
Single-threshold detection of a random signal in noise with
multiple independent observations. 1: Discrete case
with application to optical communications
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A single-threshold processor is derived for a wide class of classical binary decision problems involving the
likelihood-ratio detection of a signal embedded in noise. The class of problems we consider encompasses
the case of multiple independent (but not necessarily identically distributed) observations of a nonnegative
(nonpositive) signal, embedded in additive, independent, and noninterfering noise, where the range of the
signal and noise is discrete. We show that a comparison of the sum of the observations with a unique thresh-
old comprises optimum processing, if a weak condition on the noise is satisfied, independent of the signal.
Examples of noise densities that satisfy and violate our condition are presented. The results are applied
to a generalized photocounting optical communication system, and it is shown that most components of the
system can be incorporated into our model. The continuous case is treated elsewhere [IEEE Trans. Inf.
Theory IT-25, (March, 1979)].

I. Introduction

The likelihood-ratio detection of a signal embedded
in noise constitutes an important class of classical binary
decision problems that has found widespread applica-
bility in the synthesis and analysis of many types of
systems.' These applications range from optical
communications2-1 9 and radar systems18 21 to sensory
detection in visuall822- 25 and auditoryl8 2627 psycho-
physics. For complex signal and noise statistics, it is
sometimes difficult or impossible to express the likeli-
hood ratio in closed form, however. Even for simple
signal and noise statistics, direct implementation of the
likelihood ratio as an optimum processor may be rather
difficult. It may be possible to reduce the likelihood
ratio to a simpler, but equivalent processor by using
various ad hoc geometric arguments or lengthy algebraic
manipulations.

It is the purpose of this paper to derive a remarkably
simple processor that is optimum for a broad range of
classical binary decision problems involving the likeli-
hood-ratio detection of a signal embedded in noise.
The class of problems we consider encompasses the case
of N independent (but not necessarily identically dis-
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tributed) observations of a nonnegative (or nonpositive)
signal random variable embedded in an additive, in-
dependent, and noninterfering noise random variable,
where the range of the signal and noise is discrete. We
show that a comparison of the sum of the N observa-
tions with a unique threshold comprises optimum
processing, provided that the logarithm of the noise
probability density does not contain a point of inflec-
tion. This condition on the noise probability density
is not necessary, but is sufficient, to imply our single-
threshold processor and does not depend on the signal
probability density. The results are applicable to a
spatial array of detectors exposed to a temporal se-
quence of observations. We show by example that in
many cases it is not difficult to test the log of the noise
density for a point of inflection analytically. In more
difficult cases, a graphical representation of the noise
density with a logarithmic ordinate scale may be useful
in revealing a point of inflection. We apply the results
to a generalized photocounting optical communication
system and show that background noise, dark noise,
modulation, avalanche multiplication, and channel
distortions are easily included in our model.

We have previously 18 derived a limited version of the
results presented here for a single observation (N = 1)
of a nonnegative signal embedded in noise, when the
logarithm of the noise density is concave downward.
The proof was based on the existence of a nonunique
continuous extension of the noise density, so that im-
plementation of the result depended on a proper choice
of this continuous extension. In the present paper, no
such ambiguity exists. We have eliminated the need
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for a continuous extension by applying a finite-differ-
ence condition directly to the discrete noise density.
The continuous case of N observations is considered
elsewhere2 8 since it differs substantially from the dis-
crete case presented here.

We consider the following general classical binary
detection problem. Each of two source outputs corre-
sponds to a hypothesis, Ho or H1 . To decide which
hypothesis is true, based on the Bayes or Neyman-
Pearson criterion, optimum processing of the observa-
tion vector n is the well known likelihood-ratio test'

HI
A(n) p(nlH)A ,

p(nlHo) <
IHo

(1)

where A(n) represents the likelihood ratio, p(nIHi) is
the probability density of n given that Hi is true, and
X is a constant dependent on the choice of decision cri-
terion. The observation vector n = (n,, . . ,nN) con-
sists of N independent observations, which may arise
from a spatial array of N8 detectors sampled during a
sequence of Nt time intervals, in which case N =
NNt.

In the simplest situation N = N8 = Nt = 1, so that a
single detector samples a single observation n1 . In this
case A(nl) may be graphically represented by a curve
in a 2-D Cartesian coordinate system. In Sec. II we
consider a condition on the noise density which implies
that A(n) is monotonic with respect to nl. The mo-
notonicity of A(n,) implies, in turn, that Eq. (1) is
equivalent to the single-threshold processor

H1

Ho X',
Ho

(2)

with threshold X'. Equation (2) completely specifies
the optimum processing of n1 .

For the case of multiple observations (N > 1), we
visualize A(n) as an N-dimensional surface in N + 1
space. An N-dimensional hyperplane, orthogonal to
the A axis at X, cuts through the surface A(n). This is
illustrated in Fig. 1 for N = 2. Given an observation ii,

the test given by Eq. (1) is equivalent to determining
whether A(n) is located above or below the hyperplane:
if it is located above, H1 is chosen; if it is located below,
Ho is chosen. The projections of the intersections of the
hyperplane and A(n) partition the remaining N coor-
dinates into N-dimensional decision regions R1 and R0 ,
corresponding to the regions where A(n) is above the
hyperplane (H, is chosen) and below the hyperplane
(Ho is chosen), respectively. The decision is then based
upon the region in which the tip of the observation
vector A falls. In Fig. 1, Ro is represented by the
cross-hatched region and R, by the unshaded region. If
there are multiple intersections of the surface and the
hyperplane, as in Fig. 1, multiple boundaries divide the
decision regions Ro and R1 .

In Sec. II, we prove that if the same condition on the
noise density considered for N = 1 applies to each
component of the N-dimensional noise density, A(m)
is monotonic with respect to

A

A (n

ni

Fig. 1. The likelihood ratio A(n) vs the observations ni for the case
N = 2. The solution A(n) = X is represented by the multiple curved
intersections of A(n) with the dotted plane. The decision regions Ro
are cross-hatched and represent the coordinates (n1, n2) for which
A(n) < X. The decision regions R1 are unshaded and represent the
coordinates (ni, n2) for which A(n) 2 X. This case exhibits multiple

curved decision boundaries.

A

X 

Fg2.Tetasomdlklhorati A(m) frth caeN\ 

......... ..... .......................>.. 

I! ~~~~~~........ ....... ... .. .. .. .

Fig. 2. The transformed likelihood ratio A(m) for the case N = 2
where A(m) is monotonic with respect to ml. The solution A(m) =
X is represented by a single curved intersection of A(m) with the
dotted plane. The region Ro is cross-hatched and represents the
coordinates (ml, m2) for which A(m) <X. The decision region R1 is
unshaded and represents the coordinates (ml, m2) for which A(m)
> X. This case exhibits a decision boundary X"(M2) which is single

valued, and therefore single-threshold processing.

N
ml = E ni,

i= 1

as illustrated in Fig. 2. (Here the likelihood ratio has
been transformed to the coordinate system
m 1,... ,mN.) This implies that the decision regions Ro
and R, are partitioned by a boundary X", which is a

15 November 1978 / Vol. 17, No. 22 / APPLIED OPTICS 3577



single-valued function of m2,.. , mN, as in Fig. 2. In
this case, therefore, Eq. (1) is equivalent to the single-
threshold processor

Hi

mI "(in2 ,. . .MN) = "(n),

Ho

H1N >
A(n) = I| Ai(ni) A,

i=1 <
Ho

with

(3)

where X"(n) is single valued.
This single-threshold processor does not completely

specify optimum processing as does the single-threshold
processor in the N = I case, since X" is now a function
of n. However, Eq. (3) does assure the uniqueness of
the threshold in contrast to the nonmonotonic case of
Fig. 1. Note that if N = 1, Eq. (3) reduces to Eq. (2). In
Sec. III, we examine a number of noise densities to de-
termine whether single-threshold processing is opti-
mum.

The transformed likelihood ratio A(m) may depend
explicitly only on the coordinate ml (in which case the
decision boundaries in 3-D space would be straight
lines). The quantity m then contains all the infor-
mation necessary to make a decision and is therefore a
sufficient statistic. If, in addition, the conditions dis-
cussed in Sec. II are satisfied, optimum detection is
completely specified by the comparison

Hi
N >
E ni X', (4)
i=1 <

Ho

with threshold '.
A sufficient condition on A(n), which implies that ml

is a sufficient statistic, has been considered for the
continuous case of N observations.28 Extension of the
results presented here from two to M hypotheses does
not appear to be straightforward.

> ~~~~~Ai (ni) = pi (ni Hj)/pi (ni I HO). (8j

Substituting Eqs. (5) and (6) into Eq. (8), we obtain

Ai (ni) = [E PDi (ni - k)Psi (k) ]/PDi(ni). (9)

We now prove that if the noise distribution satisfies
either the simple finite difference29 condition

A2 [logpDi(di)]k < 0 Vk ' 0, Vdi, Vi, (10)

or

A2 [1OgPDi(di)]k 0 Vk ' 0, Vdi, Vi, (11)

the test
Hi

N >
n X"(n), (12)

i=1 <
Ho

is optimum. Thus, if the logarithm of the noise distri-
bution does not contain a point of inflection (in the
discrete sense), single-threshold processing is optimum.
It must be kept in mind, however, that Eqs. (10) and
(11) represent only a sufficient condition. Therefore,
we cannot rule out the possibility of a situation in which
Eq. (12) may hold even when neither Eq. (10) nor Eq.
(11) is satisfied. We have reason to suspect, however,
that Eqs. (10) and (11) may represent necessary con-
ditions as well.2 8

Using the definition of the second finite difference29

in Eq. (10), we obtain
[logpDi(ni + 1 - k) - ogpDi(ni + 1)]

[logpDi(n - k) - logpDi(ni)] < 0

II. Single-Threshold Processing for Discrete
Distributions with N Observations

Let H1 represent the presence of a signal with prob-
ability density Psi (si), embedded in noise with proba-
bility density PDi (di), and let Ho represent the absence
of a signal (noise alone). The noise is within the dis-
crete range b di c, and the signal is within the dis-
crete range g si h. We assume that the signal and
noise random variables are additive, independent, and
noninterfering. The probability density of n = s + di
under each hypothesis is then

pi(niIH,) = Z PDi(ni - k)psi(k) (5)
k =uo

and

pi(ni HO) = PDi(ni),

where uo = max(n - c,g) and ul = min(ni - b,h).
We further assume that the ni are statistically inde-
pendent, though not necessarily identically distributed,
so that the likelihood-ratio test in Eq. (1) becomes

Vk 0, Vni, Vi, (13)

where the equation is >0 if k > 0, and the equation is
0 if k < 0, and where pDi(di) has been evaluated at ni.

The difference of logarithms can be reexpressed as a
ratio of their arguments, and since the logarithm is
monotonic, Eq. (13) is equivalent to a comparison of the
ratios of these arguments, i.e.,

PDi(nl +l) PDi(f-l) 0 Vk 0, Vni, Vi. (14)

Equation (11) leads to an expression that is identical
to Eq. (14) with one set of inequalities reversed (e.g., V k
,0).

Forming the finite difference of the likelihood ratio
in Eq. (9), we obtain

=ui PDi (l + 1 - k)ps (k)A[Ai(ni)] = E ~~i -)Pik
k=u0 PDi(ni + 1)

Ul PDi(ni - k)psi(k)
k=uo PDi(ni)

where u = max(n + 1 - c,g) and u = min(n + 1 -
b,h). Rearranging terms yields

(15)
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A[Ai(ni)] =
(u' - Uo)PDi(ni - uo)psi(uo) +

PDi (ni)

(U - Ul)PDi(ni + 1 - u')psi(u')
PDi(ni + 1)

+ Psi(k) [PDi (ni + 1 k) PDi(ni - k)1 (

k=uo I PDi (ni + 1) PDi(fi) i

The first term on the right-hand side (RHS) of Eq. (16)
disappears if ni < b, ni > c, or ni < c + g - 1 (so that io

= U = g). Therefore, the first term on the RHS of Eq.
(16) disappears V ni if g > 1 or c = a. The second term
on the RHS of Eq. (16) disappears if ni < b - 1, ni > c
- 1, or ni > b + h-1 (so that ui = u1 = h). Therefore,
the second term on the RHS of Eq. (16) disappears V ni
if h • 0 or b = -a. According to Eq. (14) the integral
on the RHS of Eq. (16) is nonnegative if Eq. (10) is
satisfied and k 2 0, or Eq. (11) is satisfied and k • 0, and
is nonpositive if Eq. (10) is satisfied and k < 0, or Eq.
(11) is satisfied and k 2 0. The restriction k > 0 re-
quires that i' Ž 0 (this is true if g > 0), and the re-
striction k < 0 requires that il < 0 (this is true if h <
0).

Combining the above requirements, we find that

A[Ai (ni)] : 0 Vni, Vi (17)

if Eq. (10) is satisfied, and the signal is nonnegative, or
if Eq. (11) is satisfied, the signal is nonpositive, and the
upper limit of the noise is infinity. If the upper limit
of the noise c is a, Eq. (17) holds V ni < c. Similarly,
we find that

A[Ai(ni)] 5 0 Vns, Vi (18)

Since the rows of A form a basis, they are linearly in-
dependent, and A-1 exists. The orthonormality of the
rows of A insures that A- 1 = AT, so that the inverse
transformation is

n(m) = ATm, (22)

with components
N

ni(m) = E ekimk.
1=1

(23)

The partial difference of a multivariable finite valued
function f(n) with respect to a single variable ni will be
represented by the notation

Ani[f(n)] f(nl,...,ni + 1,...,nN)- f(ni,...,ni,...,nN). (24)

Using Eq. (7), the partial difference of A[n(m)] with
respect to mj is

Amj IA[n(m)U = Amj ll~ [ni(m)I (25)

Using the product rule for finite differences,31 Eq. (25)
may be rewritten as

N-1
Am1 tA[n(m)]j= [rI Ak[nk(m)I} Amj 1AN[nN(m)]1

+ YE ({ ii Ak[nk(m)4 AInj Ai[ni(m)] I1 Ak[nk(M) + 1]l)
i=2 k=1 k=i+l

N
+ Amj A,[n,(m)II lk= Ak[nk(M) + 11]. (26)

1k=2 I

From Eq. (23), the partial difference of ni (m) with re-
spect to mj is

if Eq. (10) is satisfied and the signal is nonpositive, or
if Eq. (11) is satisfied, the signal is nonnegative, and the
lower limit of the noise is minus infinity. If the lower
limit of the noise b ad -a, Eq. (18) holds V ni > b. In
accordance with the discussion preceding Eq. (2), Eqs.
(17) and (18) imply that single-threshold processing is
optimum for the case N = 1.

We now consider an N-dimensional discrete coordi-
nate system defined by the orthonormal basis
E1 , ... , EN, where E 1 = N-112 (1, ... , 1) and Es =
(ei,... ,eiN). The basis vectors E2,... ,EN are selected
by an orthonormalization procedure. 3 0 The proof is
carried out for a general set of such basis vectors since
the result is independent of the particular choice of
E2, . . . , EN. An arbitrary vector m in this coordinate
system is expressible as a linear combination of the Ei.
Transformation of the n-coordinate system into the
m-coordinate system is defined by

m = An, (19)

where
ON-12 N-

1
1
2 .. N-12-

e2l e22 ... e2N
A = .

LeN1 eN2 ... eNN J
In particular,

N
ml = N-11 2 E ni.

i=1

Amj [ni(m)] = Amj ( E ekimk),

which can be expanded, using Eq. (24), yielding
N N

Amj [ni(m)] = eji(mj + 1) + EZ ekiMk - E ekiMk.
k=1 k=i
k .j

Combining terms, Eq. (28) becomes

Amj [ni(m)] = ejii

(27)

(28)

(29)

Using the chain rule for finite differences (see Appen-
dix), the partial difference of Ai [ni (m)] with respect to
mj is

Amj Ai[ni(m)Ij = Ani[Ai(ni)] Amj[ni(m)].

Substituting Eq. (29) into Eq. (30), we obtain

Amj JAi[nj(m)I1 = ejiAn[i(ni)]-

(30)

Setting j = 1 and using Eq. (20), Eq. (31) becomes

Am, JAi1ni(m)]} = N-112 AnIAi(ni)].

From Eq. (21), the partial difference of ml with respect
(20) to

N
E ni
i=1

is
(21) AiEnim,(ni)I = A~ni(N-1/27ni) (33)
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where it is understood that the summations extend from
i = 1 through i = N. From Eq. (24), it is apparent that
the difference operator A is linear, so that the constant
N-1 12 can be brought outside of the operation. Equa-
tion (33) then simplifies to

AE[nj[mi(ni) = N-
1 2

. (34)

We now use the chain rule (see Appendix) to provide

Ajni$Ai[ni(m)Jj = Am1 Ai[ni(m)Jj A1n,[ini(n)J (35)

and combine Eqs. (32), (34), and Eq. (35) to yield

ANI1/2m [Ai (ni)] = N- 1
[Ai (ni)]. (36)

In accordance with Eq. (17) A[Ai(ni)] is nonnegative
V ni, V i; since N is also nonnegative it follows that

ANI/2m[Ai(ni)] 0 Vn,, Vi. (37)

Since Ak [nk (m)] is nonnegative, using Eqs. (37) and (26)
it is apparent that

IA1\ [A(n)] 2 0 Vni. (38)

If, instead, Eqs. (11) and (18) are satisfied, A[Ai(ni)] is
nonpositive, V n, V i. Since N is nonnegative it follows
that

AN1/2mi[Ai(ni)] 0 Vni, Vi. (39)

Since A[nk (I)] is nonnegative, using Eqs. (39) and (26)
it is apparent that

AF nj[A(n)] < 0 Vni. (40)

Equations (38) and (40) indicate that A(n) is either
entirely monotonic nondecreasing or entirely monotonic
nonincreasing, with respect to ni, so that the test

HI
N >
I n X"(n) (41)

i=1 <
Ho

is optimum, in accordance with the discussion preceding
Eq. (3). Therefore, if Eq. (10) or Eq. (11) is satisfied
and if the conditions stated at the beginning of Sec. II
are adhered to, single-threshold processing is opti-
mum.

111. Discussion

In this section, we consider optimum processing of the
observation vector n for a number of different noise
densities. If pDi(di) satisfies Eq. (10) or (11) and the
conditions stated in Sec. II are adhered to, single-
threshold processing is optimum. As indicated in Sec.
II, the N components of the noise density need not be
identically distributed. Though single-threshold
processing is optimum for most of the usual noise den-
sities encountered, we also cite counterexamples for
which our single-threshold processor does not neces-
sarily apply. For convenience, we use the natural log-
arithm in Eqs. (10) and (11), though the logarithm with
an arbitrary base may be used.,

The hypergeometric noise density,32 for di < r and
di < a, is

PDi(di) = u(di) (42)

with mean (di) = ralla and variance ((Adi)2 ) = (di) (1
- a /a)(a - r)/(a -1), where the Heavyside unit step
function u(di) is unity for di 2 0 and zero otherwise.

In the limit where r2/a, dj2/a, and (r - di) 2/(a - al)2

all approach zero in such a manner that a /a = p, where
0 < p < 1, the hypergeometric density reduces to the
binomial density.32 The binomial density has mean
(di) = rp and variance ((Adi)2) = (di)(1- p), corre-
sponding to the mean and variance of the hyper-
geometric density with a/a = p and r2/a - 0. Using
the hypergeometric density in Eq. (42)
A2 [lnpDi(di)]k

n (di + 1 -k)(al-di)(r-di)(a -a,-r + di + 1 - k)
L(di + 1)(a, - di + k)(r - di + k)(a -a,- r + di + 1)]

< V di O. (43)

which satisfies Eq. (10), so that single-threshold pro-
cessing is optimum for both the hypergeometric and
binomial noise densities.

The Polya noise density,32 with arbitrary real con-
stants q > 0 and 0 < p < 1 and arbitrary integer con-
stant r > 0, is

-p/q - (1- p)/q)

pDi(di) = [u(di) - u(di - r)]
(-l/q) (44)

where 0 S di S r. In the limit where r - o, p -0, and
q -3 0, in such a manner that rp - (di) and rq - =
(di )/M, for real M 2 1, the Polya density reduces to the
negative binomial noise density33

PD (di) u (di) M+ di -) 1 M )M ,(di) )di
di M+ (di) + (di)

(45)

with mean (di) and variance (di) + (di) 2/M. If we
define a = M/(M + (di)) and a 2 = M + di, and let a,

0, and a2 , with ala2 - di, a is the constant of
proportionality between the negative binomial and its
continuous analog, the gamma density28 with , = 1.
When the negative binomial is used to represent the
photon-counting distribution for chaotic light, the de-
generacy parameter represents the average number
of photons per cell of phase space, the parameter M
represents the number of modes, or degrees of freedom,
and contains information relative to the spatio-temporal
coherence and polarization properties of the light, the
flash duration and area, and the detector integration
time and area.33 In general, the parameter M is real
(and > 1), but when M is restricted to positive integers
only, Eq. (45) is known as the Pascal3 2 density. When
M = 1, the negative binomial becomes the Bose-Ein-
stein33 (geometric) density with mean (di) and variance
(di) + (di) 2. For M >> 1, and << 1, the negative bi-
nomial reduces to the Poisson density,33 34 with mean
and variance (di). (The Poisson can also be obtained
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from the binomial discussed earlier, if a, = 1, r - C, and
a - -, so that p = 1/a and (di) = ra.) Alternatively,
for M >> 1, and > 1, the negative binomial reduces
to

PDi(di) = u(di)(27r6)-1/qdi-3/2(di)
x exp[-(2bdi)-'(di - (di)) 2I a > 1, (46)

which was obtained by Glauber,35 and which we refer
to as the Glauber density.

Using the Polya noise density, given in Eq. (44), we
obtain

A2 [lnPDi(di)lk

=ln ++1 -+ n (p+q)+di_+1 r-di
di+1 (p/q)+di-k r-di+k

1 [(1-p)q] + r - di - 1 + k (47)
[(1 - p)/q] + r-di -1

From Eq. (47) we determine that if

eq n p <q, (48)

then

A2[1npDi(ni)1k z0 V di 0 < di < r. (49)

For q 1, Eq. (48) has the less-than sense, so that Eq.
(49) has the greater-than sense, and, according to Eq.
(11), single-threshold processing is optimum. If q <
min(p, 1 - p) < 1, Eq. (49) has the less-than sense, so
Eq. (10) is satisfied. If max(p, 1 - p) < q < 1, Eq. (49)
has the greater-than sense, Eq. (11) is satisfied.
Therefore, single-threshold detection is optimum for
the Polya noise density provided that q does not lie
within the interval (p, 1 - p). In the limit where the
Polya reduces to the negative binomial, rp - (di) and
rq - (di)/M, whereM > 1, so that q - pIM < p.
Since p - 0, q • min(p, 1 - p), so that our single-
threshold processor applies. Although the proof of the
single-threshold processor could be carried out inde-
pendently for each limiting case of the negative bino-
mial, it is not necessary, since no restriction has been
placed on M or on (di ) IM in the derivation of the gen-
eral result. To summarize, single-threshold processing
is optimum for the negative binomial, Pascal, Bose-
Einstein (geometric), Poisson, and Glauber noise den-
sities and for the Polya noise density provided that q
does not lie within the interval (p, 1 - p). If q lies wi-
thin the interval (p, 1 - p) the single threshold detector
does not necessarily apply for the Polya density.

As an example of a noise density that is always con-
cave upward, consider the photon-counting distribution
arising from a sinusoidally modulated chaotic light
source,36 with unity modulation depth, and mean
(di),

PDi(di) = u(di)(2di)! (di)diI[2di(di!)2 (1 + 21(di))di+1/21 (50)

from which

A22[InpDi(di) I = n (2di + 1 + 2k)(di + 1) > ° Vdi. (51)
(2di + 1)(di + 1 + k)

Equation (51) satisfies Eq. (11), so single-threshold
processing is optimum.

Finally, a noise density function, which never satisfies
Eq. (10) or Eq. (11), is the photon-counting distribution
arising from a sinusoidally modulated single-mode laser
source.3 6 This can be concluded from a plot of the
logarithm of the density, which has an inflection point,
so that the single-threshold processor does not neces-
sarily apply to this case.

Noise densities that cannot be expressed in closed
form are difficult to test analytically for a point of in-
flection. The Neyman Type-A density,2 6 for example,
contains an infinite sum. In such cases it may be pos-
sible to inspect a plot of the noise density with a loga-
rithmic ordinate for a point of inflection.

IV. Optical Communication System

Our method is most powerful for the N = 1 case, for
which the optimum receiver structure is completely
specified by the single-threshold processor [Eq. (2)], if
the logarithm of the noise density does not contain an
inflection point. For example, if the Neyman-Pearson
criterionl is used, X' is the unique fixed solution to

(52)PF = PDif(ni) •-a,
ni=X'

where the false-alarm rate PF is constrained to be less
than the constant a. Since X' is a fixed solution to Eq.
(52), Eq. (2) completely specifies optimum process-
ing.

For N > 1, however, X' is not necessarily fixed, so that
Eq. (3) alone does not completely specify optimum
processing. Here Eq. (52) becomes

PF = E PDi(m) < a,
MI=X'(n)

(53)

where X" is now dependent on the observation n.
Therefore, although X" is a unique solution to Eq. (53),
it is not fixed for different values of n, so that ml is not
a sufficient statistic.

We now apply our single-threshold processor to a
generalized photocounting optical communication
system. For our model to be applicable, the essential
requirement is that the signal and noise be additive,
independent, and noninterfering, so that p (ni I H1) may
be represented by the convolution sum in Eq. (5). The
single-threshold processor is then optimum if the log-
arithm of the noise density does not have a point of in-
flection. In Fig. 3 we present a block diagram of such
a system. A sequence of 1's and 0's (representing binary
information) is used to gate an 6ptical source, which
may be modulated in an arbitrary manner.36 A 1 cor-
responds to the light being transmitted for T sec (H1),
whereas a 0 corresponds to the light being blocked for
T sec (Ho). In general, each T-sec bit may be repeated
Nt times in order to improve system performance.

In the simplest situation, there is no multiplicative
or scattering channel, no avalanche multiplication, no
dead time, and the discrete signal [with probability
density Ps (si)] is embedded in additive, independent,
noninterfering discrete background noise [with proba-
bility density pB(bi)]. Dark noise [with probability
density PD (di)] arises within the detector and results
in additive counts, which are independent of both the
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| - SOURCE-.,|I- CHANNEL- 1 --- DETECTOR --- PROCESSOR-l
Fig. 3. A generalized photocounting optical communication system.
The solid boxes represent components that can be included in our
model, whereas the dashed boxes represent components that cannot

be included in our model.

signal and the background noise. The dark noise and
the background noise may therefore be convolved to
provide the over-all noise density PH = PD*PB. The
signal plus noise are detected by a synchronously gated
ideal photon counter with arbitrary quantum efficiency.
In general, N, ideal photon counters form a spatial
array. The N = NtN, observations are then processed
to decide optimally whether a 1 or a 0 was transmitted.
Since in this case the signal and noise are additive, in-
dependent, and noninterfering, our model applies im-
mediately: if the logarithm of the noise density does
not have a point of inflection, the single-threshold
processor is optimum.

It is clear that this result remains unchanged if the
optical source is modulated, since the source statistics
alone are affected. This may come about, for example,
as a result of laser output fluctuations, multimode op-
eration, or modulation of the laser output. Modulation,
however, broadens the source probability density ps (si),
causing a degradation of system performance.37

Teich and Yen7 evaluated the performance of just
such a system, without modulation, for the N = 1 case,
implicitly assuming that the single-threshold processor
was optimum. In their model, the source was a multi-
mode laser so that ps (si) was taken to be Bose-Einstein,
the dark current density PD (di) was assumed to be
Poisson, and PB(bi) was taken to be either Poisson or
Bose-Einstein. The validity of their single-threshold
processor assumption for Poisson background noise
(and arbitrary signal) is verified in Eq. (49).

Multiplicative 3 8 39 or scattering channels 4 5 that do
not invalidate the additivity, independence, and non-
interference assumptions are clearly also admissable to
our model, as is optical communication through the
clear-air turbulent atmosphere,- 10 provided that the
intensity fluctuations imparted to the signal and
background radiation are independent.

Random multiplication in an avalanche detector is
the result of each primary current pulse giving rise to
a random distribution PG (gi) of secondary pulses. The
distribution of primary pulses v is p (v, (v ) ) with mean
(v ). To obtain the total counting distribution, PG (i)

must be convolved with itself v times and averaged over
p (v, (v)). The result is given by Eq. (3) of Personick
et al. 17 Since the secondary pulses arising from inde-
pendent primary pulses are themselves additive and
independent, signal and noise remain additive and in-
dependent even after avalanche multiplication. Con-
sequently, avalanche multiplication is admissable to our
model.

Several effects cannot be included in our model,
however, and are indicated by the dashed boxes in Fig.
3. These include the situation in which interference
between the signal and noise results in cross-mixing
terms that prevent p (ni I HI) from being expressed as
a simple convolution. In the special situation where the
dark noise alone represents Ho, however, the interfering
background radiation is lumped with the signal, so that
the over-all signal and the dark noise are independent
and additive, in which case the model does apply. In-
terference can also be ignored if it lies outside the
bandwidth of the detector in which case it is averaged
out in time, or if the background radiation enters the
detector from a broad range of angles in which case it
is averaged out in space.

Dead time,40 being a nonlinear effect, destroys the
independence of the signal and noise and cannot be
included in our model. In the limit of large mean noise
count, however, for Poisson signal and Poisson noise in
the presence of dead time, it has been shown'9 by direct
calculation that the single-threshold processor is opti-
mum. Dead time effects are negligible when X << 1,
where X is the rate of the underlying Poisson process,
and is the dead time.

This work was supported by the National Science
Foundation with supplemental support from the Joint
Services Electronics Program.

Appendix: Chain Rule for Finite Differences 41

We consider a function v = A(u), which is a mapping
from an integer domain u into a real range v. The
function , in turn, is a mapping from a countable
subset of the real numbers m into an integer range, u =
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ni (m). The equation of the straight line u' through the
points

ni(mi, .. .,mjiamj+ln... MN) - ni( . a . ) and

ni(m,...,mj_,,a + l,Mj+l, . .,MN) - n(. . .a + 1...) is

u'= ni(... a . ) + (m - a) Amj[ni(. .. ), (Al)

where m' is some intermediate value. Similarly, the
equation of the straight line v' through A[ni(. ..
and A [ni (... a + 1. .. )] is

v'= A[ni(... a . )] + [n,- ni (... a )]A nA[ni(... a..
(A2)

where n' is some intermediate value. Substituting Eq.
(Al) into Eq. (A2) we obtain

v'= A[ni(... a . )] + (mj - a)Amj[ni(... )]A [ni(. * a ..
(A3)

Comparing Eq. (A3) with Eq. (Al) yields the chain rule
for finite differences.

AmjlA[ni(m)]} = AnilA[ni(m)]lAmj[ni(m)]. (A4)
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