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Part 1 of this paper [Appl. Opt. 14, 666 (1975)] dealt with the cw radar and analog communications uses of
three-frequency nonlinear heterodyne detection. In this paper, we evaluate the technique for a number of
specific pulsed radar and digital communications applications. Both the vacuum channel and the lognor-
mal turbulent atmospheric channel are considered. It is found that the advantages of the technique in the
pulsed/digital system are similar to those obtained in the cw/analog system. Computer generated error
probability curves as a function of the input signal-to-noise ratio are presented for a variety of binary re-
ceiver parameters and configurations and for various levels of atmospheric turbulence. Orthogonal and
nonorthogonal signaling schemes, as well as dependent and independent fading, are considered. When
Doppler information is poor, performance is generally superior to that of the conventional heterodyne sys-
tem.

1. Introduction

Part 1 of this paper' was primarily concerned with
the behavior of the three-frequency nonlinear hetero-
dyne system for applications in cw radar and analog
communications. As such, a determination of the
output signal-to-noise ratio (SNR)0 was sufficient to
characterize the system. In Part 2 we investigate ap-
plications in synchronous digital communications
and pulsed radar and therefore examine system per-
formance in terms of the error probability Pe. Eval-
uation of the probability of error under various con-
ditions requires a decision criterion as well as a
knowledge of the signal statistics; we now investigate
operation of the three-frequency nonlinear hetero-
dyne scheme in the time domain rather than in the
frequency domain.

Because of the added complexity of dealing in the
time domain, we limit our investigation to sinewave
signals, Gaussian local oscillator (LO) noise, and.en-
velope detection. The configuration of such a receiv-
er is therefore similar to that considered previously
in Part 1, with the addition of an envelope detector
(see Figs. 1 and 13 of Ref. 1). We therefore examine
the case of a particular square-law envelope detector,
consisting of a square-law device, a narrowband fil-
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ter, and an envelope detector.2 Although envelope
detection is generally suboptimum because it is in-
sensitive to phase, it is easy to implement practically
and is therefore widely used. 3

We begin with an investigation of binary commu-
nications and pulsed radar for both nonorthogonal
and orthogonal signaling formats in the vacuum
channel. We then examine envelope probability dis-
tributions and binary signaling for sinewave signals
in the lognormal channel (clear air turbulent atmo-
sphere). The advantages of the three-frequency
nonlinear heterodyne scheme in the digital communi-
cations/pulsed radar configuration are similar to
those cited in Part 1 for cw radar/analog communica-
tions.

11. Envelope Probability Distributions for Sinewave
Signals Plus Gaussian Noise (Vacuum Channel)

We assume here, as in Part 1, that the fields inci-
dent on the mixer are parallel, plane-polarized, and
spatially first-order coherent over the detector aper-
ture. In general, therefore, the input to the square-
law device, as previously [see Eq. (19), Part 1], will be
two narrowband signals plus white Gaussian noise
with zero mean resulting from the LO, over the band
(° f,). Thus

s(t) = A cos(wGt + a,) + Ab cos(wbt + 'kb), (1)

with A, Ab, fea, and 'Ob stochastic processes. The
amplitudes are assumed to be independent of the
phases. In this section, we treat the specific case of
sinusoidal signals, i.e., A and Ab constant and hka,
'kb independent random variables uniformly distrib-
uted over (0,27r).
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In the time domain, the white Gaussian noise,
which arises from the LO, can be expressed as4

n(t) = F k COSWkt + E vA sinwkt -
k=1 k=i

(2)

Here, k = k coo with coo = 2'r/2T. If the input sig-
nal is a pulse, the pulse duration is the time interval
(-T,T). The coefficients Uk and Vk may therefore
be written as

fT
Uk = T n(t) coSwktdt, (3a)

and
T t

o = TJ n(t) sinwxtdt. (3b)

Rn(t - t') N6(t - t'). Here N is the height of
the white noise spectrum.

The input x(t) to the square-law device can now be
written as

x(t) = s(t) + n(t)

= A, cos(wat + 'Pa) + Ab cos(cobt + 'Pb)
+ uk cosWkt + EVk sinwbt. (6)

k k

We note that for co small, it will always be possible to
find integers m and n such that mwo and nwo are very
close to wa and cOb, respectively. This implies that T
is much larger than 27r/coa and 27r/Cwb.

By direct substitution, we find the output of the
square-law device y(t) to be

y(t) = yx2(t)

= CZ(/2 E Uk2(1 + cos2Wkt) + /2 vk 2(1 - cos2bkt)
k k

+ Z 10k~ sin2 Wkt , itj COs(W i - CO)t + cos(wi + Cj)tl + ZZ Ii j[CoS(W 1 w)t - cos(wi + CO)t]
k i>i ~

+ r;ujv[sin(oi + wj)t - sin(Wi - wj)t] + Zujvj[sin(wi + wj)t + sin(wj - ah)t]
>[ + +<j

+1/2Aa2Il + cos(2woat + 2)1 + 1V2Ab2[l + cos(2Wbf d-20
+ AaAb[COSt{(a + Wb)t + h + 'Pb} + COS{(Wa - Wb)/ + ' - cbb}]

+ AaFZ [CoS{((w + Wa)I - Oa} + cos{(A - Wa) - a}]
k

+AbElfjcos{((W + 4b)t + bl + COS6( - Wb)1 Pb}]

+ Aa,, jkjsin{(w, + a) + 6a} + sin{(k - U)/ 5a} ]
k

(7)+ AbE vJsin{(wA + b)t + b} + sin{(w - b)t
A

Since Uk and Vk are linear transformations of the
Gaussian random variable n(t), they are also Gauss-
ian random variables;5 furthermore it can be shown
that for T large, all Uk's and Vk's are uncorrelated
and independent of one another.6 Since the mean of
n(t) is taken to be zero, we find

(Uk) = <-f n(t) coswtdt> = 0,

and similarly
(v) = 0

(4a)

while the variance (uk 2 ) is given by

(U 2) = T fT JT (n(t)n(t')) COSWakt coswt'dtdt' = N.
T2T T T 

Similarly,
(VA2) = N/ T. (5b)

In calculating these quantities, we have assumed that
the Gaussian noise n(t) is stationary, and that the
band [fjfn] is sufficiently large so the noise can be
approximated to be completely white (over an infi-
nite band) leading to an autocorrelation function

where we have used the following symmetrical rela-
tions:
1/2 UiU[CoS(Wi + co)t + cos(wi - wc)t]

i>j

= 1/2 lu u[cos(f + wj)t + cos(wi - wj)tl, (8a)

and
1/2 ZjEIVIV[COS(Wi + wJ)t + cos(w - cJ)t]

i>j

'/2EDViVj[cos(wi + coj)t + cos(coi- wj)t]. (8b)
i<j

Since it is the effective bandwidth rather than the
shape of the final narrowband filter that is impor-
tant,' we choose a realizable impulse response for this
filter given by

h(t) = 2B cos2Tffft 0 < t < 1/B. (9)

This choice facilitates the computation in the time
domain and provides accord with signal-to-noise ra-
tios calculated previously.1 Assuming B is very
small, the time output from the bandpass filter z(t)
is given by

11B
z(t) = j Mt - t')y(t')dt'

= A cos(w¢t + 'P) + u coswct + v sinwct. (10)
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(SNR) = kQ(SNR)0
2 /[1 + 2(SNR),], (18)A = a!AOAb)

' = Pa - Pb,

(Ila)
(1 lb)

and, after a great deal of calculation,7 u and v turn
out to be the sum of an infinite number of random
variables, and therefore Gaussian. The means and
variances of u and v are found to be7

(u) = (v) = 0 (12)
and

(U2) = (V2) 4U2(N/T)[2f,,N + ((A0
2) + (Ab2))], (13)

assuming o, fc << fn. It is also found that

(uV) = (u)(v) = 0, (14)

indicating that u and v are uncorrelated and inde-
pendent processes. Equations (12), (13), and (14) in-
dicate that the last two terms in Eq. (10), u coscot +
vsincot, constitute a narrowband Gaussian random
process with zero mean and center frequency c. In
fact, Eq. (13) represents the output noise power N,

We can corroborate this rather broad result7 for a
specific case by generalizing the results obtained by
Kac and Siegert8 and Emerson,9 who have treated a
related problem. We assume the output of the het-
erodyne mixer to consist of two sinewave signals
plus uncorrelated (white) Gaussian noise. The sys-
tem, in this case, consists of a realizable IF Gaussian
bandpass filter, with arbitrary width f and a center
frequency around a or fb (which is large in compari-
son with f), the usual square-law device, and a real-
izable final narrowband filter with bandwidth B.
Under the restrictions f << a, fb and B << f << Af,
it may be shown that the output of the final narrow-
band filter will be a sinewave signal plus a Gaussian
random process of nonzero mean. For noise alone,
the output will simply be Gaussian. Thus the enve-
lope distribution for noise will be Rayleigh, and that
for signal-plus-noise will be Rician. This is, we
might add, the same result obtained for conventional
two-frequency heterodyne detection, although the
means and variances will not have the same relation-
ship in both cases.

For fc << f as prescribed previously, it is not diffi-
cult to verify that the above description in the time
domain is in accord with the frequency-domain re-
sults presented in Part 1. Since the relationship be-
tween the pulse width T and the minimum band-
width of the final filter is governed by the Fourier
transform property TB - 1 (see Ref. 10), Eq. (13) for
the noise power in this regime may be written as

(u2) = (v2) = N 4aNB[2f 0N + ((A0
2 ) + (Ab2))]. (15)

Using Eq. (a), we therefore obtain for the output
signal-to-noise ratio,

(SR, So (Al) (AO
2
Ab

2
) (6

(SN)0 -O = (u)) = 8NBL((Aa2) + (Ab2))2fN]1

Using an input signal-to-noise ratio given by

(SNR) - ((A_2) + (Ab 2 ))/ 4fnN, (17)

we finally obtain

with

kQ = ff(Aa 2 Ab2 )/[B((Aa 2 ) + (Ab2 ))2 ]. (19)

These expressions are valid in the regime f/ << fn and
are analogous to Eqs. (40) and (41) of Part 1. Our
treatment is therefore consistent with that presented
previously.'

According to Eq. (10) and the discussion following,
in the presence of signal plus noise, the output of the
narrowband final filter z(t), after being passed
through the envelope detector, is given by the Rician
distribution"

fA(r) - (r/=u)I (Ar/cM) exp[-( 2 + A)/2 2]. (20)
Here, r represents the envelope of z(t), 2 = (U 2 ) =
4a2NB[2fnN + ((Ac 2) + (Ab2 ))], and Io(x) is the
modified Bessel function of the first kind and zero
order, also expressible as

Io(x) = exp(x cosO)dO.27To (21a)

We may use the asymptotic expansion for x << 1 (see
Ref. 12),

Iox) = 1 + x2/4 + . . . expZx2/4), (21b)

and for x >> 1,

Io(x) ex/(2Tx)l I/ I . (21c)

In the presence of noise alone, i.e., for A, = Ab = 0,
the probability density function for the envelope
fo(r) is the Rayleigh distribution

,fo(r) = (r/luo') exp[-r 2/2c0r2] . (22)

Here U0.2 is the noise power in the absence of signal,
i.e.,

UO2 = () IA0 =Ab=O = 8a 2BfN 2 . (23)

We note that in this nonlinear problem 2 5d o! be-
cause of the presence of s X n terms in 0-2. In the
usual linear systems problem these terms do not ap-
pear, and U = 002.

Ill. Binary Communications and Pulsed Radar
(Vacuum Channel)

Given the probability distributions for the output
signals, we can proceed to investigate binary commu-
nications and pulsed radar systems performance on
choosing a decision rule. In the following, we consid-
er both orthogonal and nonorthogonal formats for
digital signaling.

A. Nonorthogonal Signaling Formats

We first consider pulse-code modulation where it is
the intensity that is modulated. This simple nonor-
thogonal scheme is frequently referred to as PCM/
IM.13 The signal is considered to be present when a
1 is transmitted and absent when a zero is transmit-
ted. To evaluate system performance, we choose the
likelihood ratio criterion.12"13 If Q represents the a
priori probability that a 1 is transmitted, the signal is
judged to be present if
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Qfj(r) (1 - Q)fo(r). (24)

For simplicity, we assume throughout that the differ-
ent types of errors are equally costly. Since the sig-
nals are pulse coded, the value of r chosen is the av-
erage value over the pulse width. The decision
threshold rD is the value of r for which the equality
in Eq. (24) holds. Using Eqs. (20), (21a), and (22) for
sinewave signals and Gaussian noise,. rD is therefore
the solution to the transcendental equation

f27 exp (r coso )do

( Q) a2.eA2/202 exp( 2 . (25)

Using Eqs. (15) and (19), it is clear that

2 = a0
2[1 + 2o/kQ) 2], (26)

where
g _ (A2 )/2y 0

2 . (27)

For sinewave inputs, A, A, and Ab are constant, and
the quantity kQ is identical with the quantity kp in-
troduced in Part 1 [see Eq. (40), Ref. 1]. Defining ro
-= r/ao, Eq. (25) can be rewritten as

1 . 2
r [(2~o)

1 /2r oS 1s d1 !(2 exp (2 c)2( -)1/2 ] d 0
2=T e1xp + 2/k,) ]

= ( - Q)[I + 2(~ " exp [ 1 + 2 Q 0 /k,)l /2 ]

x exp[- 1+ 2 0kp)i /2 ] . (28)

Therefore, with kp and Q fixed, the solution to Eq.
(28) for ro, which we call PO, is a function only of to.
If we further define

(SNR) = (A2 )/2a 2 , (29)

the quantity t = (ao2/2)to = to/[1 + 2 (Q0/kp )1/2] is

also a function only of 40. Thus, P0 is a function only
of t. The decision threshold rD - P0o is therefore
a function of both t and 0.

The probability of a decoding error Pe is given by

Pe = Qf f1(r)dr + (1 - Q)f fo(r)dr, (30)
O rD

which in the present case may be written as

= Q r \ 7 ) exp[- (r2 + A 2)/2 2 ]dr

+ (1 Q)f1 - exp(-r 2/2U0
2)dr. (31)

Replacing r/ by r', we can rewrite the first integral
I, in Eq. (31) as follows:

croao/a .. i.+r 
Il = jf r'I(2 )r']e dr . (32)

Since Po 0o/0. = Po/ [1 + 2 (Q0/kp )1/2]1/2 is a function
only of 4o, which, in turn, is a function only of the
output signal-to-noise ratio (, this integral is a func-
tion only of t. The second integral in Eq. (31) can be
easily evaluated as follows:

fb r e /2cro2 dr x X 2/2dx -ex
2 /2]

rD rD /a0 rD /aO

= erD / 20 = e40 / 2 , (33)

which is also a function only of t.
Therefore, with fixed kp(af f/B) and fixed Q, the

probability of error Pe is a function only of the out-
put signal-to-noise ratio t-(SNR)Q. By use of Eq.
(18), in turn, Pe can be written in terms of (SNR)i.
Computer results for the probability of error are pre-
sented in Fig. 1 [Eq. (21) has been used for the com-
puter calculation], in which Pe is plotted against
(SNR)i for several values of f/B, with the usual
choice Q = 0.5 and A, = Ab. The solid curves repre-
sent this PCM/IM scheme. For fixed fn, the advan-
tage of using small B is obvious.

Also shown in Fig. 1 is the Pe vs SNR curve for the
conventional two-frequency heterodyne system in
which no square-law device is used and fn must be
narrowed to Af to provide a detectable signal. The
output for this case is again a sinewave signal plus a
narrowband (Af) Gaussian noise.13 Thus the com-
putation is the same as for the three-frequency heter-
odyne case with a2 = 02 and t = ~0 = (SNR)i. The
probability of error at a given signal-to-noise ratio for
the ordinary heterodyne system is seen to be higher
than for the three-frequency system. This results
from the exclusion of noise demanded by the final
bandpass filter where f&/B > 1, thus providing higher
(SNR)X and lower Pe for the three-frequency system.
Since the Rician and Rayleigh distributions have
been calculated only for B << fc (hence B << fn) and
for, white noise, the optimum three-frequency case
considered in Part 1 is not shown in Fig. 1.

B. Pulsed Radar Application

The three-frequency nonlinear heterodyne system
can also be used for pulsed radar applications. The
configuration is similar to that considered previously.
Pulses are sent to the target and the maximum likeli-
hood test is used to determine whether the target is
or is not present (reflected or scattered signal
deemed present or absent). For a detailed treatment
of conventional range-gated pulsed radar applica-
tions, the reader is referred to the book by Davenport
and Root.14

C. Orthogonal Signaling Formats

We consider a number of orthogonal signaling for-
mats-we begin with frequency-shift keying (FSK),
which is also referred to as PCM/FM. In such a
scheme, the frequency of one of the transmitted
beams is fixed at the value fl, whereas the frequency
of the other is caused to shift between two values, f2
and 2' (not to be confused with the Doppler shifted
[2' considered in Part 1 of this paper). When a 1(0)
is transmitted, the second carrier will be at frequency
f2 (f2'). The difference frequency will therefore shift
between fc = f, - f2 and f,' = A - f2' (assuming f1 
f2,f2'). The frequencies If, - LI, If2 - fLI, and If2' -
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Fig. 1. (a) Probability of error vs (SNR)i for the three-frequency binary communica-
tion system in the vacuum channel. The input signals are assumed to be sinusoidal,
and the noise is Gaussian. The result for the conventional heterodyne system is shown

for comparison. (Log vs linear plot.) (b) Same curves on a linear vs log plot.

Ac]=Ab2 Aa ~ A b B - lOO I\ \\ If\ \
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---- ORTHOGONAL n '\SIGNALS 8-50 \.

lO3 lo 1 lo-l 10°
INPUT SIGNAL-TO-NOISE RATIO (SNR)1

(b)

I
10

f21 will all lie within the band [n. A block diagram
for such a system is shown in Fig. 2. Two narrow
bandpass final filters with center frequencies at f,
and fh' (not to be confused with the Doppler shifted
f,' considered in Part 1) are used. Following each
bandpass filter is an envelope detector. If a 1(0) is
transmitted, the signal will ideally pass through the
top (bottom) narrow bandpass filter along with the
noise; only noise will be present at the other filter.

For such an orthogonal format, the optimum single
detector receiver chooses the largest signal as the cor-
rect one. Let the outputs of the first and second en-
velope detectors be represented by r1 and r2, respec-
tively; the probability density functions for r1 and r2

Fig. 2. Block diagram for the PCM/FM three-frequency nonlin-
ear heterodyne receiver.

are h,(r) and h2(ra), respectively.
that a 1 is transmitted, we have

If we assume

hl(ri) = f1(rl), (34a)
h2(r2) = f0 (r2), (34b)

where f ) and /0(-) are given by Eqs. (20) and
(22), respectively. Using the decision rule of the
largest, errors occur when r2 > r1. The error
probability P0 , is, therefore,

P1 = f dri[fi(rf dr2fo(r2)]
0 rl

= [02/(a,2 + u2)]eA2/2(qoO+2l). (35)

This can be readily shown to be a function only of t.
In exactly the same manner, the error probability P0 O
when 0 is transmitted, is given by the same expres-
sion; thus Po = P. The over-all probability of
error P0 is therefore given by

P = Q + (1 - Q)Po = P , (36)
which is presented in Fig. 1 in dashed form with the
same parameters as for the PCM/IM case. The con-
ventional heterodyne case is also shown.13 The im-
provement obtained by using the orthogonal PCM/
FM signaling format is seen to be substantial. In
this case, however, transmitter power is required for
sending both a 0 and a 1.

Another binary orthogonal pulse-code modulation
scheme is polarization modulation (PCM/PL). Thus
the bit 1(0) is represented by right (left) circular or
vertical (horizontal) linear polarization. At the
transmitter, a polarization modulator converts the
laser beam into one of two polarization states. At
the receiver (see Fig. 3), the circularly polarized beam
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F U FIR L T E FILTER ETECT O R

MIXER~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~S

INPUT LO BLOCKING CAPACITOR L

TH REE- SQUARE- ~NARROW -
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OLARIZATION MISERATf

LO

Fig. 3. Block diagram for the PCM/PL three-frequency nonlinear
heterodyne receiver.

may be passed through an optical filter and then be
converted to horizontal or vertical linear polarization
by a quarter-wave plate. The linear polarization
components are spatially separated (e.g., by a Wol-
laston prism) so the vertically polarized component
will strike the upper photodetector and the horizon-
tally polarized component will strike the lower pho-
todetector. With 100% modulation, when the bit 1 is
transmitted, only vertical polarization will appear at
the receiver and the radiation will ideally strike only
the upper detector. When a 0 is transmitted, only
horizontal polarization will appear and a signal will
ideally strike only the lower detector. The choice of
largest decision rule is used for decoding. It is not
difficult to see that the results for P0 in this case are
identical to those for the PCM/FM system. Depo-
larization effects of the atmosphere, which are not
generally large, will result in a decrease of (SNR)i
and thus (SNR)Q (see Refs. 15-18).

The final orthogonal format that we consider is bi-
nary pulse-position modulation (PPM/IM). In this
scheme, each bit period is divided into two equal
subintervals. If a 1(0) is transmitted, the pulse is
caused to occur in the first (second) subinterval. A
block diagram for one implementation of such a sys-
tem is presented in Fig. 4. The upper (lower) gate is
open for every initial (final) subinterval, and closed
for every final (initial) subinterval. A time delay
equal to the subinterval length is provided for the
signal in the upper gate so the outputs for both inter-
vals can be compared at the same time. The rule of
largest decision is used for decoding. The results for
the probability of error are again the same as those
for the PCM/FM system.

The input signals for the PCM/FM, PCM/PL, and
PPM/IM systems possess the orthogonality property

naling case is a straightforward generalization of the
binary case.19

IV. Envelope Probability Distributions for Sinewave
Signals Plus Gaussian Noise (Lognormal Channel)

The first portion of this paper was concerned with
the calculation of system performance for the vacu-
um channel; we now turn to the error probabilities
for three-frequency nonlinear heterodyne detection
for the atmospheric channel. The behavior of the
clear-air turbulent atmosphere as a lognormal chan-
nel for optical radiation has been well documented
both theoretically and experimentally.6-8,20-22 We
therefore choose the amplitudes A1 and A2 to be
lognormally distributed, and the phases 01 and 02 to
be uniformly distributed over (0,27r). Since A c Al
and Ab A2, while 0;a = 1- kL and 'kb = ¢2-

ObL, we can write

Aa = uaBa ,

Ab = UbBb,

(38a)

(38b)

where Ba and Bb are constants and uc and Ub have
the same lognormal distribution:

PN (u) = (l75exp [-I-(In ui - m)2], i = ab.

(39)

Here ax is the logarithmic-amplitude standard devia-
tion which is related to the logarithmic-irradiance
standard deviation a, by the formula 4¢X2 = 0.12 (see
Ref. 22). Assuming energy is conserved and that
there is no scattering of radiation out of the beam, we
choose

(u 2) = 1,

which is equivalent to setting m =-0x2.
Using Eq. (11a), the output amplitude A

by
A = aAAb = BaBbUaUb.

If Ua and Ub are independent, we obtain

(A2) = Ci2B 2 Bb2(Ua2 )(Ub2) = (y2B 2B_2

or
,aRBb = (A2 )1/

2
= ( 2 (A 2 Ab2 ))/2.

Furthermore,
lnA = lnu a + lnub + ncaBQBb.

(40)

is given

(41)

(42a)

(42b)

(43)

LT; s,)Sj (t)dt = 0,

where Sl(t) is the signal waveform representing a 1
state, and So(t) is the signal waveform representing
a 0 state. Such orthogonal modulation schemes are
generally superior to nonorthogonal schemes in terms
of error probability performance' 6-' 8 and have the
further advantage of requiring no more than a simple
comparison for optimum reception. The M- ary sig-

GATE IME

S.S- A R N A R R O W

T H R1EE - A S A SH N P S E N V1 EL OPEFREQUIENC FL TERN FILTER IETECTOHH<3~~~~~~ 
LO IR ES

Fig. 4. Block diagram for the PPM/IM three-frequency nonlinear
heterodyne receiver.
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Since the quantities yaa lnua and Yb lnUb will
both be normally distributed as

*f(Mi) = (27r)122r exp[- Vi + x ) ] (44)

if Ua and Ub are independent, the variable YL = lnA
will have the normal distribution

.fL(YL) = 1

exp [- (YL + 2 2 - n atBBb,)2], (45)

from which we obtain the probability density for A:

fA(A) = 2o.,(pT) /2A [xP (1n(A22i + 22)],

Ua, ub independent, (46)

where we have made use of Eq. (42b).
We also consider the situation Uc = Ub = U, which

would arise if both incoming signals were sufficiently
close in frequency and space that they suffered pre-
cisely the same fluctuations at each instant of time.23

This case is more likely to occur in a practical situa-
tion than the independent case. For dependent fluc-
tuations, then,

A = aAQAb = ceBaBbU , (47)

whence
(A) = (AQAb) = B.Bb, (48)

and
nA = ln(A) + 2 nu. (49)

Since lnu has the normal distribution /L(U) as given
by Eq. (44), we find that the variable YL = lnA has
the normal probability density function:

N(YL) = I e2x(27r)/2 XP[ I(YL + 2 2
- ln(A))2].

(50)

By variable transformation, we obtain the probability
density function for A as

fA (A) =2(2)" 2 A exp[- ( n( + 2crx2) 2],

U = Ub. (51)

This equation appears similar to Eq. (46); we note
that (A2 ) 12 is replaced by (A) and the effective
variance has been doubled. This results in a flatten-
ing and broadening of the probability density for the
case of identical disturbance to both beams, Uc = Ub.

For atmospheric fluctuations that vary slowly in
comparison with the pulse time T (this is the usual
case, see Refs. 16-18 and 21-23), the three-frequency
system envelope output will be Rician during each
time interval. The over-all envelope distribution in
the presence of the atmosphere /1A(r) will therefore
be a Rician smeared over all possible values of A,

fIA (r) = ff(rA)fA(A)dA, . (52)

where f/(r,A) is given by Eq. (20). In the absence of
signal, the envelope probability density remains as it
was before [see Eq. (22)], since the noise alone arises
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Fig. 5. Probability of error vs (SNR)i for the three-frequency bi-
nary communication system with atmospheric turbulence at the
level U 2 = 0.25. The input amplitudes A, and Ab are assumed to
be independent, and the noise is Gaussian. The result for the con-

ventional heterodyne system is shown for comparison.
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Fig. 6. Probability of error vs (SNR)i for the three-frequency bi-
nary communication system with atmospheric turbulence at the
level Ux

2 = 0.57. The input amplitudes A, and Ab are assumed to
be independent, and the noise is Gaussian. The result for the con-

ventional heterodyne system is shown for comparison.
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from the local oscillator which is unaffected by atmo-
spheric fluctuations. Thus,

foA (r) = f(r) . (53)

V. Binary Communications (Lognormal Channel)

Under the assumptions leading to Eq. (52) and
considering the various modulation schemes dis-
cussed previously, the probability of error in the
presence of the lognormal turbulent atmosphere is
given by

Pe(turbulent) = f P0 (quiescent)fA(A)dA. (54)

This quantity was calculated using the Columbia
University IBM-OS360 computer, and the results are
presented in Figs. 5-8. In Figures 5 and 6, the quan-
tities Ac and Ab were assumed to be independent
with the same signal power (Aa2 ) = (Ab2 ). The
error probability curves displayed in these figures
correspond to two values of the log-amplitude var-
iance, 2 = 0.25 and 2 = 0.57. These correspond
approximately to a = 1 and a = 1.5 (saturation
value).21 22 Other parameters are identical to those
for the quiescent atmosphere as shown in Fig. 1.
Figures 7 and 8 are analogous to Figs. 5 and 6, with
the exception of the fact that Aa = Ab. For all cases,
the results for conventional heterodyne operation are
also shown in Figs. 5 and 6. For ux - 0, the results
properly reduce to the quiescent atmosphere data
presented in Fig. 1. Computer results also indicate
that the probability of error curves depend only on
the signal-to-noise ratio and not on the absolute
noise level in the presence of the lognormal channel,
as well as in its absence.

From the graphical data presented in Figs. 1, 5, 6,
7, and 8, it is clear that orthogonal signaling for-
mats yield better performance than nonorthogonal
PCM/IM (this is also the case for direct detec-
tion16-18). Error probabilities are seen to increase
with increasing atmospheric turbulence levels. In-
dependent fluctuations in the two signal beams serve
as a kind of diversity and thereby improve receiver
performance. In all cases, furthermore, it is evident
that three-frequency nonlinear heterodyne detection
can provide improved performance over conventional
heterodyne detection, particularly as the ratio fB
increases. Finally, receiver performance for the
cases of phase detection with a maximum likelihood
criterions and phase-shift keying (PSK) have also
been obtained.7 Though PSK is definitely superior
to phase detection, neither scheme provides very
satisfactory performance.

VI. Future Work

The results obtained here may be extended in a
number of directions. Stochastic signals, rather than
sinewave signals, could be treated in the binary digi-
tal communication problem. An extensive treatment
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Fig. 7. Probability of error vs (SNR)i for the three-frequency bi-
nary communication system with atmospheric turbulence at the
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of M- ary communications is possible, as is the gener-
alization from a single detector to an array of detec-
tors. 1 6-18 Consideration could be given to the opti-
mum matched filter detector rather than the enve-
lope detector discussed earlier. While the present
treatment consists of a per symbol analysis, predic-
tion could be used to estimate the atmospheric tur-
bulence level over a time period from a particular
symbol, for example. In short, the usual variations
possible with the conventional heterodyne system
may be extended and/or modified for application to
the three-frequency nonlinear heterodyne technique
proposed here.

This work was supported in part by the National
Science Foundation. One of us (M.C.T.) is grateful
to the John Simon Guggenheim Memorial Founda-
tion for assistance.
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