
Photocounting Array Receivers for Optical
Communication Through the Lognormal Atmospheric
Channel. 2: Optimum and Suboptimum Receiver
Performance for Binary Signaling

S. Rosenberg and M. C. Teich

Performance characteristics are obtained for various optimum and suboptimum photocounting array re-
ceiver structures obtained in the preceding paper (Part 1). Probability of error curves are presented for
the case of lognormal fading and for a variety of receiver configurations including the BPCM single-de-
tector and array-detector processors and the BPOLM and BPIM single-detector processor. In addition to
these approximate optimum processors, the suboptimum aperture integration and MAP receivers are
evaluated in order to examine degradation of performance with increasing suboptimality. An optimum
amount of diversity is shown to exist for the aperture integration receiver, with a fixed signal energy con-
straint. In a related paper (Part 3), we examine a bound to the error probability for M-ary signaling.

1. Introduction

In Part 1 of this set of papers,1 the optimum pho-
tocounting array receiver structure was obtained for
dependent and independent lognormally faded field
samples, with several signaling formats. In general,
it was shown that the optimum receiver performs
weighted counting. For the special case of equal-
energy equally likely orthogonal signals and one de-
tector, the optimum receiver was shown to perform
simple unweighted photoelectron counting both in
the absence and in the presence of lognormal fading.

In this paper, we evaluate the binary error proba-
bilities for the receivers discussed in Part 1. We
begin first by considering the binary error probabili-
ty for a single detector containing one coherence area
of the field, with and without fading, assuming a
nonorthogonal signaling format such as pulse-code
modulation (PCM). We then obtain the error prob-
ability for a two-detector array, when the fading at
the two detectors is arbitrarily correlated. The deci-
sion regions for this case are presented graphically
and compared with the zero fading case. We then
present similar probability of error curves for-the

S. Rosenberg is with Bell Laboratories, Whippany, New Jersey
07981; M. C. Teich is with the Department of Electrical Engi-
neering & Computer Science, Columbia University, New York,
New York 10027.

Received 26 January 1973.

suboptimum aperture integration and MAP receivers
discussed in Part 1. The results indicate that the
two-diversity path aperture integration receiver does
almost as well as the two-detector optimum array re-
ceiver for moderate turbulence levels and low back-
ground radiation levels. The MAP receiver also
shows some regions of operation where the perfor-
mance is quite close to optimum, particularly for low
SNR. However, for both the MAP and aperture in-
tegration receivers with the log-irradiance standard
deviation near the saturation value, the optimum
array receiver outperforms the suboptimum struc-
tures. We include a discussion of the effect of diver-
sity and optimum diversity on receiver performance.
Finally, we evaluate the error probabilities for binary
orthogonal equal-energy signals such as binary polar-
ization and binary pulse-interval modulation
(BPOLM and BPIM). In the last paper of the series
(Part 3)2 we theoretically investigate the probability
of error for array detection of M-ary equal-energy,
equiprobable orthogonal signals in the presence of
flat independent fading.

11. Receiver Performance for Nonorthogonal PCM

The performance of the receiver structures dis-
cussed in Part 1 may be measured by the total prob-
ability of error. For the binary signaling case there
are two types of errors: choosing the hypothesis HI
when Ho is true and choosing Ho when H1 is true.
The probability of error P(E) is therefore given by
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P(e) = wop(HfIHo) + wrp(HoIHi), (1)

where wo, represents the a priori probability of a
0(1) being transmitted. Assuming for simplicity
that ro = 7r = 1/2, this becomes

P(W = 1p(L > 01Ho) + Ip(L < 01H),

ground noise counts, respectively. (Dark current
counts are included in NB.) Equivalently, a decision
is made based upon the criterion,

H.

n > kT,
Ho

(2)

which may be evaluated by inserting the appropriate
density for the likelihood function L under both hy-
potheses. We therefore obtain the expression

P(e) = fJ p(LIHo)dL + 2jp(LIH,)dL (3)

for the total probability of error. Since the quantity
p(L) is often not available in analytical form, the
error probability may equivalently be obtained by
solving for the region where the likelihood ratio A(n)
= 1 and then integrating the density of counts n
under each hypothesis over the appropriate region.
This latter method will be used in evaluating the
error probabilities for various receiver structures and
signal formats.

For M equiprobable hypotheses, the probability of
a correct decision P(C), conditioned on a transmit-
ted signal S1, is

P(C S1) = p(L > L2,L3,...,LM)

= f p(LI)dLI J f p(L2,L3,

Lm)dL2 ... dLm. (4)

Since the signals are assumed to be equally likely,
however, the same expression results for all M wave-
forms. The total error probability is simply

P(E) = 1 - P(C)

= - f p(Ll)dL 1 ' *-- f p(L 2,L3,*..,

Lm)d L2 . .. d,,,. (5)

This expression is often analytically intractable for
M > 2, and the usual approach is to obtain bounds
to this quantity. [In Part 3, we derive an upper
bound to the error probability for M-ary equal-ener-
gy orthogonal signals such as pulse-interval modula-
tion (PIM) and pulse-position modulation (PPM).]

A. Binary Pulse-Code Modulation: Single Detector

We begin with an evaluation of the likelihood
function for binary pulse-code modulation (BPCM)
with a = 0, i.e., for the quiescent atmosphere. Here
a represents the logarithmic-irradiance standard de-
viation (symbol definitions are the same as in Part
1). For one detector, the likelihood function reduces
to the easily obtained result3

n ln(N + 1)-N <0, (6
Ho

where Ns and NB are the mean signal and back-

(6b)

with kT -Ns/lln[(NsNB) + 1, truncated to the
next highest integer since n can take on only integral
values. The optimum receiver in this case performs
a simple threshold test based upon the quantity kT.3

The error probability is therefore given by

P(e) = p(n > kTIHo) + Ip(n < kTIHl)

1 , { NB. exp(-NB)

2 nT n!
kT-l(Ns + NB)n exp[-(Ns + NB)]

n=o n! 
1 - kT-l NBn exp(-NB)

=~ - n=- n!
+ kTl(Ns + NB)n exp[-(Ns + NB) (7)

Probability of error curves corresponding to Eq. (7)
have been presented elsewhere3 for various parametric
variations of Ns, NB, and NS/NB. It should be
noted that the threshold depends on the magnitude
of the signal levels as well as on the ratio of signal-
to-noise, y = NS/NB, in contradistinction to the
classical Gaussian communication problem where
only the SNR enters the probability of error.
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Fig. 1. Threshold count kT vs SNR y for optimum and MAP
single-detector photocounting receivers. The parameter a repre-

sents the log-irradiance standard deviation.
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In the presence of fading, we may obtain the deci-
sion threshold from Eq. (23) of Part 1, with D = 1.
The solution to this nonlinear implicit equation pro-
vides the optimum threshold for a particular set of
values for , N, and y = Ns/NB. An equivalent
method is to find the intersection of pL(n) with po(n)
and then to choose the smallest integer n for which
p1 (n) > po(n) as the threshold kT. The latter scheme,
as well as all other evaluations of error probabilities,
was implemented on the Columbia University IBM-
OS360 computer using double-precision arithmetic
throughout in order to minimize roundoff error.

The optimum threshold count kT vs the SNR is
indicated by the solid lines in Fig. 1. Parametric
variation for various values of a and NB is presented.
Also indicated is the optimum threshold for the zero
turbulence case a = 0. The broken lines represent
the suboptimum threshold based on the MAP receiv-
er discussed later. As the severity of the turbulence
increases, the variation of threshold with the SNR y
is seen to decrease markedly. This can be under-
stood from the rapid broadening of the signal-plus-
noise counting distribution as a increases; thus the
intersection of pl(n) and po(n) does not shift appre-
ciably even though the over-all signal mean count
increases with y.

The error probabilities for the single-detector
threshold receiver are presented in Fig. 2 for two dif-
ferent levels of mean noise count NB. The lowest
curve is that for no turbulence (r = 0); the higher
curves correspond.to increasing turbulence as shown.
The odd-numbered curves represent the optimum
detector, whereas the even-numbered curves are
those for the suboptimum MAP detector to be dis-
cussed subsequently. The rapid increase in error
probability with is apparent. While the falloff for
a = 0 is faster than exponential, curves for o id 0 fall
at a much slower rate. The typical improvement in
performance with increasing background and signal
(but with fixed y) is evident by examining the curves
for NB = 1 and 4. This improvement can be shown
to be a consequence of conditionally Poisson statis-
tics4 and the nature of the discrete threshold.

The equivalent power loss due to the presence of
fading can be obtained by evaluating the number of
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dB of additional power required to maintain a given
error rate, over that in the absence of fading. The
solid curves in Fig. 3 indicate the power loss for a va-
riety of error rates, noise levels, and turbulence levels
and were obtained from the error curves in Fig. 2.
For moderate to high levels of a, the necessary in-
crease in power can readily exceed 10 dB at moder-
ate error rates. Loss curves analogous to those of
Fig. 3 have been presented for binary orthogonal
equal-energy signals detected at a thermal-noise
limited point detector.5 While the detrimental effect
of the lognormal channel is clear, the losses calculated
in Ref. 5 are approximately 5 dB less than those
shown by the solid curves in Fig. 3. This difference is
readily attributable to the nonorthogonal binary
signal sets considered here. A similar calculation for
direct detected binary orthogonal signals [binary
pulse-interval modulation (BPIM) and binary polar-
ization modulation (BPOLM)] shows losses of ap-
proximately the same order as for the heterodyne case
and are indicated by the dashed curves in Fig. 3.
Thus, in addition to the performance gain of BPOLM
over BPCM in the absence of turbulence, the curves
show that the losses for BPOLM are about 3 dB less
than for BPCM, for moderate to severe turbulence
levels, for a given error rate.

A discussion of the performance gain of BPOLM
over BPCM both in the absence and in the presence
of turbulence will be deferred to a later section,
where the performance of binary orthogonal equal-
energy signal sets are considered.

B. Binary Pulse-Code Modulation: Array Detector

For an array of D detectors, the approximate opti-
mum receiver structure was presented in Eq. (22) of
Part 1. Once again, it is difficult to find the deci-
sion boundary because of the complexity of this non-
linear implicit equation for n. As in the single de-
tector case, we determine the threshold boundary by
finding the intersection of the two probability densi-
ty surfaces pl(n) and po(n), in n space. If we define
the optimum boundary threshold kT as the D-di-
mensional equivalent of the optimum threshold T,

the error probability is given by

6
5
4

Fig. 2. Probability of error P(E) vs SNR y for sin-
gle-detector photocounting receiver. Odd-numbered
curves correspond to the optimum receiver while
even-numbered curves correspond to the subopti-
mum MAP receiver. (a) NB = 1, number of coher-
ent areas = 1; (b) NB = 4, number of coherent areas

= 1.
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Open circles and squares indicate hand-calculated theoretical
points obtained from curves such as those in Fig. 2.

P~) Ip,(n < k) + Ipo(n > kT), (8)

2 -2LI

where by n > kT we mean unit > kTil for all i = 1,
... D. The subscript 0(1) to the probability indi-
cates that it is conditioned on Ho(H1). In principle
the above rule can be implemented on a computer.
For D > 3, however, the solution becomes exces-
sively complex as well as costly. In order to evalu-
ate the most conservative advantage of array pro-
cessing, we were able to obtain performance curves
for D = 2, with arbitrary fading correlation. Com-
puter algorithms were written to find the solution to
the equation

p1 (nj, n 2) = p(ni, n2 ),

ditional error would be introduced in the perfor-
mance if the R = 0 boundary were used for the case
R = 1 and vice versa. The actual error probabili-
ties, nevertheless, are radically different because the
counting distributions for the two cases (R = 1 and
R = 0) differ considerably. For higher background
levels (NB = 8) and thus higher signal levels as well,
the variation of the boundary with R is more signifi-
cant, even for moderate a. This is readily explained
by the increased broadening of the signal-plus-noise
counting distribution with increasing Ns, as is evi-
dent from the variation of the twofold cumulant which
increases as NS2 , for a given value of -y.6 Thus the
effect of R becomes more prominent at higher back-
ground levels. It should be noted, however, that it is
the relative variation of the two surfaces p1(n) and

N
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as well as to obtain the corresponding error probabil-
ity. A typical set of decision boundaries for this case
is shown in Fig. 4 for several values of a, y, NB, and R.

By examining the curves for the optimum thresh-
old of the two-detector array, one observes, in analo-
gy with the single-detector case, that the relative
magnitude of this threshold does not change drasti-
cally with y, even for moderate turbulence levels (a
= 0.5). For high turbulence levels [Fig. 4 (b)], there
is even less change. In the two-detector case, how-
ever, there is the additional parameter of the fading
correlation coefficient to consider.

The variation of the optimum threshold boundary
shape with the correlation coefficient R is seen to be
more drastic for larger a and NB, for fixed y. For
low background levels (NB = 2), the effect of R on
the shape of the boundary is minimal, while for high
background levels (NB = 8), the effect is pro-
nounced. Thus for low background levels, little ad-
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Fig. 4. Optimum threshold boundary kT(nl,n2) for the two-de-

tector array receiver with parametric variation of Nn, y, and R.

(a) a = 0.5; (b) a = 1.5.
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Fig. 5. Probability of error P(e) vs SNR y for two-detector PCM photocounting array receiver. The lower curve of each pair represents
the optimum receiver while the upper curve represents the suboptimum MAP receiver. In all cases NB = 2. (a) R = 0; (b) R = 0.5; (c)

R 1.0.

po(n), and not just the broadening of pi(n), which
generates the variation in, the threshold boundary
and thus in the error probability. Therefore only
when NB is large (and thus for large Ns as well with
y fixed) do the variations in the other parameters in
p1 (n) become significant.7

The error probabilities are presented in Fig. 5 for
NB = 2 and R = 0, 0.5, and 1.0, as a function of
SNR y, with a as a parameter. The smooth curves
correspond to the optimum processor. In (a) and
(b), the MAP receiver performance is indicated by
the upper curve of each pair associated with a given
value of a. As observed in the single-detector re-
ceiver behavior, severe losses are induced by the tur-
bulence. The effect of the fading correlation coeffi-
cient R on the probability of error is apparent in
comparing (a), (b), and (c) for a given value of a.
Furthermore, the curves for R = 1.0 in Fig. 5(c) are
identical to those for the single-detector receiver
with twice the corresponding mean noise count.
There is somewhat more than an order-of-magni-
tude increase in error probability as R goes from 0 to
1, for moderate turbulence levels, and somewhat less
than an order-of-magnitude at the saturation value a
= 1.5. This latter effect is readily explained by the
severe broadening of the probability density surface
for a - 1.5, so that the area under the surface be-
tween the origin (n 1 = n2 = 0) and the optimum
threshold boundary kT(nl,n2) does not change very
much as R varies from 0 to 1, even though the
boundary itself does. By examining some of the
values of p(ni,n2 ) along the boundary for NB = 8 and
-y = 20, we find that for R = 0 the relative magni-
tude of points along the boundary, starting at the
point n1 = n2 , decreases about 4 orders of magni-
tude, whereas for R = 1.0, the decrease is over 7 or-
ders of magnitude. Thus the points included in the
boundary for R = 1 and left ut for R = 0 are so
small in magnitude that this significant difference in
the boundaries results in a not so significant differ-
ence in error probability.

The conclusion reached on studying the paramet-
ric variation of these various curves is that for low
background noise levels, and for most turbulence
levels, one can process under the assumption that R
- 0. For high background levels, moderate turbu-
lence (a 0.5), and low -y, one can process with R =
0 as well, while for large -y, the variation of R must
be taken into account. Finally for large background
and severe turbulence, and over a wide range of y,
processing with R = 0 should not significantly de-
grade performance.

Furthermore, these curves implicitly indicate the
effect of diversity on the performance when the total
detected signal energy is held constant; the figures
for R = 0 correspond to D = 2, while those for R = 
correspond to D = 1, where D is the number of inde-
pendent diversity paths. Figure 6 indicates that the
power gain due to diversity for a two-detector array
can exceed 5 dB at moderate error rates and in-
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Fig. 6. Probability of error P(E) vs dB power gain due to diversi-
ty (D = 2) for two-detector photocounting array receiver. Cir-
cles, squares, and triangles represent hand-calculated theoretical
points. The dependence on background and turbulence is pre-

sented parametrically.
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Fig. 7. Probability of error P(E) vs SNR for the aperture integra-
tion receiver. The quantity DNB = 8 is kept constant. The
upper curve of each pair corresponds to D = 1, NB = 8 while the

lower curve corresponds to D = 8, NB = 1.

creases with the severity of turbulence. The ques-
tion of optimum diversity will be discussed in more
detail in Sec. II. D.

C. Aperture Integration Receiver
The performance of the aperture integration re-

ceiver is readily obtained by implementing the re-
ceiver structure presented in Part 1. For D equal-
strength diversity paths with equal energy, the opti-
mum threshold is found by the same method used in
Sec. II. A. The performance of an aperture integra-
tion receiver with constant total noise energy DNB is
presented in Fig. 7 for two values of D. The under-
lying parametric change as D is varied is contained
in CA through Eq. (26b) of Part 1. The curves thus
indicate the effect of aperture averaging of the scintil-
lation.

While the structure of the aperture integration re-
ceiver has been discussed by others in some detail, 8

the receiver performance presented here has not. As
is evident from the curves, the reduction in error
probability with increasing D, for the same total
mean count D(Ns + NB), is due to the reduction in
CA as well as to the over-all increase in signal power.
The odd-numbered curves (upper curve of each pair)
correspond to D = 1, NB = 8 while the even-num-
bered curves (lower curve of each pair) correspond to
D = 8,NB = 1.

D. Optimum Diversity for the Aperture Integration
Receiver

A more realistic situation occurs when the total
detected signal energy remains constant (Ns = -yNB)
and independent of D, while the total noise energy
increases with D as DNB. The effect of diversity is
then to divide the signal energy among D indepen-
dent paths. Thus for each path the mean count due

to signal is Ns/D, while that due to noise is NB. In
this way, we are comparing the case where all the
signal energy is received at a single small detector
with the case where the signal energy is divided
among several diversity paths and received at a
much larger detector. This results in an effective re-
duction of a concurrent with an increase of noise.
The conditional rate parameter for the aperture in-
tegration receiver is then given by W = ZNs + DNB.
Under this condition, depending upon the magni-
tudes of NB and NS/NB, there will be some optimum
value of D. This can be explained as follows.

With a signal energy constraint independent of D,
the error probability decreases with increasing D, the
number of independent diversity paths. However,
the effect of noise rapidly overtakes the gain due to
the independent scintillations on the D paths.
Then, at some point, there is an optimum value for
D for a given total value of Ns and NS/DNB. This is
entirely analogous to the optimum diversity found in
classical fading channels (e.g., Rayleigh fading 9 ).
However, the optimum diversity in the classical de-
tection problem does not depend on the magnitudes
of the signal and noise energies separately, but only
on their ratio. This follows from the basic difference
that distinguishes classical Gaussian detection from
conditionally Poisson detection problems, as already
discussed.

The probability of error P(e) is plotted as a func-
tion of Ns for several values of D, and for fixed
values of NB and a, in Fig. 8. As Ns increases, ex-
amination of a wide range of such curves indicates
that the lowest probability of error is obtained for
continually increasing D. For example, we consider
Fig. 8(a) where NB = 1 per diversity path and a =
0.5. For low Ns the lowest error probability is that
for D = 1, since at these levels of Ns and a, the gain
due to the aperture averaging of a with increasing D
is overpowered by the increase in noise. However at
Ns ' 12, we have a sufficiently strong signal so that
increasing D to 2 (concurrent with an increase in de-
tected noise) maintains the lowest error probability.
If we now examine Fig. 8(b), where a = 1.0, we ob-
serve that the same situation prevails as Ns is in-
creased from 0, except that in this case the gain due
to aperture averaging begins to show up at lower sig-
nal levels. (The first crossover of the curves occurs
atNs 3.)

We may translate the data from curves similar to
those presented in Fig. 8 to the form of Figs. 9 and
10 where we plot the probability of error vs the num-
ber of diversity paths with NB, Ns, and a as parame-
ters. The optimum diversity for a given value of Ns
is clearly represented as the minimum in the proba-
bility of error although the location of this optimum
value is rather broad for a > 1. The minimum is
quite pronounced for moderate values of turbulence,
however. For severe turbulence (a = 1.5) we ob-
serve that above a certain mean signal count, the
more diversity the better. This can be explained by
the nature of the photoelectron counting distribution,
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Fig. 8. Probability of error P(E) as a function of
total mean signal count Ns and diversity D for the
aperture integration receiver. NB = 1. (a) a = 0.5;

(b) a = 1.0.

TOTAL MEAN SIGNAL COUNT TOTAL MEAN SIGNAL COUNT

(a) ( b)

which broadens more rapidly for larger mean signal
counts and in effect requires more averaging of scin-
tillation.

Thus, depending on the severity of turbulence and
the available signal power, it is clear that control of
diversity in the aperture integration receiver may be
desirable. In fact for light to moderate turbulence
(a < 1.0) too little diversity is generally preferable to
too much. An analogous situation was shown to
prevail by Kennedy and Hoversten for heterodyne
detection 0 ; however, that case is much simplified by
the basically Gaussian nature of the statistics.

E. Comparison of Two-Detector Array with Aperture
Integration Receiver

From the system designer's point of view, a quan-
tity of interest is the relative gain in performance of
the optimum (or approximate optimum) array pro-
cessor over that of the suboptimum aperture integra-
tion receiver. Thus one can evaluate the loss in per-
formance incurred by use of the (much simpler) sin-
gle-detector aperture integration receiver. In this
section, the quantities Ns and NB refer to the mean
counts per coherence area, or per detector for the
two-detector array case.

To examine this quantity, the equivalent increase
in power (dB) required by the suboptimum receiver
to maintain a given error rate of the optimum array
receiver (assuming R = 0) was obtained from the
various probability of error curves. These calcula-
tions were effected by setting D = 2 and choosing
several values of a and NB; The approximate gain
of the uncorrelated two-detector array over the
equivalent aperture integration receiver (D = 2) is
presented in Table I. At least for D = 2, the values
calculated confirm the conjecture made by Hover-
sten, et al. 8 that the array detector gain will only be
significant for severe turbulence and high back-
ground noise. From the table, the aperture integra-
tion receiver with D = 2 is seen to perform quite well
at low to moderate turbulence levels and is only a
few dB worse than the uncorrelated two-detector
array at the saturation value of a, for moderate error
rates.

There are a number of possible sources of error in
the entries in Table I, however. First, calculations
were performed by hand from the various error prob-
ability curves, and there is therefore some inherent
error in the technique (which is limited by the reso-
lution and geometrical accuracy of the curves gener-
ated by computer graphics). Furthermore, it has
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Fig. 10. Probability of error P(E) vs number of diversity paths D for the aperture integration receiver. The dependence on N 5 is shown
parametrically. NB = 4. (a) a = 0.5; (b) a = 1.0; (c) a = 1.5.

Table . Gain of Uncorrelated Two-Detector Array Receiver
(in dB) over Aperture Integration Detector with D = 2

P(f) N11 o = 0.5 af = 1.0 af = 1.5

10-1 2 0 0.30 1.18
4 0 0.36 1.32
8 0 0.41 1.36

10-2 2 0 0.56 > 1.36
4 0 0.56 >1.56
8 0 0.60 2.10

10-3 2 0
4 0 >0.70
8 0.2 0.78 2.75

10-4 2 0
4 0.1
8 0.2 1.10

been assumed that the fading random variable Z in
the aperture integration receiver is well approximat-
ed by a lognormal density function for two indepen-
dent coherence areas in the aperture (D = 2).
Based on recent work, this appears to be a reason-
able assumption."",12 Finally, since the receiver ap-
erture will rarely contain completely independent co-
herence areas and since the aperture integration and
array receivers perform identically for R = 1 (D =
2), the relative gain of the two-detector array receiv-
er over the aperture integration receiver may be fur-
ther reduced. A final comment is in order: Since
we have evaluated only the two-dimensional case,
little can be conjectured about the relative gains of
larger arrays.

F. MAP Receiver

The other suboptimum receiver considered pre-
viously' is the MAP receiver in which a maximum a
posteriori estimate of the fading based on the ob-

served counts n is obtained and used as the true fad-
ing. The performance of this receiver for the single
detector and for the two-detector array has been pre-
sented in Figs. 2 and 5 (see also Fig. 1). The upper
curve of each pair corresponding to a given value of a
is discontinuous in nature and represents the perfor-
mance of the MAP receiver. The discontinuities
arise because of the discrete threshold involved.
The curves periodically approach those for the opti-
mum receiver; thus, over small ranges of Ns/NB, and
with low to moderate o- and low Ns and NB, the
MAP receiver can perform satisfactorily. The
suboptimum performance results from the fact that
the fading estimate Z is used whether or not a signal
is present.

Ill. Receiver Performance for Orthogonal BPOLM
and BPIM

Because depolarization due to the atmosphere
does not appear to be an important effect at optical
frequencies,'3 one of the orthogonal signal formats
attractive for optical communication is binary polar-
ization modulation (BPOLM) where two orthogonal
polarizations of the optical field represent the binary
states of the signal. It has been shown previously'
that the optimum receiver for this equal-energy bi-
nary orthogonal signal set is just photoelectron
counting. The receiver consists of a single-detector
twin-channel receiver (see Fig. 11) where each of the
channel inputs corresponds to one of the states of
polarization separated by a device such as a Wollas-
ton prism. The performance of such a system in the
absence of fading has been discussed by other au-
thors.3 "14 Peters and Arguello'5 have considered the
performance in the presence of lognormal fading, but
they neglect background noise and dark current. In
this section we evaluate the performance of such a
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Fig. 11. Block diagram of optimum single-detector twin-channel
receiver for BPOLM with lognormal fading.

system in the presence of both fading and back-
ground noise.

Another binary orthogonal signal format of inter-
est is binary pulse-interval modulation (BPIM) in
which a single pulse is sent in one of two disjoint
time slots,16 corresponding to one bit of information.
Assuming that there is no pulse synchronization un-
certainty in the processor, there are two possible op-
timum detection schemes for this format: one in
which there are separate counters for each time slot,
analogous to the two possible states of polarization
in BPOLM, and the other where there is a single de-
tector whose output is stored and then compared at
the end of the signaling interval. Both of these
schemes can be analyzed by using the twin-channel
receiver and the same decision rules. These rules can
be arrived at from three different detection criteria:
The first uses the threshold detector discussed in Sec.
II.A, but here the counts from each channel are com-
pared with the optimum threshold, and the detector
for which the threshold is exceeded corresponds to
the signal for that channel.' 4 The second decision
rule chooses the signal as that corresponding to the
channel with the larger count.' 4 The third rule is
similar to the second rule with the addition that a
random choice is made if the counts are equal. 3 We
consider here only the second and third rules; rule 3
turns out to be optimum and is slightly better in per-
formance than rule 2, as we now show.

For rule 2 the error probability is given by

(a)

X

a.
0

LJ

0

I-

:3

a:
0

with p,(n) and po(n) representing the counting dis-
tributions of signal-plus-noise and noise, respective-
ly, in the presence of fading. The error probability
for rule 3 is given by

P() {1- ZP1(k)[Zpo(n)]} + 2 Ep'(n) p(n).
k=O n=0 2n=0

(11)

The quantity in braces represents the probability
that (no > n1) when a 1 is present and the second
term is just p(no = ni). Further examination of the
relationship between the error probabilities for rules
2 and 3 leads to the result

P(e) = P(e) - 1p(ni = no).
rule 3 rule 2

(12)

For NB large, the second term on the right-hand side
of Eq. (12) becomes negligible, and the two rules
perform identically. Figure 12 indicates the perfor-
mance of a single-detector twin-channel counting re-
ceiver for rules 2 and 3 both in the absence and in
the presence of fading. The odd-numbered curves
correspond to rule 3 and the even-numbered curves
to rule 2. The scallops that appear in the perfor-
mance curves for the optimum threshold detector for
BPCM (compare Fig. 2) are absent here.

Using probability of error curves for BPOLM and
BPIM such as those presented in Fig. 12, we have
calculated the equivalent power loss due to turbu-
lence. These curves appeared in Fig. 3 along with
similar curves for BPCM. In addition, we have cal-
culated the equivalent power gain in dB of BPOLM
(BPIM) over BPCM both in the absence and in the
presence of fading. The results of these calculations
are in Fig. 13 for NB = 1,4 and a = 0, 0.5, 1.0, and
1.5. In the absence of atmosphere, the gain is about
2 dB at moderate error rates. As the level of turbu-
lence increases, indicated by increasing a, the gain of
BPOLM over BPCM readily exceeds 3 dB at moder-
ate levels of turbulence and 5 dB at or near = 1.5.
Although the gain of BPOLM over BPCM is more or

Fig. 12. Probability of error P(E) vs SNR y for sin-
gle-detector twin-channel receiver using BPIM or
BPOLM. The upper of each pair of curves corre-
sponds to decision rule 2 while the lower corresponds
to decision rule 3. The effect of fading is shown

parametrically. (a) NB = 1; (b) NB = 4.
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less constant over a wide range of error rates for au
0, the respective equivalent power losses of the two
signaling formats in the presence of turbulence is dif-
ferent. This gain in the presence of fading, com-
bined with the gain of BPOLM over BPCM in the
absence of fading, results in the over-all gain curves
in Fig. 13. Thus, where the available power for
transmission is constrained, the binary orthogonal
formats appear to be the best choice. Furthermore,
for a single-detector receiver, such as the aperture
integration receiver, the optimum processor is just a
counting receiver for each binary signal mode,
whereas for BPCM, the receiver structure is consid-
erably more complex due to the nonlinear weighting
of the counts.

If we consider an array of detectors rather than a
single detector, the optimum array processor for
BPOLM would be constructed for the two channels
corresponding to the two possible orthogonal signals,
and then one would choose the largest output, that
is, L, or Lo, corresponding to a 1 or a 0. However,
in this case the processing is no longer simple photo-
electron counting; the receiver structure was pre-
sented in Fig. 2 of Part 1.' The error probabilities
are obtained from Eq. (5) with M 2 for equiproba-
ble hypotheses.

IV. Summary

In this paper we evaluated receiver performance in
terms of orthogonal and nonorthogonal binary error
probabilities for a number of optimum and suibopti-
mum photocounting receiver structures presented in

Part 1.1 Both single-detector receivers and array-
detector receivers were considered. A lognormal
fading channel was assumed, and background radia-
tion as well as dark current were taken into account.
The aperture integration receiver was found to per-
form quite well in comparison with the optimum
two-detector array receiver. Only for extreme tur-
bulence, large background levels, uncorrelated fading,
and low error rates did the array processor show
appreciable equivalent power gain over the aperture
integration receiver. For BPCM, and a single detec-
tor, the effects of turbulence were found to produce
more than 10 dB of equivalent power loss at moderate
to severe levels of fading. This loss was shown to be
reducible by the use of diversity, however. Adding
just one diversity path provided as much as 5 dB of
equivalent power gain at moderate turbulence levels.
The existence of an optimum amount of diversity,
with a fixed signal energy constraint, was demon-
strated graphically for the aperture integration
receiver. Unlike the analogous heterodyne case, how-
ever, the optimum value for D was found to depend
strongly on the background noise level as well as on
the mean count SNR-y.

The performance gain of the binary orthogonal sig-
nal formats over the nonorthogonal signal formats
was found to increase with the severity of turbu-
lence. Thus, as in the absence of turbulence, we can
conjecture that orthogonal signal formats are opti-
mum for direct detection systems.17 This is particu-
larly attractive for the aperture integration receiver
since the optimum processor just compares photo-
electron counts from the various orthogonal modes,
and the receiver structure is very simple.

This work was supported in part by the National
Science Foundation and is based on portions of a
dissertation' 8 "19 submitted by S. Rosenberg to the
Department of Electrical Engineering and Computer
Science at Columbia University in partial fulfillment
of the requirements for the degree of Doctor of Engi-
neering Science.
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