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CHAPTER 28

Rectification Models in Cochlear Transduction

MALVIN C. TEICH,HSUZANNE E. KEILSON' and SHYAM M. KHANNA?
Columbia University, Departments of 'Applied Physics and *Otolaryngology, New York, USA

INTRODUCTION

A broad variety of experiments in the auditory system leave little doubt that a nonlinearity
is part of the signal processing apparatus in the auditory periphery. It is not known
precisely where the locus of this nonlinearity lies, nor whether it comprises a single
mechanism or multiple mechanisms. It has been customary to treat it as a static half-wave
rectifier of the acoustic signal (Rose, Brugge, Anderson and Hind, 1967; Greenwood,
1986). In many models, this memoryless element is appended to a linear oscillator (linear
filter) which provides the tuning for the system (Geisler and Greenberg, 1986; Geisler,
1987).

Although this simple approach provides agreement with some experimental data, there
are many instances where it is clearly inadequate. In this paper we extend this model by
considering clipping at an arbitrary level rather than at the half-way point.

STATIC RECTIFIER WITH ARBITRARY CLIPPING LEVEL

The static rectifier clips an input signal of unity amplitude at a predetermined level ¢ (0 <c
<1). The value c=0 represents the absence of clipping altogether so that the shape of the
input signal is unaltered. The value c=1, on the other hand, represents total clipping so
that nothing passes through. Intermediate values of ¢ represent partial rectification. The
-output signal is shifted upward or downward such that its flat portion sits at zero (see Fig.
1). Because this rectifier does not represent the response of a dynamical system, the
energy contained in the discarded portion of the waveform is lost.
Consider a unity-magnitude cosinusoidal input signal x(t)

x(t) = cos(2nfit) = cos(2nt/Ty), 1)

where f; the frequency of the input signal, T,=1/ is its period, and t is time. Passing this
signal through the static rectifier changes its waveform and therefore alters its spectrum.
Mathematically, the time waveform at the output of the rectifier x((t) may be obtained by
subtracting a constant level (that is dependent on ¢) from x(t) and then by multiplying the
remainder by a unity-amplitude periodic square wave of the same repetition frequency and
phase as the original signal, but with each square pulse having a full width t,. The output
waveform x(t) is then given by )

Xo(t) = cos2aft)—cos(mty/Ty), (2)

in the region —ty/2+jT<t+jT<ty/2+jT; elsewhere it is zero. The quantity j is an integer
representing successive cycles of the waveform. It is convenient to define a fractional time
width a=mty/Ts which is related to the clipping level ¢ by

c=(l+cosa)2. (3)
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Fig. 1. Fractionally clipped cosine signals and their Fourier components for f;=280 Hz. The time waveform for half-
wave clipping (c=1/2) is shown in (a) and its Fourier components are shown in (b). Analogus curves for a signal
clipped below the half-way level (c<1/2) are shown in (c) and (d); for a signal clipped above the half-way level
(¢>1/2) the results are shown in (e) and (f). Odd harmonics of the fundamental frequency, which are absent for
c¢=1/2, contribute as the clipping level deviates from 1/2 in either direction.

For half-wave rectification ty=T/2 whereupon a=7/2 and c=1/2. Two other special cases
are of interest: ty=0 corresponds to a=o0 and c=1, indicating that the entire signal is
clipped and nothing remains; t=T, corresponds to a=x and ¢=0 which represents no
rectification and a dc offset applied to the signal.

The Fourier components are readily calculated by expressing Eq. (2) as a Fourier series
in the harmonics of the signal frequency

Xo(t) = ay/T+(2/T) 2 a, cos(2znf, t)+b, sin(2znf, 1), 4)
n=1

where the a’s are Fourier coefficients and the b’s are zero because X((t) is an even

function. Using the standard methods of calculating Fourier coefficients, the magnitudes

of the spectral components at dc, at the fundamental, and at higher harmonics turn out to

be

ag= (2/m)(sina—acos a), (5a)
a; = (l/m)(a—sinacos a), . (5b)
a, = [sin(na)cos a—nsin a cos(na)](1—cos a)/[n(n*~1)(sina—acos a)], (5¢)

respectively. i~
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Three fractionally clipped cosine signals and their Fourier components are illustrated in
Fig. 1, for different clipping levels, when f,=280 Hz. The time waveform for half-wave
clipping (c=1/2) is shown in Fig. 1(a). As is well known, it has Fourier components only at
the fundamental frequency and at its even harmonics, as illustrated in Fig. 1(b). The time
waveform and its Fourier transform for a signal clipped below the half-way level (c<1/2)
are shown in Figs. 1(c) and 1(d), respectively. Clipping above the half-way level (¢c>1/2)
yields the results illustrated in Figs. 1(e) and 1(f). Odd harmonics of the fundamental
frequency, which were absent when c=1/2, begin to contribute as the clipping level
deviates from 1/2 in either direction. A dc component (at £;=0) is present in all cases; its
magnitude is normalized to unity in the Fourier magnitude plot.

The static rectifier alone exhibits no frequency selectivity. The shape of the output
waveform depends only on the parameter c and is independent of the signal frequency; its
magnitude simply scales linearly with the magnitude of the input signal. Thus, the ratio of
any pair of spectral component magnitudes depends on ¢ but is independent of f,. In
particular, the ratio of the fundamental component magnitude to the dc value depends only
on ¢ and not on the signal frequency.

LINEAR-FILTER TUNING CHARACTERISTICS

A tuning characteristic may be introduced into the model by introducing an independent
linear oscillator before the rectifier. The forced linear oscillator has an equation of motion

mx''(t)+rx' () +kx(t) = £(t), 6)

where the constants m, r, and k represent the oscillator mass, resistance, and stiffness,
respectively. The primes represent differentiation with respect to time, and f(t) is the
driving signal.

For a sinusoidal driving signal, the steady-state displacement x(t) is sinusoidal. In the
frequency domain, it can be characterized by a transfer function [Hx(fy)|, which represents
the ratio of the displacement amplitude at the signal frequency f; to the displacement
amplitude at the center or resonance frequency (CF) of the oscillator, fo~(k/m)"?. The
function [Hy(f;)|, which has a maximum value of unity, depends on f; in accordance with
the normalized displacement resonance curve (filter function)

[H(£)] = for/[m*(f5—£2)°+£5r71" = £/[Q(E3 — )+ £362] 2. o

This resonance curve is shown in Fig. 2(a) for a linear oscillator with f,=280 Hz. As is
evident from the figure, the displacement amplitude achievable in the linear oscillator is
maximal when the signal frequency is at its CF, and decreases for either lower or higher
signal frequencies. The linear oscillator behaves as a tuned circuit. Far below the reso-
nance frequency (f;<<fy), |H,(f,)| is independent of f, whereas for above the resonance
frequency (f;>>fy), |H,(f,)| falls off as f,"2. A measure of the sharpness of tuning in the
system is provided by the parameter Q=2xmfy/r; the larger the value of Q, the sharper the
tuning.

We may, alternatively, consider the normalized velocity resonance curve [H,(fy)|, which
is the ratio of the velocity amplitude at the signal frequency f; to the velocity amplitude at
CF. In this case )

[H(£)] = fr/[m>*(f§F— 22+ £2r2"2 = £, /[QAE2 — 122 +£2£2] 2, ®

which is plotted in Fig. 2(b). Maximal velocity is attained for signals applied at the CF. In
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Fig. 2. Tuning curves for the linear filter. The ratio of the displacement amplitude at the signal frequency f; to the
displacement amplitude at the center or resonance frequency (CF=280 Hz) of the oscillator, versus signal frequen-
cy, is shown in (a). The ratio of the velocity amplitude at the signal frequency f; to the velocity amplitude at the

center or resonance frequency (CF) of the oscillator, versus signal frequency, is shown in (b).

this case, however, [H,(f,)| increases linearly with the signal frequency f; well below the
resonance frequency and decreases linearly with f; well above f;.

Although we have used x to represent displacement, it is clear that it may stand for any
appropriate variable such as receptor current or cell potential.

CASCADE OF A LINEAR FILTER AND A STATIC RECTIFIER

We now consider a sinewave signal of frequency f; passing through the linear-filter/static-
rectifier combination. The sinewave at the output of the filter is fractionally clipped at
level ¢ (e.g., if c=1/2 the waveform is half-wave rectified, whatever its magnitude). The
first four Fourier components at the output of the cascade are shown in Figs. 3(a), 3(b),
and 3(c), for ¢=0.5, 0.3, and 0.7 respectively. These are the same values of ¢ used in Fig.
1. For the half-wave ‘rectification case shown in Fig. 3(a), the curves of successively
decreasing magnitude represent dc, fundamental, second harmonic, and fourth harmonic.
The third harmonic appears in Figs. 3(b) and 3(c) when c=+1/2.

The various harmonics follow each other precisely and peak at the CF. This is because
the filter first reduces the magnitude of the response in accord with its tuning curve, and
the rectifier then clips at a constant fraction of the reduced output range. Although this is
the most plausible way in which a linear-filter may be combined with a static rectifier, we
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Fig. 3. Tuning curves for the linear-filter/static-rectifier combination. The first four Fourier components at the
output of the cascade are shown in (a), (b), and (c), for ¢=0.5,0.3, and 0.7 respectively. These are the same values of
c used in Fig. 1. For the half-wave rectification case shown in (a), the curves of successively decreasing magnitude
represent dc (solid curve), fundamental (dotted curve), second harmonic (dashed curve), and fourth harmonic (dash-
three-dots curve). The third harmonic (dashed-dot curve) appears in (b) and (c) when c#1/2. The various harmonics

follow each other precisely and peak at the CF.

note that implementation of this scheme would require a rather complex processor that
ascertains the range of the waveform before clipping at a constant fraction of its peak
value.

DISCUSSION

The cascade of a linear filter and a static rectifying element (with arbitrary clipping level)
gives rise to tuning curves that precisely follow each other. These tuning curves differ
substantially from those obtained using simple dynamic nonlinear-oscillator models devel-
oped in the following papers (Keilson, Teich and Khanna, 1989a, b; Teich, Keilson and
Khanna, 1989) and from those observed in cellular structures in the organ of Corti (Teich,
Khanna and Keilson, 1989). This may be seen by comparing Fig. 3 with Figs. 5 and 10 in
the paper by Teich, Khanna and Keilson (1989). This is because the cochlear response to
an acoustic signal exhibits nonlinear dynamic characteristics.
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