
H'(fx ,fy) = B IB25 (/f)

+ G1(f'./2l/ 2)Go(-f'/2f/2). (f' ) (8)

The correlation function between g, and g2 is generally rep-
resented in the frequency plane by G1(f)G 2*(f), where G2*(f)
is the complex conjugate of G2([). In the case of a real func-
tion g2, G2*(f) = G2 (-f). Thus, considering Eq. (8), the axis
x now contains the correlation between g, and g2, since the
frequency axis for G2 has been reversed.

Values of 0 other than J450 provide the capability of scaling
the arguments of g, and g2 as well as producing either the
correlation or convolution functions. The bias term BIB 2 can
be eliminated by a central stop in Pf. However, since most
optical detectors are sensitive to light intensity rather than
amplitude, it may be desirable to include a portion of the bias
term to avoid ambiguous results.

Figure 2 shows the application of this method to cross cor-
relation of instantaneous canine blood-pressure and blood-
flow-rate signals. A partial blockage or stenosis of the blood
vessel was used to create the abnormal flow pattern used in
Fig. 2(b). Not surprisingly, the correlation between normal
pressure and flow wave forms [Fig. 2(a)] is greater than that
between normal pressure and stenotic flow [Fig. 2(b)], even
though the peak-to-peak amplitudes of the flow wave forms
were unchanged by the stenosis.

This work was supported by the Engineering Research In-
stitute, Iowa State University, Ames, Iowa.
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In a recent Letter in this journal, Tschunkol plotted the
MTF curves for an apodized optical system. He considered
two typical amplitude filter functions and stated that, gen-
erally, MTF is not used in the treatment of apodization.

The purpose of this Letter is to point out that there is ex-
tensive literature dealing with the MTF in the presence of
apodization. We refer below to some typical papers2 -7 di-
rectly relevant to Ref. 1. Some of these papers have already
been quoted extensively in the existing literature.8' 3
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In the absence of dead time, the probability po(n I W,) of
recording exactly n counts in a time interval T from a detector
illuminated by a source of radiation with constant intensity
is

po(n I Ws) = exp(-W.,).
n!

Here W, = (X + Xn)T, where X is the average number of
counts per unit time due to the signal and X, is the average
number of counts per unit time due to noise (with the as-
sumption that noise presents itself as an independent Poisson
point process with constant rate Xn). This is the well-known
Poisson distribution with mean W,. In the absence of ra-
diation the probability of recording n noise counts is again
given by Eq. (1) with W, replaced by Wn = XnT. If such a
counter is used as a threshold detector, we seek the probability
that the number of counts registered exceeds a certain
threshold value nt both in the presence and in the absence of
radiation, and we denote that quantity by Po(nt, W) where W
represents either W, or W,. Since the events corresponding
to po(n I W) and po(n 2 l W) are mutually exclusive whenever
nj 5 n2, Po(nt, W) will be given by the expression

Wn

Po(nt,W) = E po(nI W) = : -exp(-W)
n=nt+l n=nt+l n!

nt Wn

=, - exp(- W).
n=o n!

(2)

In the presence of a fixed nonparalyzable dead time , we can
make use of the results obtained by Ricciardi and Esposito'
and other workers,2- 7 who have provided an expression for the
probability of registering exactly n counts in a time interval
T, under the assumption that the counts occur as a Poisson
point process with constant rate

(1)
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p(njW,.T/T) =

n n-1
. po(kW[2 -(n-T)-E p(kWl - (n - 1)T]), n < T/r

k=O k=O
n-1

1- _E po(k W[ - (n -1)-r1T]), TI-r S n < TT + 1
k=O

0, n 'T/ +l .

Again, the probability that the number of counts exceeds
the threshold value nt is

P(ntWr/T) = p(njW,r/T)
nfn+l

nt

= 1- p(nI W,r/T). (4)
n=O

Substituting Eq. (3) into Eq. (4) and exchanging the order of
summation, we obtain

I_ t [W(1 - ntT/T)Ik expt-W(1-nT/T) (5)
P(nt,W,-r/T) = 1 expWl _ntT____5

k=O k.

for nt < TT.
We observe that this expression for P(nt, W, T/T) is identical

to the expression for Po(nt,W(1 - ntr/T)) provided in Eq. (2).
Thus, for a counter with nonparalyzable dead time T and a
sampling time interval T, the probability of exceeding a cer-
tain threshold number of counts nt is the same as for a counter
with no dead time that registers counts at the same rate, but
during a sampling time (T - ntr).

This fact can be established directly, without making use
of Eq. (3), through the following intuitive argument. Imagine
that a Poisson point process generator is connected to the
inputs of two counters in parallel, designated A and B.
Counter A exhibits a nonparalyzable dead time T after the
detection of each and every pulse (i.e., it is unable to detect
additional incoming pulses during a time interval of duration
T after the registration of a pulse). Counter B is constructed
in such a way that it behaves precisely like counter A for the
first nt pulses, and thereafter behaves like a counter with no
dead time.

It is clear that with such a system the probability of ex-
ceeding nt counts is identical for both counters, since both
reach nt counts precisely at the same time. However, for k
> nt the probability that counter B records exactly k counts
can be calculated by observing that it has been dead (unable
to detect pulses) for an over-all length of time ntT, while
during the remaining time interval T - nt T it has detected k
pulses. Since the pulses are Poisson distributed, each pulse
is independent of the others, and it is irrelevant in what
manner the time interval T - nt T is chopped (as long as there
is no correlation between where each dead-time interval is
placed and the pulses that are possibly killed by it). There-
fore, if we denote the rate of the Poisson process as X, the
probability of recording exactly k pulses in that length of time
is given by Eq. (1) with W, replaced by X(T - ntT); i.e.,

pB(k XT,r/T) po(k I X(T - nt-T))

=[T(1-ntTIT)] expj-XT(1 - nt-r/T)j

for k > nt. (6)

Note that this argument is valid only for k > nt and not for
k = nt; in fact, only in the former case are we certain that the
counter is dead during a length of time precisely equal to nt r.
When k is equal to nt, the dead-time interval following the last
pulse might go beyond the end of the sampling time T. In
conclusion, the probability that counter B registers more than
nt counts is

PB(nt,XT,T/T)= X1 pB(kIXT,T/T)
k=nt+l 

i [T(1 - ntT/T)Ik expl-XT(1 - ntT/T)l
k=nt+l k!

'nt [XT(1 - ntT/T)Ik eXp-XT(1-

k=O k

(7)
which is identical to Eq. (5). As we remarked previously, this
is the same as the probability that counter A exceeds nt
counts. Equation (7) can now be used to obtain Eq. (3) by
observing that

p(njW,r/T) =P(n - 1,Wr/T) -P(n,W,r/T). (8)

This argument therefore provides an alternate route to Eq.
(3), for n < TIT.

The foregoing discussion demonstrates the equivalence of
detectors with and without nonparalyzable dead time in the
presence of constant-intensity radiation and additive Poisson
noise. Equation (5) shows that the performance of the de-
tector with dead time will be the same as that of a similar de-
tector without dead time used under exactly the same condi-
tions, with the same threshold number of counts and sampling
time, and the same radiation intensity, but with a quantum
efficiency reduced by the factor (1-nt-r/T). This result is
valid in general whenever a detector with dead time is used
in conjunction with a Poisson point process (e.g., neural
counting" 7 and nuclear counting2 7 ).

This work was supported by the Joint Services Electronics
Program (U.S. Army, U.S. Navy, and U.S. Air Force) under
contract DAAG29-79-C-0079.

References
1. L. M. Ricciardi and F. Esposito, Kybernetik 3,148 (1966).
2. J. W. Muller, Nucl. Instrum. Methods 117, 401 (1974).
3. G. Bedard, Proc. Phys. Soc. 90, 131 (1967).
4. B. I. Cantor and M. C. Teich, J. Opt. Soc. Am. 65, 786 (1975).
5. G. Vannucci and M. C. Teich, Opt. Commun. 25, 267 (1978).
6. M. C. Teich and G. Vannucci, J. Opt. Soc. Am. 68, 1338 (1978).
7. M. C. Teich and B. I. Cantor, IEEE J. Quantum Electron. QE-14,

993 (1978).

1 December 1979 / Vol. 18, No. 23 APPLIED OPTICS 3887

(3)

For information regarding the length of a
Letter, number of illustrations and tables,
and general preparation of manuscript,
see Information for Contributors on the

eighth page of any issue.


