10) is similar in form to the single-chan-
nel] result represented in eq. (B.6). Both % and the
factor in square brackets above are independent of
stimulus energy, so that Afy/@i, (and therefore
AE/|E) is constant and Weber’s Law ensues. We
note, however, that the magnitude of the intensity
difference limen (DL) will differ in the two cases.

(Received April 15th, 1982.)
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