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A computer simulation technique useful for generating superposed coherent and chaotic radiation of arbi-
trary spectral shape is described. Its advantages over other techniques include flexibility and ease of imple-
mentation, as well as the capability of incorporating spectral characteristics that cannot be generated by
other methods. We discuss the implementation of the technique and present results to demonstrate its va-
lidity. The technique can be used to obtain numerical solutions to photon statistics problems through com-
puter simulation. We furthermore argue that experiments involving photon statistics can be carried out
using a wideband source in place of an amplitude-stabilized source whenever the spectral characteristics of
the source are not important. Experimental results that corroborate the argument are presented.

1. Introduction

The photon statistics generated by thermal and
chaotic light sources have evoked substantial interest
ever since the well-known experiment by Hanbury
Brown and Twiss",2 demonstrated the occurrence of
photon correlation in light generated by natural sources.
With most natural sources, however, the time scale over
which photon correlation is observable is typically very
short and is often virtually negligible; indeed very sen-
sitive and carefully designed experiments are usually
required in order to observe such correlation. Corre-
spondingly, the coherence time of the associated elec-
tromagnetic field is very short for such sources, as the
coherence time provides a measure of the time scale over
which variations occur in the intensity of the field.3

To circumvent this difficulty, a number of researchers
have devised a variety of techniques to generate simu-
lated chaotic light with an increased coherence time in
the laboratory. Most of these techniques require a laser
as the primary source of light, since they make use of the
nartow bandwidth and high degree of coherence of laser
radiation. They generate chaotic light by simulating,
to different degrees, the physical characteristics of
natural sources of chaotic light. One such method 4 '5
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consists of scattering laser light from particles sus-
pended in a fluid, each particle acting as an independent
radiator whose frequency is the laser frequency,
Doppler-shifted by the Brownian motion of the particle.
In this configuration, the spectral bandwidth and shape
can be adjusted to some extent by manipulating the
statistical distribution of the size of the particles.
Another method consists of scattering laser light from
a moving rough surface, such as a rotating ground-glass
screen6 7 or a rotating roughened whee8; here the dif-
ferent surface elements act as independent radiators,
and the bandwidth of the light can be adjusted by
varying the speed of motion of the surface. Reference
9 provides a survey of the properties of scattered light
in general.

If only the intensity variations of chaotic light are of
interest (as is the case for the statistics of photon ar-
rivals), it is possible to use the method suggested by
Ruggieri et al. 10 to simulate a superposition of coherent
and chaotic radiation. This method uses two inde-
pendent generators of Gaussian random noise to sim-
ulate the in-phase and quadrature components of the
radiation field. The sum of the squares of these com-
ponents yields the simulated light intensity, which is
then used to modulate the output of a laser source. It
should be noted that this method is less physical than
the others cited above, since only the intensity (ampli-
tude) variations of a chaotic radiation field are repro-
duced (the phase of the field depends solely on the
characteristics of the primary laser source). Indeed, the
narrow bandwidth and high degree of coherence of laser
radiation are not necessary in this type of simulation,
since the laser is used only to generate photons with the
statistics of a Poisson point process whose rate can be

548 APPLIED OPTICS / Vol. 19, No. 4 / 15 February 1980



controlled by modulating the intensity of the radiation.
An arbitrary source yielding photons with the statistics
of a Poisson point process with constant rate can be used
in place of the laser to obtain the same simulated photon
statistics (doubly stochastic Poisson process3) as dis-
cussed in Sec. V. Furthermore, it should be noted that
with independent generators, only a limited class of
power spectra can be reproduced.

We show here how a small laboratory computer can
be used to generate the two random processes needed
for the particular type of simulation discussed in this
paper. The computer can then drive the modulator
directly through a digital-to-analog converter. The
advantages of using the computer include increased
flexibility since an arbitrary spectral shape can be easily
simulated. Increased accuracy and simplicity in the
experimental setup are other benefits since critical
adjustments, noise filtering, and matching of the two
independent noise generators are not necessary.

II. Polarized Chaotic Radiation
A source of chaotic radiation can be modeled as a

collection of a large number of independent radiators,
each emitting radiation at a certain frequency, with a
certain phase, a certain amplitude, and a certain plane
of polarization. If we assume that the phase is uni-
formly distributed between 0 and 2ir rad and restrict
ourselves to a well-defined state of polarization, the
contribution to the radiation field in that state of po-
larization from all the radiators emitting at a given an-
gular frequency Wk may be expressed as

Ak(t) = ak coszkt + bk sinWkt, (1)

where ah and bk are random variables. If the number
of independent radiators emitting at wk is large, ak and
bk (by virtue of the central limit theorem and the uni-
form distribution of phase) are independent identically
distributed zero-mean Gaussian random variables
whose variance is proportional to the number of radia-
tors at that frequency.

If we assume that radiators exist only for discrete
frequencies, the over-all radiation field may be ex-
pressed as

A(t) = L ak cosWkt + bk sinWkt, (2)
k=-w

where

(Sk = OO + kAw. (3)

In the limit where Awo - 0 this is equivalent to consid-
ering a continuum of frequencies. As indicated above,
the ak and bk coefficients are independent zero-mean
Gaussian random variables whose variance is a function
Of Cvk; i.e.,

E[akbl] = for any kJ

E[akal] = E[bkblf = 2 f k I (4)
lA'Cr2(Wk) fork = 1.

Here 2(W) is a continuous function corresponding to
the power spectrum of the radiation. By substituting
Eq. (3) into Eq. (2) we obtain

A(t) = (ak coskAwt + bk sinkAcot)J coswot
k=- 

+ [kE (bk coskAwt - ak sinkAwt) sinwot
k=-

or

A(t) = x (t) coswot + y(t) sinwot,

where

x(t) = E (ak coskAcot + b sinkAct)
k=- c

(t = (bk cosk/cot - a sinksco)
k=-X

(5)

(6)

(7)

are two jointly Gaussian random processes corre-
sponding to the in-phase and quadrature components
of the radiation field. The two random processes have
the same marginal statistics.

Their autocorrelation can be easily evaluated with the
help of Eq. (4):

Ryy(r) R..(T) = E[x(t)x(t + )]

=i {E[a^] cos[kAwtl cos[kAw(t + T)

+ E[bl] sin[kAwt] sin[kAw(t + T)]}

(8)= A 2 (WO + kAw) coskAwor.
k=--

In the limit as -o 0, Eq. (8) becomes

Ryy(T) = Rxx(T) =SJ a2(Co + w) coswTdw. (

Using similar algebraic manipulations, the cross-cor-
relation between the two random processes may be
written as

Ry(r) = E[x(t + r)y(t)] = a2(W0 + w) sinw-rdw. (10)

We see that the two random processes are independent
if the function o2 (W) is symmetric around wo (since the
sine function is antisymmetric), but in general, for an
arbitrary nonsymmetric power spectrum, the two
components will not be independent.

For narrowband radiation, if o denotes the center
frequency, x (t) and y (t) are slowly varying with respect
to wo, and the intensity of the radiation will be given
by

I(t) = x 2(t) + y 2(t). (11)

Using standard expressions for the moments of jointly
Gaussian random variables, we can evaluate the auto-
correlation of I(t):

RHj(T) = E[(x2(t) + y 2(t))(x 2(t + T) + y 2(t + ))]

= 4[Rx2(0) + RX (R) + ,(T)]. (12)

From the foregoing discussion, it is clear that in order
to simulate the intensity variations of chaotic light of
a given power spectrum a

2(),it is sufficient to generate
two Gaussian random processes with the appropriate
autocorrelation and cross-correlation prescribed by Eqs.
(9) and (10). The two are then individually squared and
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added, and the result is used to modulate the output of
a suitable light source (see Sec. V). The statistics of
photon arrivals from such a source will be indistin-
guishable from chaotic light with the desired spec-
trum.

The basic notion for this type of simulation was first
suggested by Lachs et al., 0,"' who used it with a laser
source to simulate a superposition of chaotic and co-
herent radiation; the chaotic component possessed a
Lorentzian spectrum and was superposed on a single
centrally located coherent mode. The prescribed su-
perposed power spectrum has the form

oj(w) = ( (t) {A _ + B(w -wo), (13)
(co - WO)2 + F2

where A and B are constants, 2r is the half-power ra-
dian bandwidth, and is the Dirac delta function.
Since this spectrum is symmetric about wo, Eq. (10)
provides that x(t) and y(t) are statistically independent.
Accordingly, it was possible to simulate this light with
two independent laboratory noise generators. The
experimental results obtained by Ruggieri et al. 0 are
in very good agreement with the theory.

In general, for an arbitrary (nonsymmetric) power
spectrum, it will not be possible to use two independent
sources to generate x (t) and y (t). Computer simulation
provides a solution to this problem by generating x (t)
and y(t) with the appropriate joint statistics for any
specified power spectrum.

Ill. Computer Simulation

The well-known fast Fourier transform (FFT) algo-
rithm'2"13 is a fast algorithm for the evaluation of the
discrete Fourier transform (DFT). If we consider a
sequence of N (where N is even) complex numbers Zk,
k = - N/2,.. ., N/2 - 1, the DFT of this sequence will
be another sequence of N complex numbers Al defined
as

N/2-1
Al = E ZkWlk, (14)

k=-N/2

where W = exp(27ri/N). Equivalently,

Al = N21 Zk (cos2 + i sinkr1) (15)
k=-N/2 N N

from which we obtain
N12-1 2ir 2ir

ImA1 = (ImZ cosk -1 + ReZh sink -1)
k=-N/2 N N
N12-1 2ir 2ir (16)

ReAl = Z (ReZk cosk - I - ImZk sink -I) 
k=-N/2 N N

If we consider band-limited light, the infinite sum-
mations in Eq. (7) can be replaced by summations over
a finite number N of frequency terms, so that

N/2-I
x(t) = E (ak coskAwt + b sinkAwt)

k=-N/2 (17)

N12-1Iy(t) = EN (bk coskAwt - ak sinkAwt).
k= -N/2

It is immediately evident that Eqs. (16) and (17) are
equivalent when the following substitutions are
made:

ImAj = x(lAt) IZk = ak A = 2-/NAt (18)
ReA = y(lAt) ReZ = bk t = lAt.

Stated differently, if the real and imaginary parts of the
Zk 's are independent Gaussian random variables whose
variance is an appropriate function of k [as given by Eq.
(4)], the real and imaginary parts of the Al's will corre-
spond to Nyquist samples of x(t) and y(t) (taken at
regular intervals). If we denote the interval between
samples as At, the frequency step appearing in Eq. (17)
will be Acw = 2w/NAt. For implementation, the sim-
ulation program makes use of a generator of Gaussian
random numbers with zero mean and given variance,
which it calls 2N times to generate 2N random values
for the real and imaginary parts of the Zh's with vari-
ance AWr2(Wo + kAw) as given by Eq. (4). The simu-
lation program then uses the FFT algorithm to evaluate
the DFT of the Zk sequence, thus obtaining the Al se-
quence, whose real and imaginary parts will be Nyquist
samples of the simulated x(t) and y(t). Therefore the
Nyquist samples of the simulated light intensity are
given by the sequence of absolute values squared
AI 2.

The simulation program is thus able to evaluate the
simulated intensity and output the Nyquist samples
through a digital-to-analog converter channel. The
voltage output would be fed into a low-pass filter to
obtain the correct waveform to modulate the light
source.'4 In practice it is simpler to choose At rather
smaller than the minimum necessary (the minimum is
fmax/2, where fmax is the largest frequency to be repro-
duced, as prescribed by the sampling theorem' 4 ), so that
instead of a low-pass filter a simple one-stage RC filter
will be sufficient, or even no filter at all, depending on
how small At is. In the case of an infinite spectrum,
such as the Lorentzian spectrum, choosing a small At
means truncating the spectrum very conservatively,
which also has the advantage of minimizing errors due
to spectral truncation.

To simulate coherent modes superposed on the cha-
otic radiation it is sufficient to add a fixed (complex)
constant with the appropriate value to the corre-
sponding frequency term before evaluating the FFT. A
related technique has been described in detail by
Ruggieri et al. 10

IV. Implementation

The simulation method described was implemented
on a DEC PDP 11/03 laboratory computer in. FORTRAN.

The generator of Gaussian random numbers was taken
from DEC's Scientific Subroutine Package; the quality
of the random numbers generated by it was tested by
evaluating the histogram of the distribution and the
autocorrelation of the sequence of numbers generated,
and was found to be quite satisfactory. The FFT al-
gorithm was provided by subroutine FFT2 from the
International Mathematical and Statistical Libraries
(IMSL). This subroutine accepts as input a complex
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Fig. 1. Autocorrelation coefficients of the in-phase and quadrature
components of computer-simulated Gaussian-Lorentzian radiation
as a function of Nyquist sample separation. As expected, the two
curves are very similar and appear as virtually straight lines on a

log-linear plot, corresponding to an exponential falloff.

1-D array whose size N is a power of 2 and returns its
DFT in the same array space. The N elements of the
array are numbered from 1 to N, and the correspon-
dence with the sequence of Zk's appearing in Eq. (14)
is as follows:

ZJIZ(N+k+1) for-N/2 k<0 (19)
Z(k + 1) for 0 < k < N2,

where Z(J) is the Jth element of the input array.
In order to simulate Gaussian-Lorentzian radiation,

the elements of the input array were filled with zero-
mean Gaussian random numbers with variance

E[(ReZk)2 ] = E[(ImZk) 2] = a
2
k = AI[1 + (Bk) 2 ], (20)

where A and B are constants. With the substitutions
given in Eqs. (3) and (18) it can be seen to correspond
to a Lorentzian spectrum with half-power radian
bandwidth 21 = 4ir/BNAt, when the rate of the Ny-
quist samples is 1/At. After evaluation of the FFT, the
results were tested by direct evaluation of the autocor-
relation of the sequence of the real parts and of the
imaginary parts of the output array, and of the cross-
correlation between the two. For a Lorentzian spec-
trum we expect the two autocorrelations to be equal and
to fall off exponentially, while the cross-correlation
should be virtually zero, since the spectrum is sym-
metric [see Eq. (10)].

The simulation and test program was run 100 times
with the parameters N = 212 = 4096 and r = (/1oo).
(1/At). Since the truncation frequency is given by
(N/2)Aw = ir(1/At), we see that errors due to spectral
truncation will be negligible. Furthermore the differ-
ence between consecutive samples will be very small, so
that it will be possible to produce the simulated wave-
form by putting out the samples through a digital-to-
analog converter at a regular rate, without any special
filtering. This corresponds to trading off computer

execution time for simplicity of implementation, which
can be advantageous, since the simulation program does
not have to be run in real time but can be run in ad-
vance, its output being stored on a tape or similar me-
dium for use later in real time. The value of Awo =
27r/NAt = (7r/2048)(1/At) is considerably less than the
value of F, so that the shape of the Lorentzian spectrum
can be accurately reproduced with discrete terms.

The average results after 100 executions of the pro-
gram are presented in Figs. 1 and 2. Figure 1 shows the
autocorrelation coefficient for the simulated x (t) and
y(t) as a function of sample separation. The 100 dis-
crete points have been connected by straight-line seg-
ments. The two curves can be seen to be very close to
one another and virtually straight lines in a log-linear
plot, corresponding to the expected exponential falloff.
Figure 2 shows the cross-correlation coefficient as a
function of sample separation. Its absolute value can
be seen to be always much less than unity, indicating
that the two random processes are virtually uncorre-
lated.

V. Poisson Statistics Using a Wideband Source

It is well known that, for an arbitrary light source, the
number of photons observed during a time interval of
fixed duration is a random variable whose distribution
is, in general, different from Poisson. This distribution
effectively reduces to Poisson under a broad range of
conditions, however, so that the observation of photo-
counting distributions different from Poisson usually
requires carefully designed experiments." 2 These ex-
periments often make use of an artificial light source
specifically designed to exhibit such non-Poisson be-
havior, such as those discussed in the introduction.3-9

It has been shown by Mandel'5 that the photo-
counting distribution for a chaotic source reduces to
Poisson when the degeneracy parameter of the radiation
is much less than unity. Furthermore, Troup and
Lyons16 have demonstrated that under certain condi-
tions the photocounting distribution obtained by

*0.1

z
w

0LL

a:0
U)

U)

n

0

-0.1

-2n

-100 0
SAMPLE SEPARATION

+100 +200

Fig. 2. Cross-correlation coefficient between the in-phase and
quadrature components of computer-simulated Gaussian-Lorentzian
radiation as a function of Nyquist sample separation. It can be seen
that the absolute value of the coefficient is always considerably less
than unity, indicating that the two components are virtually

uncorrelated.
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modulating a narrowband amplitude-stabilized source
can also be obtained by modulating a wideband
source.

We shall show that the similarity of the photo-
counting distributions obtained from a wideband source
and from an amplitude-stabilized source is a conse-
quence of a more fundamental similarity in the statistics
of the underlying random point processes corre-
sponding to photon registrations from the two types of
source. We can usefully exploit this similarity by using
a wideband source in place of an amplitude-stabilized
source, not only in experiments where the photo-
counting distributions are important, but also in ex-
periments where the details of the underlying point
process are relevant.

The degeneracy parameter of an electromagnetic field
is defined as the average number of photons per co-
herence volume. 3 In the case of a (1-D) doubly sto-
chastic Poisson point process, the degeneracy parameter
is defined as the average number of events per coher-
ence time. When a quantum photodetector is exposed
to optical radiation, quantum absorptions occur, in
general, as the events of a doubly stochastic Poisson
process whose coherence time corresponds to the inverse
of the bandwidth of the radiation.3 Because the co-
herence time provides a measure of the memory of the
process, there will be correlation between events oc-
curring closer to one another than the coherence time.
Events occurring further apart will be less correlated,
and events occurring several coherence times apart will
be virtually uncorrelated.17 As a consequence, if the
average time interval between photons is much larger
than the coherence time, it is seldom that photons occur
closely enough to one another to be significantly cor-
related. Under these conditions, the doubly stochastic
Poisson process will be very similar to a simple Poisson
process with constant rate; indeed, in the limit of van-
ishing degeneracy parameter they will be identical.

The light from a typical light-emitting diode (LED),
for example, has a coherence time of the order of 10-14
sec. Thus, if a photomultiplier exposed to light from
an LED generates, on the average, 109 photon regis-
trations (pulses)/sec, the average interval between
consecutive pulses will be 10-9 sec. This is much larger
than the coherence time. Under these conditions, for
most practical purposes, the photomultiplier pulses are
indistinguishable from a Poisson point process whose
rate is proportional to the average intensity of the light.
Since photons from a narrowband amplitude-stabilized
source (ideal single-mode laser) also form a Poisson
point process whose rate is proportional to the intensity
of the light, the laser can be replaced by an LED (or, in
general, by a wideband source). This is true for appli-
cations where the statistical behavior is of interest and
where the spectral characteristics are unimportant, such
as the simulation method discussed in the previous
sections. It is sufficient to modulate the average in-
tensity of the wideband source (e.g., by varying the
current through the LED).

We note, furthermore, that for a typical multimode
He-Ne laser, intensity fluctuations over a time scale of

the order of 1 nsec arise from mode beating. It is thus
possible to generate a Poisson point process using such
a source if the light is sufficiently attenuated so that the
average interval between photons is much larger than
1 nsec. If these conditions are adhered to, a multimode
laser can be used in place of a single-mode laser to
generate pseudothermal light through scattering as
mentioned in the Introduction. An LED would not be
suited to this kind of application, however, because its
wider bandwidth would destroy the interference effects
that are the basis for these methods.

We performed an experiment to demonstrate the
validity of the discussion presented above. The light
source was an inexpensive general-purpose gallium-
arsenide-phosphide LED whose emission band was
centered about 660 nm. The intensity of the source was
maintained constant by means of a feedback system
employing a Centronic OSD-50-0 silicon photodetector
and an RCA CA3140 operational amplifier. The ra-
diation was attenuated by a filter with neutral density
5 and detected by an RCA type-8575 photomultiplier
tube. The output pulses from the anode of the photo-
multiplier tube were converted to square TTL pulses
and fed into a PDP 11/03 computer. The computer was
capable of recording the time of arrival of the pulses
with a resolution of 1 ,gsec.

The times of arrival, as recorded by the computer,
were processed to test whether their statistical behavior
was in accord with a Poisson point process with constant
rate. Figures 3 and 4 show the results of the two sta-
tistical tests performed. The experimental histogram
of the distribution of the time interval between con-
secutive pulses is presented in Fig. 3. For a Poisson
point process with constant rate, this distribution
should be exponential; the solid straight line in Fig. 3
corresponds to the fitted exponential distribution for
the observed mean (2.25 msec). The experimental
histogram is clearly in excellent agreement with the
fitted distribution.' 8 In addition, for a Poisson point
process with constant rate, the time interval between
two consecutive pulses is a random variable that is in-
dependent of the time interval between any other set
of consecutive pulses (this is a renewal process). Ac-
cordingly, the second test consisted of evaluating the
correlation coefficient between interpulse intervals
separated by a fixed number of intervening intervals.
The results are summarized in Fig. 4. The correlation
coefficient can take on values in the range from -1 to
+1. It is clear that, as expected, the experimental val-
ues observed are virtually indistinguishable from zero,
as none is larger than 0.01 in absolute value. In Fig. 4,
the abscissa represents the separation between the in-
tervals: the first data point corresponds to consecutive
intervals, whereas the last data point corresponds to
intervals separated by eighteen intervening intervals.
The data in both figures were obtained from the ob-
servation of 32,769 photomultiplier pulses.

We also performed the same experiment with sun-
light obtaining similar results.
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Fig. 3. Statistics of photons from a light-emitting diode (LED).
Experimental histogram and theoretical distribution of the time in-
terval between consecutive detected photons. The solid straight line
represents the theoretical (exponential) probability density function
for a Poisson point process with constant rate. The mean time in-

terval is 2.25 msec.

VI. Conclusion

The technique presented here can be used on a small
laboratory computer, together with a laser and a laser
modulator, to simulate a superposition of coherent and
chaotic radiation with arbitrary spectral shape. Fur-
thermore, as indicated in Sec. V, the laser and laser
modulator can usually be replaced by a wideband source
such as a light-emitting diode, thus making the whole
system extremely simple to set up and operate.

The same technique can be used in general for the
computer generation of a Gaussian random process with
a given spectrum, and in particular, it can be used to
simulate lognormal intensity statistics, such as those
encountered in the propagation of laser light through
the turbulent atmosphere.

The most useful application of this technique is
probably in conjunction with another program that
simulates a Poisson point process with a given rate, to
generate computer-simulated photocounting statistics
under arbitrary conditions. This will be very useful for
the study of systems that are not amenable to analytic
solutions, such as photocounting with different types
of dead time in conjunction with chaotic light of a given
spectrum.'9
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the National Science Foundation.

Fig. 4. Statistics of photons from a light-emitting diode (LED).
Correlation between interphoton intervals for different interval
separations. The first data point corresponds to consecutive inter-
vals, whereas the last data point corresponds to intervals separated
by eighteen intervening intervals. Observe that no correlation point

exhibits an absolute value larger than 0.01.
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