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CHAPTER 31

Models of Nonlinear Vibration. III. Oscillator with
Bilinear Mass

SUZANNE E. KEILSON,! MALVIN C. TEICH' and SHYAM M. KHANNA?
Columbia University, Departments of 'Applied Physics and *Otolaryngology, New York, USA

INTRODUCTION

In previous papers we introduced the bilinear resistance oscillator and the bilinear stiffness
oscillator (Keilson, Teich and Khanna, 1989; Teich, Keilson and Khanna, 1989). In this
paper we continue our investigation into the behavior of bilinear oscillators with a study of
the bilinear mass oscillator. The general approach and numerical methods used to study
such dynamical systems were described in Keilson, Teich and Khanna (1989), and have
been considered in other references in the field of nonlinear dynamics (Thompson and
Stewart, 1986; Berge, Pomeau and Christian, 1986). The bilinear mass oscillator exhibits a
mass with value m; when the displacement is positive with respect to an arbitrary origin
and m, when it is negative with respect to that origin. Such simple deterministic systems
have enough degrees of freedom to exhibit complex behavior, such as subharmonic
resonances and chaotic motion.

THEORY

The equation of motion of a bilinear mass oscillator is
m(x) x"(t)+rx’'(t)+kx(t) = A, cos(2nf, t), )

where x, x’, and x” represent the displacement, velocity, and acceleration, respectively,
and the coefficients m, r, and k represent the mass, resistance, and stiffness respectively.
This is an ordinary, nonlinear, nonautonomous differential equation since the mass coeffi-
cient m(x) is a function of the displacement x and the time t appears as an explicit variable
in the forcing function. The forcing function has an amplitude A, and a frequency f,. For
the bilinear mass oscillator,

m(x)=m,; for x=0

m(x)=m, for x<0. ()

As a result of the form of Eq. (2), the solution scales linearly with the amplitude of the
forcing function A, so that the normalized displacement and velocity, and their spectra, do
not change with the applied signal level. For the case of arbitrary m(x) the solution does
not in general scale linearly with A, so that the results will depend on the amplitude of the
forcing function. When the values of the two masses differ only slightly, the deviations of
the displacement and velocity waveforms from sinusoidal behavior are small. This oscilla-
tor acts as a tuned circuit with a resonance or best frequency (CF), but with harmonic
content that changes as a function of the forcing (signal) frequency in a complex way.
Dividing Eq. (1) by m(x) in Eq. (2) leads to

X"(t)+1; X" () +Kk; X(t) = A; cos(2nf t), 3)
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where r,=r/m;, k;=k/m;, A;=A /m;, and where the m;’s are the two different mass con-
stants in the two displacement domains. This demonstrates that the bilinear mass oscillator
contains elements of bilinear stiffness and bilinear resistance, but in this interpretation the
forcing function is also bilinear. Not surprisingly, the solutions exhibit some of the
features of both the bilinear resistance and bilinear stiffness oscillators examined earlier
(Keilson, Teich and Khanna, 1989; Teich, Keilson an¢ Khanna, 1989).

Results are shown in the form of displacement waveforms and their Fourier spectra,
velocity waveforms and their spectra, phase-space projections, and plots of the velocity
harmonics as a function of signal frequency. The integration was always started with the
initial conditions x(0)=x'(0)=0. Startup transients were removed by first integrating for
10,000 steps before storing the solutions. The time course of the stored solution was
sufficiently long so that convergence to a limiting motion could usually be observed
empirically. The spectra were obtained by a fast-Fourier transform (FFT) operation on the
discrete array containing the sampled time waveform.

RESULTS

Solutions for the sinusoidally forced bilinear mass oscillator were obtained by using the
values A,=100 dynes, m;=1x107° g, m,=1x1075 g, k=16 dyne/cm, and r=0.005 dyne-
sec/cm in Egs. (1) and (2). The solutions presented are representative and not peculiar to
this choice of parameters. The best frequency (CF) of this oscillator is given approximate-
ly by k"22(m}2+m}?)=317 Hz. This was chosen to be the same as the best frequency of
the bilinear resistance oscillator (Keilson, Teich and Khanna, 1989) and the bilinear
stiffness oscillator (Teich, Keilson and Khanna, 1989).

In Figures 1-4, results are shown in the form of (a) displacement waveforms, (b)
displacement waveform spectra, (¢) velocity waveforms, (d) velocity waveform spectra,
and (e) phase-space projections. Figure 1 shows data at f;=73 Hz, below CF; Figure 2
shows data at f,=317 Hz (at CF); Figures 3 and 4 show data at f,=610 and 806 Hz
respectively, above CF.

Examining the displacement waveform at the four frequencies indicates that deviations
of the waveshape from sinusoidal increase as the signal frequency increases, and is
greatest well above CF. The displacement waveforms are more-or-less restricted to the
domain of negative displacement for the three higher signal frequencies. This is not the
case for the velocity waveforms whose maximal excursions are rather more symmetrical at
all signal frequencies. Figures 1 and 3 represent periodic responses; their spectra show
only harmonics and/or subharmonics of the signal frequency. The subharmonic resonance
evident in Figure 3 is sufficiently strong such that the oscillator is responding maximally at
about 300 Hz (near the CF), even though it is being forced at 610 Hz. Figure 2 displays a
small number of anharmonic spectral components at frequencies below and above the
signal frequency. In contrast, Figure 4 shows abrupt changes in both the displacement and
velocity waveforms, resulting in quasi-continuous spectra with many anharmonic compo-
nents. This behavior suggests the presence of deterministic chaos.

The phase-space projections evidence nonelliptical and asymmetric behavior at all
signal frequencies. These distortions from ellipticity increase with increasing signal fre-
quency. The failure of successive cycles to overlap are a manifestation of the anharmonic
components of the motion.

The relative magnitudes of the first four velocity harmonics and a subharmonic reso-
nance are shown as a function of signal frequency in Figure 5. These illustrate that the
velocity tuning observed at the fundamental frequency is quite different from that ob-
served at the second, third, and fourth harmonics, and from that of the subharmonic



Bilinear mass

259

7E-06 —TT T T T 3E-03 1T T
@ (c)
=l —
st =
zl H
=
=t £
I Q
g S
g 2
5 g
Q b
-7E-06 ' L L 1 'l -3E-0’; L 1 1 L L L L L
400 TIME (Sec) 400 TIME (Sec) 441
(b) 1.0 (d) 1.0 T T T T T T—TT
=
a
- =
[: a
z £
z Z
z 2
Z =
= Il
Z E
] :
8 3
< |
= =]
Z >
a
1.0E-03 1.0E-03 — Al
5.0 FREQUENCY (Hz) 5000.0 5.0 FREQUENCY (Hz) 5000.0
3E-03 T
£
=
£
<
3
=
- -
3503 . . ) ) R . L .
7E-06 DISPLACEMENT (cm) 7E-06

Fig. 1. Response of the bilinear mass oscillator to a signal frequency f;=73 Hz (below CF). (a) Time
waveform of the displacement. The response is quite sinusoidal, but shows a small dc offset toward
negative displacements. (b) Fourier spectrum of the displacement waveform. Four harmonics are
visible. The ratio of the displacement magnitude at dc (not shown) to the magnitude at the signal
frequency is 0.075. (¢) Time waveform of the velocity. The waveform deviates most from sinusoidal
behavior near its peaks..(d) Fourier spectrum of the velocity waveform. The velocity, being the
derivative of the displacement, exhibits a greater number of high-frequency harmonics (12 are
visible). (e) Phase-space projection. The trace has an indentation in the upper right quadrant because
the distortions of displacement and velocity are phase locked to the positive part of each waveform.
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Fig. 2. Response of the bilinear mass oscillator to a signal frequency f,=317 Hz (at CF). (a) Time
waveform of the displacement. The response appears to be quite sinusoidal, but shows a substantial
negative dc offset. (b) Fourier spectrum of the displacement waveform; four harmonics are readily
seen, of greater relative magnitude than in Figurel(b). There are two anharmonic components visible.
The ratio of the displacement magnitude at dc to the magnitude at the signal frequency is 1.45. (c)
Time waveform of the velocity. The excursions into domains of positive and negative velocities are
unequal. (d) Fourier spectrum of the velocity waveform. Again, a greater number of high-frequency
harmonics are seen (about 12) than in the displacement spectrum. There are also a few anharmonic
components visible. (e) Phase-space projection. The trace, which is non-elliptical, shows more
symmetry for positive and negative velocities than for positive and negative displacements. The trace
does not repeat itself. This is a manifestation of the anharmonic components.
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Fig. 3. Response of the bilinear mass oscillator to a signal frequency f,=610 Hz (above CF). (a) Time
waveform of the displacement. The response appears periodic but with a repetition frequency at f,/2.
There is also a large negative dc offset. (b) Fourier spectrum of the displacement waveform. Four
harmonics of f; are readily seen, as is a strong spectral component below the signal frequency at about
300 Hz, which is near the CF of the oscillator. This is the subharmonic response. The ratio of the
magnitude of the dc component to the magnitude at the signal frequency is 6.47. (c) Time waveform of
the velocity. Again, the period of the sinusoidal behavior is twice 1/f; because there is a large response
near the CF ~f/2. (d) Fourier spectrum of the velocity waveform. More than 10 harmonics are
visible. (e) Phase-space projection. The trace is periodic but highly asymmetrical in both velocity and

displacement.
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Fig. 4. Response of the bilinear mass oscillator to a signal frequency fs=806 Hz (well above CF). (a) Time waveform
of the displacement. The response has a large negative dc offset which is evidence of rectification. The response
shows abrupt changes in the displacement, suggesting the possibility of deterministic chaos. (b) Fourier spectrum of
the displacement waveform. Three harmonics of f; are visible; all of the other components are not multiples of f;. In
addition there are strong spectral components below the signal frequency, with the largest at about 400 Hz. The ratio
of the displacement magnitude at dc to the magnitude at the signal frequency is 6.85. (c) Time waveform of the
velocity. The response shows abrupt changes in the velocity. (d) Fourier spectrum of the velocity waveform. It
shows a quasi-continuum of spectral components which are not harmonics of f;; this is one of the hallmarks of
deterministic chaos. (e) Phase-space projection. The trace first appears to settle on one maximal excursion in
velocity and displacement but then abruptly jumps to a larger value. The strong rectification of the displacement is
also evident here.
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Fig. 5. Relative velocity-magnitude frequency-response curves for the bilinear mass oscillator. The
curves represent the magnitude of the first four velocity harmonics, and a sharply tuned subharmonic
resonance, plotted as a function of the applied signal frequency. The curves are coded as follows:
fundamental (solid curve), 2nd harmonic (dotted curve), 3rd harmonic (dashed curve), 4th harmonic
(dash-dot curve), and subharmonic (dash-three-dots curve).

resonance. The frequencies of maximal response (best frequencies) of the third and fourth
harmonics lie slightly above that of the fundamental. For this set of parameters, the low
frequency slopes of the harmonics are steeper than that of the fundamental. The high
frequency tails of all of these curves, including the fundamental, have multiple secondary
peaks. The response of the fourth harmonic assumes a highly irregular form at high signal

frequencies.

CONCLUSION

For the bilinear mass oscillator model, the number and magnitude of the harmonic
components in the displacement and velocity spectra increase with increasing signal
frequency. The response shows a sharply tuned subharmonic resonance when the signal
frequency is near, but not necessarily precisely at, a multiple of the CF . The relative
velocity-magnitude frequency response curves for the first four velocity harmonics all
show multiple peaks. The response also exhibits a strong rectification of the waveform and
aperiodic distortions at signal frequencies above resonance, suggesting the presence of

deterministic chaos.
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