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CHAPTER 30

Models of Nonlinear Vibration. II. Oscillator with
Bilinear Stiffness

MALVIN C. TEICH,! SUZANNE E. KEILSON' and SHYAM M. KHANNA?
Columbia University, Departments of 'Applied Physics and *Otolaryngology, New York, USA

INTRODUCTION

In the previous paper we introduced the bilinear resistance oscillator (Keilson, Teich and
Khanna, 1989a). In this paper we continue our investigation into the behavior of simple
bilinear oscillators with a study of the bilinear stiffness oscillator. The general approach
and numerical methods used to study such dynamical systems were described in the
previous paper, and have been considered in other references in the field of nonlinear
dynamics (Thompson and Stewart, 1986; Berge, Pomeau and Christian, 1986). The bilinear
stiffness oscillator exhibits a stiffness with value k; when the displacement is positive with
respect to an arbitrary origin, and k, when it is negative with respect to that origin. Such
simple deterministic systems have enough degrees of freedom to exhibit complex behav-
jor, such as subharmonic resonances and chaotic motion. The bilinear mass model is
treated in a companion paper (Keilson, Teich and Khanna, 1989b).

The bilinear stiffness oscillator has been considered previously in the context of marine
engineering. The dynamic motions of a mooring buoy and line attached to a massive
supertanker, and driven by steady ocean waves, were modeled by a one-dimensional
oscillator with a stiffness discontinuity (Thompson and Stewart, 1986; Thompson and
Ghaffari, 1983; Thompson, Bokaian and Ghaffari, 1984). These studies have shown that
true chaotic motion can occur only in the case when one of the stiffness values becomes
infinite, in which case it is refered to as an impact oscillator (Thompson and Ghaffari,
1983; Thompson, Bokaian and Ghaffari, 1984).

One-dimensional, forced (non-autonomous) oscillators of this kind may serve as useful
models for elements of the cochlear transduction process. One example is a simplified
model for the asymmetrical motion of the stereocilia bundle atop the hair cell, which is
known to exhibit a displacement-dependent stiffness (Flock and Strelioff, 1984; Hudspeth
and Howard, 1988).

THEORY

The equation of motion of a bilinear stiffness oscillator is
mx"(t)+rx’(t)+k(x) x(t) = A, cosQuft), (1)

where x, x’, and x” represent the displacement, velocity, and acceleration, respectively,
and the coefficients m, r, and k represent the mass, resistance, and stiffness, respectively.
This is an ordinary, nonlinear, nonautonomous differential equation since the stiffness
coefficient k(x) is a function of the displacement x and the time t appears as an explicit
variable in the forcing function. The forcing function has an amplitude A, and a frequency
f,. For the bilinear stiffness oscillator,

k(x)=k; for x=0
k(x)=k, for x<0. (2
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One can define a bilinear period of the motion T, that is an average of the two periods
associated with each domain of motion. There is a corresponding bilinear frequency f..
Because of the relationship between the natural frequency of a system and its stiffness,
one can also define an equivalent stiffness K that is a combination of the two k’s. These
parameters turn out to be (Thompson and Stewart, 1986)

T=(T;+T)/2, 3)
f.=1/T=(1/2m) (K/m)"?, “4)
and

K = 4k, k,/(k/?+k}?)2. ®)

As a result of the form of Eq. (2), the solution scales linearly with the amplitude of the
forcing function A, so that the normalized displacement and velocity, and their spectra, do
not change with the applied signal level. For the case of arbitrary k(x) the solution does not
in general scale linearly with A, so that the results will depend on the amplitude of the
forcing function.

“Results are shown in the form of displacement waveforms and their Fourier spectra,
velocity waveforms and their spectra, phase-space projections, and plots of the velocity
harmonics as a function of signal frequency. The integration was always started with the
initial conditions x(0)=x'(0)=0. Startup transients were removed by first integrating for
10,000 steps before storing the solutions. The time course of the stored solution was
sufficiently long so that convergence to a limiting motion could usually be observed
empirically. The spectra were obtained by a fast-Fourier transform (FFT) operation on the
discrete array containing the sampled time waveform.

RESULTS

Solutions for the sinusoidally forced bilinear stiffness oscillator were obtained by using the
values A,=100 dynes, m=1x107% g, k,=10 dyne/cm, k,=2 dyne/cm, and r=0.001 dyne-
sec/cm in Egs. (1) and (2). The solutions presented are representative and not peculiar to
this choice of parameters. The best frequency of this oscillator is given by f.=317 Hz [see
Egq. (5)]. This was chosen to be the same as the best frequency of the bilinear resistance
oscillator (Keilson, Teich and Khanna, 1989a) and the bilinear mass oscillator (Keilson,
Teich and Khanna, 1989b).

In Figures 1-4, results are shown in the form of (a) displacement waveforms, (b)
displacement waveform spectra, (c) velocity waveforms, (d) velocity waveform spectra,
and (e) phase-space projections. Figure 1 shows data at f;=73 Hz, below the CF; Figure 2
shows data at f,=317 Hz (at CF); Figures 3 and 4 show data at f;=610 and 806 Hz,
respectively, above CF.

Examining the displacement waveform at the four frequencies indicates that the devi-
ation of the waveshape from sinusoidal is substantial well below CF and generally
decreases as the signal frequency increases. However, a strong subharmonic resonance
emerges above CF, as is evident in Figure 3. For the initial conditions chosen, all of the
displacement waveforms are more-or-less restricted to the domain of negative displace-
ment, thereby exhibiting strong rectification (negative dc offset). Consistent with the
general trend of the behavior of the displacement waveforms, the number of harmonic
components present in the displacement spectra decreases with increasing signal frequen-

cy.
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Fig. 1. Response of the bilinear stiffness oscillator to a signal frequency f,;=73 Hz (below CF). (a) Time waveform of
the displacement. The response is distinctly nonsinusoidal, exhibiting a high frequency oscillation at its positive
peaks. The response favors negative displacements so that there is a negative dc offset. (b) Fourier spectrum of the
displacement waveform. The large number of harmonics (12 are visible) confirms the nonsinusoidal nature of the
waveform. The ratio of the displacement magnitude at dc (not shown) to the magnitude at the signal frequency is
0.87. (c¢) Time waveform of the velocity. The waveform deviates most from sinusoidal behavior as it oscillates about
the zero crossing. (d) Fourier spectrum of the velocity waveform. The velocity, being the derivative of the
displacement, exhibits a greater number of high-frequency harmonics. (e) Phase-space projection. The trace is
distinctly non-elliptical and asymmetric for both positive and negative displacements and velocities. The small loops
in the positive displacement represent the ‘‘ringing’’ of the waveform with high frequency harmonics.
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Fig. 2. Response of the bilinear stiffness oscillator to a signal frequency f,=317 Hz (at CF). (a) Time
waveform of the displacement. The response appears to be quite sinusoidal, but with a large negative
dc offset. (b) Fourier spectrum of the displacement waveform; four harmonics are readily seen. The
ratio of the displacement magnitude at dc to the magnitude at the signal frequency is 1.03. (c) Time
waveform of the velocity. Here the response appears with unequal excursions into the positive and
negative domains. (d) Fourier spectrum of the velocity waveform. Again, a greater number of
high-frequency harmonics are seen than in the displacement spectrum. (e) Phase-space projection.
The trace, which is non-elliptical, shows more symmetry for positive and negative velocities than for
positive and negative displacements.
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Fig. 3. Response of the bilinear stiffness oscillator to a signal frequency f;=610 Hz (above CF). (a)
Time waveform of the displacement. The response appears periodic but with a strong component at
~f,/2 and a negative dc offset. (b) Fourier spectrum of the displacement waveform. Four harmonics of
f, are readily seen, and a strong spectral component below the signal frequency appears at about 300
Hz, which is also near the CF of the oscillator. This is the subharmonic response. The ratio of the
displacement magnitude at dc to the magnitude at the signal frequency is 0.97. (c) Time waveform of
the velocity. Again, the period of the sinusoidal behavior is doubled because there is a large response
at the CF ~f/2. (d) Fourier spectrum of the velocity waveform. Seven harmonics are visible. (e)
Phase-space projection. The trace shcws a loop that represents the strong subharmonic resonance.
The response is still largely restricted to negative values of the displacement.
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Fig. 4. Response of the bilinear stiffness oscillator to a signal frequency f,=806 Hz (well above CF).
(a) Time waveform of the displacement. The response appears to be quite sinusoidal but with a large
negative dc offset. This is another example of the rectification of displacement waveforms that occurs
at all signal frequencies. (b) Fourier spectrum of the displacement waveform. Two harmonics are
clearly visible. The ratio of the displacement magnitude at dc to the magnitude at the signal frequency
is 0.92. (c) Time waveform of the velocity. It appears quite sinusoidal and with equal excursions in the
positive and negative domains.(d) Fourier spectrum of the velocity waveform. Two harmonics can be
seen. (€) Phase-space projection. The trace appears circular but is also asymmetric in its positive and
negative displacements.
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Fig. 5. Relative velocity-magnitude frequency-response curves for the bilinear stiffness oscillator.
The curves represent the magnitude of the first four velocity harmonics, and a sharply tuned
subharmonic resonance, plotted as a function of the applied signal frequency. The curves are coded as
follows: fundamental (solid curve), 2nd harmonic (dotted curve), 3rd harmonic (dashed curve), 4th
harmonic (dash-dot curve), and subharmonic (dash-three-dots curve).

This is not the case for the velocity waveforms :which have a more symmetrical
excursion. Since the velocity is the derivative of the displacement, however, the rapid but
small displacement oscillations in the domain of positive displacement are greatly en-
hanced. These oscillations appear near the zeroes of velocity. This is in contrast to the
bilinear resistance oscillator where velocity oscillations appear near the peaks in the
velocity waveform (Keilson, Teich and Khanna, 1989a). The velocity spectra follow the
same trend as the displacement spectra with increasing signal frequency, but they always
show more harmonic components.

The phase-space projections evidence nonelliptical and asymmetric behavior at all
signal frequencies. When the two stiffness values differ only slightly, the distortions from
ellipticity are relatively small. As the stiffness ratio increases, the oscillator behaves as an
unusual type of rectifier. In the domain of the larger stiffness, the positive displacement
excursion is severely limited; the motion is largely confined to the domain of the lower
stiffness. The oscillator then spends a greater proportion of its time in this domain. As a
natural consequence of its dynamics, the bilinear stiffness oscillator therefore rectifies
displacement waveforms at a constant fraction of their range. This kind of behavior had to
be artificially introduced in the linear-filter/static-rectifier model considered earlier (Teich,
Keilson and Khanna, 1989). The subharmonic resonance is manifested as a large loop in
the phase-space projection of Figure 3(e).

The relative magnitudes of the first four velocity harmonics are shown as a function of
signal frequency in Figure 5. These illustrate that the velocity tuning observed at the
fundamental frequency is quite different from that observed at the second, third, and
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fourth harmonics. The frequencies of maximal response (best frequencies) of the second
and third harmonics lie below that of the fundamental. All of the harmonic tuning curves
exhibit rather subtle multiple sub-peaks. For this set of parameters, the low-frequency
slopes of the second and fourth harmonic follow that of the fundamental, whereas the
high-frequency slopes are steeper than that of the fundamental. The third harmonic curve
rises much more steeply and crosses the fourth-harmonic curve.

CONCLUSION

For the bilinear stiffness oscillator model, the number and magnitude of the harmonic
components in the displacement and velocity spectra are maximal at a signal frequency
below CF and decrease with increasing signal frequency. A sharply tuned subharmonic
resonance appears when the signal frequency is near, but not necessarily precisely at, a
multiple of the CF. The displacement waveforms exhibit substantial rectification at all
signal frequencies.
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