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CHAPTER 29

Models of Nonlinear Vibration. I. Oscillator with
Bilinear Resistance
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INTRODUCTION

The forced linear harmonic oscillator has three constant elements—mass, resistance, and
stiffness—in addition to a forcing function. The simplest one-dimensional oscillators that
exhibit tuning and are inherently nonlinear are the bilinear oscillators. In these oscillators,
the magnitude of one of these elements depends on the oscillator displacement, assuming
one of two possible values depending on the sign of the displacement with respect to an
arbitrary origin. The other two elements remain constant, independent of displacement.
All of these oscillators exhibit complex dynamical behavior. The bilinear stiffness and
bilinear mass oscillators are considered in companion papers (Teich, Keilson and Khanna,
1989; Keilson, Teich and Khanna, 1989). The bilinear resistance (bilinear damping) oscilla-
tor considered here exhibits a resistance with value r; when the displacement is positive
with respect to an arbitrary origin and a resistance r, when it is negative with respect to
that origin.

THEORY

The equation of motion of a bilinear resistance oscillator is
mx"(t)+r(x) X' (t)+kx(t) = A, cos(2nf t), 1)

where x, x’, and x” represent displacement, velocity, and acceleration, respectively. This
is an ordinary, nonlinear, nonautonomous differential equation since the resistance coeffi-
cient r(x) is a function of the displacement x and the time t appears as an explicit variable
in the forcing function. The forcing function has an amplitude A, and a frequency f;. For
the bilinear resistance oscillator, :

rx)=r; for x=0

r(x)=r, for x<0. (2

We generated computer solutions to this equation by using a fourth-order Runge-Kutta
algorithm (Scraton, 1984; Press et al., 1986), which provides a numerical method for
iterating through discrete time steps to deterriine the displacement as a function of time.
Our calculations were carried out on a Compaq Model 386 desktop personal computer. As
a result of the form of Eq. (2), the solution scales linearly with the amplitude of the forcing
function A, so that the normalized displacement and velocity, and their spectra, do not
change with the applied signal level. For the case of arbitrary r(x), the solution does not in
general scale linearly with A, so that the results will depend on the amplitude of the forcing
function. A smoother set of solutions is obtained if the resistance coefficient is a bilinear
function of the velocity x’ rather than the displacement x.
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The numerical solution to the differential equation was usually calculated with an
iteration step size of 40 microseconds and an array vector of 1024 bins, giving a total time
course of 0.041 seconds for the calculated waveform. With this sampling step size, the
Nyquist frequency is 12.5 kHz and the frequency resolution of the discrete Fourier
transform (DFT) is 24.41 Hz. These numbers were chosen to accord with the values used
in experimental data collection (Lund and Khanna, 1989). Chosen frequencies are convert-
ed to discrete, noninteger values such that an integer number of cycles fits into the array,
thus avoiding aliasing problems with the DFT. As a consequence, every frequency is a
multiple of the fundamental sampling frequency 24.41 Hz. These programs were also run
with a smaller step size of 25 microseconds. The Nyquist frequency is then 20 kHz and the
frequency resolution of the DFT is 39.06 Hz. The use of a smaller step size illustrates the
tradeoff between time and frequency resolution. Although the details of the waveforms at
high signal frequencies sometimes changed with step size in our calculations, the qualita-
tive nature of the results was independent of step size. The frequencies were always
chosen such that the subharmonic frequency (the component at 1/2 the signal frequency)
also fell into one of the discrete sampling bins of the computer operation and therefore
could be observed.

The integration was always started with the initial conditions x(0)=x'(0)=0 to avoid the
added complexity of studying the effects of perturbed initial conditions. No analysis of
sensitivity to initial conditions was attempted because the focus of the present work is on
the modeling of a biological system with a limited, but unknown, range of starting
displacements and velocities. Since our current interest is on steady-state behavior,
startup transients were removed by integrating for a number of steps before storing any
solutions in the array. All of the results illustrated in the figures were constructed with a
delay of 10,000 points, which is 0.400 seconds for a step size of 40 microseconds and 0.250
seconds for a 25 microsecond step size. The time course of the stored response was
sufficiently long so that convergence to a limiting motion could usually be observed.

Results are shown in the form of displacement waveforms and their Fourier spectra,
velocity waveforms and their spectra, phase-space projections, and plots of the velocity
harmonics as a function of signal frequency. The spectra were obtained by a fast-Fourier
transform (FFT) operation on the discrete array containing the sampled time waveform.

Both velocity and displacement are of interest in a complete dynamical study of a
nonlinear system and both are needed to fully describe the state of the system at any give
time. The displacement plotted against the velocity is the phase-space projection of the
motion. It provides a useful representation of the complete information (state) of the
dynamical system. By plotting points of displacement against velocity at successive times,
a curve in phase space is traced out in which time is eliminated as an explicit variable. For
example, the response of a linear oscillator gives rise to an elliptical phase-space projec-
tion. The phase-space projection is therefore useful in visualizing the deviations from an
ellipse, which represent deviations of the motion from sinusoidal behavior.

Nonlinear oscillators can exhibit deterministic chaos, in which case the phase-space
projection trace does not repeat itself and is never periodic. Its spectrum is then continu-
ous. Such motion is not necessarily ergodic; although never repeating it remains confined

~ to certain regions of the phase-space projection, a so-called strange attractor. A nonlinear
system requires at least 3 (or 1.5 depending on nomenclature) degrees of freedom before
there is a possibility for it to exhibit chaotic behavior. The bilinear oscillators have two
degrees of freedom (displacement and velocity); however because they are nonautono-
mous (a forced system in which time is an explicit variable in the equation of motion), they
have an extra degree of freedom that allows for the possibility of chaotic motion. Chaos
does not necessarily exist for all possible starting positions of the oscillator nor for all
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possible coefficient (parameter) values. For given coefficients, chaotic solutions can exist
for certain starting values while periodic solution limit cycles, or simple attracting points,
exist for others. Solutions are then said to coexist in the phase space. This topic is of
current interest in the field of nonlinear dynamical systems (Thompson and Stewart, 1986;
Berge, Pomeau and Christian, 1986).

RESULTS

Solutions for the sinusoidally forced bilinear resistance oscillator were obtained by using
the values A,=100 dynes, m=1X 10~% g, r;=0.001 dyne-sec/cm, r,=0.003 dyne-sec/cm, and
k=4 dyne/cm in Eq. (1). The solutions presented here are representative and not peculiar
to this choice of parameters. The best frequency (CF) of this oscillator is given approxi-
mately by (1/27) (k/m)"*=317 Hz.

In Figures 1-4, results are shown in the form of (a) displacement waveforms, (b)
displacement waveform Fourier spectra, (c) velocity waveforms, (d) velocity waveform
Fourier spectra, and (e) phase-space projections. Figure 1 shows data at f;=73 Hz, below
the CF; Figure 2 shows data at f;=317 Hz (at CF); Figures 3 and 4 show data above CF, at
£,=610 and 806 Hz, respectively. The finer time resolution of 25 microseconds was used
for these higher signal frequencies.

Examining the displacement waveform at the four frequencies indicates that the devi-
ation of the waveshape from sinusoidal is greatest below CF and decreases as the signal
frequency increases. Consistent with this, the number of harmonic components present in
the displacement spectra is greatest below CF and decreases as the signal frequency
increases. The maximal excursions of the displacement waveform, on the other hand,
appear to be constant below CF but begin to vary at CF. These low-frequency fluctuations
increase with increasing signal frequency. Correspondingly, the numbers and magnitudes
of the low-frequency spectral components of the displacement increase with increasing
signal frequency.

Below CF, the deviations of the velocity waveforms fiom sinusoidal behavior are even
more pronounced than those of the displacement waveforms. These deviations, which are
maximal near the peaks of the waveforms, decrease as the signal frequency increases. The
low-frequency fluctuations observed in the velocity waveform, on the other hand, are less
pronounced than those in the displacement waveform since the velocity is the derivative of
the displacement and therefore emphasizes high frequency spectral components. The
velocity spectra follow the same trend as the displacement spectra with signal frequency.

The phase-space projections evidence nonelliptical and asymmetric behavior at all
signal frequencies. Below CF, there are small deviations in the overlap of successive
cycles. These deviations increase with increasing signal frequency and are a manifestation
of the anharmonic components of the motion. The phase-space projection trace can be
described as moving from one limit-cycle ellipse for positive displacement [and r(x)=r4] to
another ellipse of different size for negative displacement [and r(x)=1,]. When the resist-
ance values differ only slightly, the two ellipses are nearly the same and the transitions are
relatively smooth. The velocity waveform exhibits a slight rectification at all frequencies.

The relative magnitudes of the first four velocity harmonics are shown as a function of
signal frequency in Figure 5. These illustrate that the velocity tuning observed at the
fundamental frequency is quite different from that observed at the second, third, and
fourth harmonics. No subharmonic response is present. The frequencies of maximal
response (best frequencies) of the second and third harmonics are lower than that of the
fundamental. For this set of parameters, the low- and high-frequency responses of these
curves have steeper slopes than that of the fundamental. The fourth harmonic displays a
double peak and crosses the third-harmonic curve.
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Fig. 1. Response of the bilinear resistance oscillator to a signal frequency f;=73 Hz (below CF). (a)
Time waveform of the displacement. The response is nonsinusoidal, particularly at its positive peaks.
" (b) Fourier spectrum of the displacement waveform. The large number of harmonics (9 are visible)
confirms the nonsinusoidal nature of the waveform. The ratio of the displacement magnitude at dc
(not shown) to the magnitude at the signal frequency is 0.001. (c) Time waveform of the velocity. The
waveform peaks deviate most from sinusoidal behavior. (d) Fourier spectrum of the velocity wave-

form. The velocity, being the derivative of the displacement, exhibits a greate

r number of high-fre-

quency components. () Phase-space projection. The trace is distinctly non-elliptical and asymmetric
for both positive and negative displacements and velocities.
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Fig. 2. Response of the bilinear resistance oscillator to a signal frequency f;=317 Hz (at CF). (a) Time
waveform of the displacement. The response appears to be quite sinusoidal. (b) Fourier spectrum of
the displacement waveform. Although five harmonics are readily seen, only the second harmonic is
comparable to the value seen at 73 Hz in Figure 1(b). Spectral components below 317 Hz are also
visible. The ratio of the displacement magnitude at dc to the magnitude at the signal frequency is 0.02.
(c) Time waveform of the velocity. Again, the waveform peaks deviate most from sinusoidal behavior.
(d) Fourier spectrum of the velocity waveform. The number of high-frequency harmonics is greater
than in the displacement spectrum. (e) Phase-space projection. The non-elliptical trace shows more
symmetry for positive and negative displacements than for positive and negative velocities. The trace
does not repeat itself on successive cycles; rather it slowly drifts back and forth as can be seen on the

computer screen as it is being formed.
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Fig. 3. Response of the bilinear resistance oscillator to a signal frequency f,;=610 Hz (above CF). (a)
Time waveform of the displacement. The response has a sinusoidal character but successive cycles of

* the waveform clearly exhibit different heights. (b) Fourier spectrum of the displacement waveform.
Only three harmonics are readily seen, but a strong spectral component appears below the signal
frequency at about 300 Hz, which is near the CF of the oscillator. The ratio of the displacement
magnitude at dc to the magnitude at the signal frequency is 0.07. (c) Time waveform of the velocity.
Again, the waveform peaks deviate most from sinusoidal behavior. (d) Fourier spectrum of the
velocity waveform. Five harmonics are visible. (¢) Phase-space projection. The trace shows more
pronounced amplitude deviations for positive displacements.
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Fig. 4. Response of the bilinear resistance oscillator to a signal frequency f;=806 Hz (well above CF).
(a) Time waveform of the displacement. Nonrepetitive jumps in the heights of successive cycles are
evident. (b) Fourier spectrum of the displacement waveform. Three harmonics are clearly visible as
well as spectral components below the signal frequency. The ratio of the displacement magnitude at
dc to the magnitude at the signal frequency is 0.10. (c) Time waveform of the velocity. Because the
velocity is the derivative of the displacement, it deemphasizes the low-frequency jumps that are so
clearly evident in the displacement waveform. (d) Fourier spectrum of the velocity waveform. Three
harmonics can be seen. Note the deemphasis of the low-frequency spectral components. (e) Phase-
space projection. The trace does not repeat itself and manifests slow fluctuations in all quadrants of
the phase-space.
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Fig. 5. Relative velocity-magnitude frequency-response curves for the bilinear resistance oscillator.
The curves represent the magnitude of the first four velocity harmonics, plotted as a function of the
applied signal frequency. The curves are coded as follows: fundamental (solid curve), 2nd harmonic
(dotted curved), 3rd harmonic (dashed curve), 4th harmonic (dash-dot curve).

CONCLUSION

For the bilinear resistance oscillator model, the number and magnitude of the harmonic
components in the displacement and velocity Fourier spectra are maximal at a signal
frequency somewhat below CF and decrease with increasing signal frequency. Strong
anharmonic components are present in the spectra at all signal frequencies.
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