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Abstract—Statistical analysis of the sequence of heartbeats can
provide information about the state of health of the heart. We
used a variety of statistical measures to identify the form of the
point process that describes the human heartbeat. These mea-
sures are based on both interevent intervals and counts, and
include the interevent-interval histogram, interval-based period-
ogram, rescaled range analysis, the event-number histogram,
Fano-factor, Allan Factor, and generalized-rate-based period-
ogram. All of these measures have been applied to data from
both normal and heart-failure patients, and various surrogate
versions thereof. The results show that almost all of the inter-
event-interval and the long-term counting statistics differ in
statistically significant ways for the two classes of data. Several
measures reveal 1/f-type fluctuations (long-duration power-law
correlation). The analysis that we have conducted suggests the
use of a conveniently calculated, quantitative index, based on the
Allan factor, that indicates whether a particular patient does or
does not suffer from heart failure. The Allan factor turns out to
be particularly useful because it is easily calculated and is jointly
responsive to both short-term and long-term characteristics of the
heartbeat time series. A phase-space reconstruction based on the
generalized heart rate is used to obtain a putative attractor’s
capacity dimension. Though the dependence of this dimension
on the embedding dimension is consistent with that of a low-
dimensional dynamical system (with a larger apparent dimension
for normal subjects), surrogate-data analysis shows that identical
behavior emerges from temporal correlation in a stochastic pro-
cess. We present simulated results for a purely stochastic inte-
grate-and-fire model, comprising a fractal-Gaussian-noise ker-
nel, in which the sequence of heartbeats is determined by level
crossings of fractional Brownian motion. This model character-
izes the statistical behavior of the human electrocardiogram re-
markably well, properly accounting for the behavior of all of the
measures studied, over all time scales.
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INTRODUCTION

Scale-invariant fluctuations and power-law correlation
have been demonstrated in the sequence of heartbeats
(6,15-17,37,41,42,49,63). Different heartbeat power
spectral densities are associated with various pathological
conditions, such as diabetic autonomic neuropathy
(12,33), uncomplicated essential hypertension (21), sud-
den infant death syndrome (29), potential for sudden car-
diac death (15-17), severe heart disease (41,42,63), and
myocardial infarction (6). The studies that have been con-
ducted focus, for the most part, on the relative power in
various spectral peaks as indicators of health.

In this paper, we examine normal and heart-failure
electrocardiograms (ECGs) in the context of more general
analyses designed to quantify multiscale fluctuations in
point processes. We also examine a measure (the capacity
dimension) used to quantify the behavior of a nonlinear
dynamical system, but we do so using a count-based rather
than an interval-based representation. Our approach en-
ables us to distinguish between normal and heart-failure
data and therefore may provide a more general way of
determining the degree of health of the heart. We also
present a stochastic model that characterizes the statistical
properties of the electrocardiogram remarkably well. A
preliminary report of portions of this work was presented
at the SPIE meeting on Chaos in biology and medicine in
1993 (63).

As an indicator of the potential roles of scale-invariant
fluctuations and fractals in biology and medicine, we di-
rect the reader’s attention to the long-duration, power-law
correlation that has been found to be present in the se-
quence of action potentials generated by primary auditory
(VIII-nerve) neurons in the cat (35,55-57), chinchilla
(43), and chicken (44); in retinal ganglion cells and in
the lateral geniculate nucleus of the cat (58); in striate-
cortex neurons in the cat (59); in mesencephalic reticular-
formation neurons in the cat (19); and in a visual inter-
neuron in the locust (64). At all these loci, power-law
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correlation extends to long times, with the upper limit of
observed correlation time often imposed by the duration of
the recording.

Fractal fluctuations, which give rise to 1/f~type power
spectra, are readily apparent in estimates of the heart rate
(49,63). In Fig. 1, a rate estimate is formed by counting
the number of contractions (QRS complexes) in succes-
sive counting windows of duration 7. It might be expected
that the fluctuations exhibited by the estimate would de-
crease rather rapidly as 7 is increased, and this is indeed
the case for nonfractal signals (e.g., the heart data with
randomly reordered interevent intervals shown in Fig.
1a). The fluctuations of fractal signals, on the other hand,
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either converge slowly or persist at the same magnitude as
the counting time is increased, as is the case for the normal
heart data presented in Fig. 1b. Despite the different con-
vergence properties, the point processes on which Figs. 1
a and b are based have identical interevent-interval histo-
grams. Similar scale invariance is observed for the se-
quence of interevent intervals (16,17,30,41). The statisti-
cal measures we present quantify this phenomenon.
Previous studies have, for the most part, focused on
analyses based on the sequence of intervals between heart-
beats, in which the abscissa of the time series is the in-
terval number (30,41,42,53). Our analysis joins this ap-
proach with information obtained from count or rate esti-
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FIGURE 1. Rate estimates formed by counting the number of beats in successive counting times. (a) The data with shuffled
intervals is nonfractal. For nonfractal signals, the fluctuations decrease rapidly with increasing counting time 7. The magnitude of
fluctuations can be quantified by the standard deviation of the rate. (b} The magnitude of fluctuations in fractal signals converge
with a slower (power-law) dependence on counting time, if they converge at all. For each of the estimates in (b}, fluctuations of
the order of 0.5 beat/sec persist, even though the counting time is increased by a factor of 20 from the top panel to the bottom.
The convergence properties are characterized by several measures presented in later figures. The data in (b} are from a long-
duration recording of a normal heart electrocardiogram (data set 16265). The data in (a) are from the same recording, but with the
intervals randomly reordered (shuffled), which maintains the same relative frequency of the intervals (the [IH), but destroys
long-term correlations arising from other sources. These same two data sets (16265) are denoted in subsequent figures as

‘normal’, and ‘normal, shuffled intervals’, respectively.
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mates (54,56) of the heartbeat sequence, which have the
merit of preserving real time along the abscissa. An ad-
vantage of the rate approach over the interval approach is
that it therefore allows a direct interpretation of the ob-
served correlation (8).

Indications that the heart exhibits chaos over short time
scales (1,3,46), and under special experimental conditions
(13,14,20,28,66,68), have been set forth previously. To
examine the possibility that heartbeat-rate variability over
long time scales in normal and heart-failure patients has a
nonlinear-dynamical origin, we have calculated the di-
mension of the associated attractor using a counting par-
adigm. Though the results are consistent with what would
be expected from a low-dimensional chaotic attractor, sur-
rogate-data analysis suggests that simple temporal corre-
lation in a stochastic system leads to the same results.

In the Methods section we present the theoretical back-
ground for the statistical measures we utilize. The subse-
quent two sections present the results and a discussion of
how the various statistical measures differ for normal pa-
tients and those with heart failure. A stochastic model
which characterizes the behavior of the ECG remarkably
well is presented subsequently, and the principal conclu-
sions are set forth in the summary.

METHODS
Point Processes

The statistical behavior of the sequence of heartbeats
can be studied by replacing the complex waveform of an
individual heartbeat recorded in the electrocardiogram
(QRS-complex) with the time of occurrence of the con-
traction (R-phase), a single number (8). In mathematical
terms, the heartbeat sequence is then modeled as an un-
marked point process. This simplification greatly reduces
the computational complexity of the problem and permits
us to use the substantial methodology that treats stochastic
point processes.

The occurrence of a contraction at time ¢, is therefore
simply represented by an impulse 8(z — ¢,) at that time, so
that the sequence of heartbeats is represented by

s@) = D, 8 — 1) (1)

As illustrated in Fig. 2a, a realization of a point process is
specified by the set of occurrence times {z;} of the events.
A single realization of the data is often all that is available
to the observer, so that the identification of the point pro-
cess, and the elucidation of the mechanisms that underlie
it, must be gleaned from this one realization.

One way in which the information in an experimental
point process can be made more digestible is to reduce the
data into a statistic that emphasizes a particular aspect of
the data at the expense of other features. These statistics

fall into two broad classes (7,54) which have their origins,
respectively, in the sequence of interevent intervals {7}
represented in Fig. 2b, and in the sequence of counts {N;}
represented in Fig. 2c. Measures based on interval and
counting statistics are discussed below, in turn.

We first consider the homogeneous Poisson point pro-
cess (HPP), which is the simplest of all stochastic point
processes (22). It is memoryless: the occurrence of an
event at any time f, is independent of the presence (or
absence) of events at other times ¢ # 1. Because of this
property, both the intervals {r;} and counts {N;} form se-
quences of independent, identically distributed (iid) ran-
dom variables. The HPP interval process is therefore com-
pletely characterized by the interevent-interval distribution
(which is exponential) or by the event-number distribution
(which is Poisson). The HPP serves as a benchmark
against which other point processes are measured, and
therefore plays the role that the Gaussian process plays in
the realm of continuous-time stochastic processes.

A related point process is the nonparalyzable dead-
time-modified Poisson point process (DTMP) (47), a close
cousin of the HPP that differs only by the imposition of a
dead-time (refractory) interval after the occurrence of each
event, during which other events are prohibited from oc-
curring.

Interevent-Interval Measures of a Point Process

We employ three statistical measures to characterize
the discrete-time stochastic process {r;}, which is a se-
quence of positive real-valued random variables, as illus-
trated in Fig. 2b. These are the interevent-interval histo-
gram (IIH), rescaled range analysis (R/S), and the inter-
val-based periodogram (IBP).

Interevent-Interval Histogram (IIH). The interevent-
interval histogram displays the relative frequency of oc-
currence p.(7) of an interval of size 7; it is an estimate of
the probability density function of interevent-interval
magnitude [see Fig. 2b]. It is, perhaps, the most com-
monly used of all statistical measures of point processes in
the life sciences. The IIH provides information about the
underlying process over time scales that are of the order of
the mean interevent interval. Its construction involves the
loss of interval ordering, and therefore dependencies
among intervals; a reordering of the sequence {r;} does not
alter the ITH since the order plays no role in the relative
frequency of occurrence.

Some point processes exhibit no dependencies among
their interevent intervals at the outset, in which case the
sequence of interevent intervals forms a sequence of iid
random variables and the point process is completely spec-
ified by its ITH. Such a process is called a renewal process,
a definition motivated by the replacement of failed parts
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FIGURE 2. (a) The electrocardiogram is reduced to a set of event occurrence times {t;} that form a point process. {b) A sequence
of interevent intervals {7;} is formed from the time between successive events, resulting in a discrete-time, positive, real-valued
stochastic process. All information contained in the original point process is preserved in this representation, but the discrete-time
axis of the sequence of interevent intervals is distorted relative to the real time axis of the point process. {c) The sequence of counts
{N}, a discrete time, non-negative, integer-valued stochastic process, is formed from the point process by recording the number
of events in successive counting windows of duration 7. Information is lost in mapping the point process to the sequence {N;}, but
the amount lost can be made arbitrarily small by reducing 7. {d) The sequence of generalized counts {X;}, a discrete-time, positive,
real-valued stochastic process, is formed from the point process by recording the fractional number of intervals in successive
counting windows of duration T. Information is lost in mapping the point process to the sequence {X}}, but in this case the amount

lost cannot be made arbitrarily small by reducing 7.

(such as light bulbs), each replacement of which forms a
renewal of the point process.

The HPP and the DTMP are both renewal processes.
The interevent-interval probability density function for the
HPP assumes the exponential form

poAT) = Ne™ N, (2)

where A is the mean number of events per unit time.
The interevent-interval mean and variance are readily
calculated to be (v) = [J1p.(1)dT = 1/N and
var(t) = ((t%) — (1)*) = 1/A?, respectively. The inter-
event-interval probability density function for the DTMP
exhibits the same exponential form as for the HPP, but is

truncated at short interevent intervals as a result of the
dead time:

T < Ty

polT) = 3)

xe*K(T‘Td) T =Ty

Here 7, is the dead time, and A is the rate of the process
before dead time is imposed.

If a process is nonrenewal, so that dependencies exist
among its interevent intervals, then the IIH does not com-
pletely characterize the process. In that case, measures
that reveal the nature of the dependencies provide infor-
mation that is complementary to that contained in the IIH.
The heartbeat time series is such a nonrenewal process.
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Rescaled Range Analysis (R/S). Rescaled range analysis
(R/S) provides information about correlations among
blocks of interevent intervals. This widely used measure is
generally assumed to be well suited to processes that ex-
hibit long-term correlation or have a large variance
(11,23,24), but it appears not to be robust since it exhibits
large systematic errors and highly variable estimates of the
Hurst coefficient for fractal-Gaussian-noise processes (4).
In any case, it does not appear to have been applied to
heart data previously. .

For a block of k interevent intervals, the difference
between each interval and the mean interevent interval is
obtained and successively added to a cumulative sum. The
normalized range R(k) is the difference between the max-
imum and minimum values that the cumulative sum at-
tains, divided by the standard deviation of the interval
size. R(k) is plotted against k. Information about the nature
and degree of correlation in the process is obtained by
fitting R(k) to the function k7. ForH > 0.5, positive cor-
relation exists among the intervals, while H < 0.5 indi-
cates the presence of negative correlation. For negatively
correlated intervals, an interval that is larger than the mean
tends, on average, to be preceded or followed by one
smaller than the mean.

Interval-Based Periodogram (IBP). Fourier transform
methods provide a way of quantifying the correlation
properties of a stochastic process. The averaged interval-
based periodogram S.(f), for the sequence of intervals {7,},
is obtained by calculating the average of the individual
periodograms

1
SU) = 3717012, )

where 7(f) is the discrete Fourier transform (DFT) of the
sequence of intervals and M is the length of the DFT
(40,45). Information can be inferred about the correlation
among intervals from S.(f) since it is simply the Fourier
transform of the interval-process autocorrelation function.
The IBP bears a close relationship to the rate-based peri-
odogram (discussed subsequently) for point processes
whose interevent-interval coefficient of variation is rela-
tively small (8), in which case the information contained
in both is essentially equivalent.

Event-Number Measures of a Point Process

It is advantageous to study some characteristics of a
point process in terms of the sequence of event numbers
(counts) {N,} rather than via the sequence of intervals {7}
(7,54,63).

Figure 2c illustrates how the sequence of counts is ob-
tained. The time axis is divided into equally spaced, con-
tiguous time windows, each of duration T sec, and the

(integer) number of events in the ith window is counted
and denoted N,. This sequence {N,;} forms a discrete-time
random counting process of nonnegative integers. In gen-
eral, information is lost in the transformation from the
point process to the counting process since the specific
occurrence times of the events within each window are
ignored. Nevertheless, for regular point processes, the in-
formation loss can be rendered arbitrarily small by using
counting windows that are sufficiently short. Closely re-
lated to the sequence of counts is the sequence of rates
(events/sec), which is obtained by dividing each count N;
by the counting time T (this measure was used in Fig. 1).
We employ a number of statistical measures to charac-
terize the counting process {N,}: the event-number histo-
gram (ENH); the Fano factor (FF); the normalized coin-
cidence rate (NCR); and the Allan factor (AF). We also
consider the generalized count and rate; the latter conve-
niently serves as a basis for the rate-based periodogram
(RBP) and for a rate-based phase-space reconstruction.

Event-Number Histogram (ENH). Just as the IIH provides
an estimate of the probability density function of inter-
event-interval magnitude, the event-number histogram
Py(N;T) provides an estimate of the probability mass func-
tion of the number of events N. Construction of the ENH,
like the IIH, involves loss of information, in this case the
ordering of the counts. However, whereas the time scale
of information contained in the ITH is the mean interevent
interval, which is intrinsic to the process under consider-
ation, the ENH reflects behavior occurring on the time
scale of the counting window 7. Since this time is exter-
nally specified by the observer, the character of the pro-
cess at arbitrary time scales can be examined by use of this
measure (54).

For the HPP, the probability mass function is the Pois-

son distribution

A\ N e*AT
PN(N,T) = % 5)
The event-number distribution for the DTMP (47) is con-
siderably more complex than Eq. 5 because the possible
overlap of a dead-time interval across the boundary of
adjacent counting windows results in correlation between
the numbers of events in these intervals. As a result, the
counts {N;} are no longer independent, though they be-
come approximately so for counting times much greater
than the dead-time interval.

Additional information pertaining to a point process
can also be revealed by particular characteristics of the
ENH. For example, a sawtooth-like form for the ENH,
revealing higher probabilities for even than odd numbers
in a counting time 7, implies that events tend to occur in
pairs separated by less than T sec.

The moments of the histogram, such as the event-
number variance and mean, and their ratio, provide suc-
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cinct and useful information about the process, as
sketched below.

Fano Factor (FF). The Fano factor, F(T), is defined as the
event-number variance divided by the mean:

_ var[N(7)]
N

This quantity provides an abbreviated way of describing
correlation in a sequence of events. It indicates the degree
of event clustering or anticlustering in a point process
relative to the benchmark HPP, for which F(T) = 1 for
all 7. This latter result is readily derived by calculating the
count mean (N(T)) = 2y _ (N Py(N;T) and count vari-
ance var[N(T)] = (NXT)) — (NAT))*) which, with the
help of Eq. 5 for the Poisson distribution, leads to
var[N(D)] = (N(T)) = AT. Thus F(T) = 1 for all
counting times 7T for the HPP.

In fact, the FF must approach unity at sufficiently small
values of the counting time T for any regular point process
because only zero or one event can be registered in an
arbitrarily short counting window for such processes. The
sequence of counts then becomes a sequence of Bernoulli
random variables, with a value of O or 1, and with a mean
event number equal to the probability p of observing an
event in the counting window. The variance of the Ber-
noulli distribution is simply p(1 — p) so that

Q)

1_
lim F(7) = lim 22 _
T—0 T—0

1, @)

since p—> 0as T — 0.

For the DTMP, the dead time imposes anticlustering
(more regularity) on the point process for all but the short-
est counting times. This anticlustering reduces the vari-
ance relative to the mean which suppresses F(T) so that it
lies below unity. The asymptotic result for an HPP subject
to nonparalyzable fixed dead time, valid in the limit of
large T, is (56)

F(T) = (1 — p1p)°, (8)

where | represents the post-dead-time event rate. When
A1, is appreciable, the imposition of dead time produces a
nearly periodic series of events because one is always
available immediately after the termination of the dead-
time interval. The process is therefore anticlustered rela-
tive to the HPP, and as a consequence has low count
variance and Fano factor.

In general, a Fano factor less than unity indicates that
a point process is more regular than the HPP at the par-
ticular time scale 7, whereas an excess over unity indi-
cates increased clustering at the given time scale (34,54—
58). This measure is sometimes called the index of dis-
persion; it appears to have been first used by Fano in

1947 (10) for characterizing the statistical fluctuations of
the number of ions generated by individual fast charged
particles. Equivalent measures are provided by the vari-
ance—time curve (7) and relative dispersional analysis
(51).

Normalized Coincidence Rate (NCR). The normalized co-
incidence rate g®(7) is defined as (7,55,56)

Pr{é(t,r + dt) and €(t + 7,6 + T + di)}
Pr{é(t,t + d)} Pr{€(t + vt + 7 + di)}’
9

where €(x,y) denotes the occurrence of an event in the
interval (x,y), and 7 is a delay time. The NCR is some-
times called the autocorrelogram, and plays the role of the
correlation function for point processes. For an HPP,
gP(1) = 1 forall 7.

The Fano factor F(T) and the normalized coincidence
rate g”(t) have a unique relation for an arbitrary station-
ary point process (7,34,55,56):

g9 =

1
g(z)(*r) =1+ —

2“' a? [TF(D] IT=T9

where p is the mean rate of the point process.

In particular, a power-law dependence of the form
F(T) ~ T (0 < a < 1) in the long-counting-time limit
implies that the underlying point process has a power-law
normalized coincidence rate g®(t) ~ |7|*' and a rate-
based power spectral density that behaves as Sg(f) ~ f ©
(34-36,55,56,65). Processes that behave in this way are
called fractal stochastic point processes (FSPPs) (34). The
parameter « is identified as the fractal exponent (or scaling
exponent) of the point process. It is ambiguously related to
the Hurst exponent (4,24) since some authors have used
the quantity H to index fractal Gaussian noise (FGN)
whereas others have used the same value of H to index the
integral of FGN [which is fractional Brownian motion
(FBM)]. The relationship between the quantities is
a = 2H - 1 for FGN and a = 2H + 1 for FBM (51).
We avoid this ambiguity by using o rather than H.

Even though the correlation between a single pair of
events is typically rather small in FSPPs, the value of F(T)
at a particular counting time 7 can become quite large
because the FF integrates the many correlations from dif-
ferent pairs of events within the counting window 7. As a
result, even weak correlation in g®(1) can lead to dra-
matic departures of the Fano factor from unity (55-59).
Consequently, the FF exhibits particular sensitivity to cor-
relation in a point process; it is also superior to the coin-
cidence rate as an estimator (34).

Allan Factor (AF). Though the FF can detect the presence
of self-similarity even when it cannot be discerned in a
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visual representation of a sequence of events, mathemat-
ical constraints prevent it from increasing with the count-
ing time faster than ~T7". It therefore provides a suitable
measure only for fractal exponents in the range
0 < a <1(34,35,58).

The estimation of a fractal exponent that assumes a
value greater than unity requires the use of a measure
whose increase is not constrained in this way. In this sec-
tion we define a measure called the Allan factor (AF),
which is the ratio of the event-number Allan variance to
twice the mean:

(IN:+(T) — N(DP*
2N(T))

AT = an

The Allan variance is defined in terms of the variability of
successive counts; it was first introduced in connection
with the stability of atomic-based clocks (2).

Like the FF, the AF is a useful measure of the degree
of event clustering (or anticlustering) in a point process
relative to the benchmark HPP, for which A(T) = 1 for all
T. In fact, the AF is simply related to the Fano factor by
(35,50)

A(T) = 2F(T) — F@2T) (12)

so that, in general, both quantities vary with the counting
time 7. For an FSPP, the AF exhibits a power-law depen-
dence that varies with the counting time T as A(T) ~ T"
(0 <y < 3); it can rise as fast as ~T? and can therefore
be used to estimate fractal exponents over the expanded
range 0 < y < 3.

For an FSPP with 0 < a < 1, the FF and the AF both
vary as ~T%, with the same fractal exponent vy = «, over
a large range of counting times 7. Thus, a doubly loga-
rithmic plot of the AF for such a process will yield an
estimate <y of the fractal-exponent that is similar in value to
the estimate a.

For a DTMP with nonparalyzable fixed dead time, Eq.
12 shows that the asymptotic formula for the AF valid in
the limit of large T is identical to that for the FF given in
Eq. 8, that is, A(T) = F(T) = (1 — u1,)°.

Wavelet-based measures can also be used for estimat-
ing the fractal exponent of a point process (58). The
Wavelet Fano Factor (WFF) and Wavelet Allan Factor
(WAF) serve in this capacity as natural generalizations of
the Fano factor and the Allan factor, respectively.

Sequence of Generalized Rates. A generalization of the
positive integer-valued sequence of counts {N,} is obtained
by counting the (fractional) number of intervals that ap-
pear in each counting window, resulting in a positive real-
valued discrete-time sequence {X,}. An illustrative exam-
ple is provided in Fig. 2d, where it is seen that approxi-
mately 60% of the interevent interval extending across the

counting window [T, 2T falls within that window. The
generalized count for this window is therefore assigned the
real value 0.6, rather than the integer value 0, as it is in
Fig. 2c. As the mean count increases, the {X,} approach
the {N}.

Dividing each generalized count X; by the counting
time 7 results in a sequence of generalized rates {R,}. This
measure is useful for spectral analysis and for dynamical
systems analysis, as discussed below. For the FF, the
ordinary sequence of counts {N;} is preferred to the gen-
eralized sequence because the former offers a direct and
simple comparison with the benchmark HPP.

Generalized-Rate-Based Periodogram (RBP). The rate-
based periodogram is an estimate of the power spectral
density of a point process, revealing how the power is
concentrated across frequency. Following Berger er al.
(5), the periodogram Sg(f) is formed from the sequence of
generalized rates {R;}. The data set is divided into contig-
uous segments of equal length J. Within each segment, a
process is formed by dividing J into M equal bins, so that
the binwidth is J/M. A periodogram is then formed for
each segment using

% (13)

.
S(f)EA—l]R(f)

where R(f) is the discrete Fourier transform (DFT) of the
sequence and M is the length of the DFT (40,45). The S(f)
are averaged together to form the final averaged period-
ogram Sg(f) which estimates the PSD in the frequency
range from 1/ to M/29 Hz. This quantity provides direct
undistorted information about the time correlation of the
underlying point process because the count index in-
creases by unity for every J/M seconds, in proportion to
the real time of the point process. Unlike the FF and AF,
the fractal exponent of the RBP has no upper bound.

Although Sk(f) is related to the interval-based period-
ogram §.(f) for point processes that are relatively regular
(8), the latter suffers from artifacts associated with the
distortion of real time that are inherent in its construction
(5,8). This arises from the fact that the interval index
increases by unity at the termination times of successive
interevent intervals, rather than in step with real time.

Using the generalized rate, rather than the generalized
count, eliminates the noise floor of the count-based peri-
odogram at high frequencies (40). This is because the
sequence of counts behaves as a two-state Bernoulli pro-
cess for short counting times, resulting in excess autocor-
relation at zero and, consequently, a noise floor in the
count-based periodogram. In contrast, the generalized rate
is a smooth process for short counting times and therefore
lacks the high-frequency noise floor.
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Generalized-Rate-Based Phase-Space Reconstruction
(PSR). It is important to determine the conditions under
which the fractal fluctuations in the heartbeat are stochas-
tic and when they might be accounted for in terms of a
low-dimensional attractor of a deterministic nonlinear dy-
namical system. One way of approaching this question is
in terms of a phase-space reconstruction and the use of an
algorithm to estimate one or more of its fractal dimen-
sions, D, (3,51,60). The box-counting algorithm (32) pro-
vides a method for estimating the capacity (or box-
counting) dimension of the attractor, D, (3,9,60).

The phase-space reconstruction approach operates on
the basis that the topological properties of the attractor
for a dynamical system can be determined from the
time series of a single observable (18,31,67). An m-di-
mensional vector ?m(tn) = [y(t), ¥y, + D), ...,
¥, + (m — D)D] is formed from the discrete time series
of the observable y(z,). The parameter m is the embedding
dimension and ! is the lag (usually taken to be the location
of the first zero crossing in the autocorrelation function of
the time series). As the time ¢, elapses, the vector ?m(tn)
traces out a trajectory in the m-dimensional embedding
space.

The observable that we investigate is the generalized
rate so that y(r,) = R(z,). It is advantageous to use the
generalized version of the rate or count because the se-
quence of integer counts maps all vectors of the general-
ized count to nearby integer lattice points, resulting in a
loss of fine structure in the phase-space trajectory. For
m = 1 and T less than the dead-time interval, for exam-
ple, the trajectory traced by the sequence of integer counts
then collapses to two points in the embedding space: zero
and one. The generalized rate, on the other hand, provides
a continuum of real numbers for the reconstructed trajec-
tory.

The box-counting algorithm estimates the capacity di-
mension of this trajectory. For uncorrelated noise, the ca-
pacity dimension D, continues to increase as the embed-
ding dimension m is increased. For an attractor in a de-
terministic system, in contrast, D, saturates as m becomes
larger than 2D, + 1 (9). Such saturation, however, is not
a definitive signature of deterministic dynamics; temporal
correlation in a stochastic process can also be responsible
for what appears to be underlying deterministic dynamics
(39,52,61). Surrogate data analysis, discussed below, is
useful in establishing the underlying cause.

Analysis of Surrogate Data

Information about the nature of the fractal fluctuations
in the heartbeat time series may be obtained by applying
the various statistical measures detailed above to surrogate
data sets. These are point processes constructed from the
original sequence of heartbeats in ways designed to pre-
serve certain characteristics of the original data while

eliminating (or modifying) others. Surrogate data analysis
provides a way of determining whether a given result
arises from a particular property of the data set.

We make use of three kinds of surrogate data sets:
shuffied intervals, rescaled intervals, and randomized
phases. In particular, we compare statistical measures cal-
culated from both the original data and its various surro-
gates to distinguish those properties of the data that arise
from correlation among intervals (such as from long-term
rate fluctuations) from those properties inherent in the
form of the IIH.

Shuffled Intervals. One of our sets of surrogate data is
formed by shuffling (randomly reordering) the sequence
of interevent intervals {r;} of the original data set. Such
random reordering destroys dependencies among the in-
tervals, and therefore the long-term correlation properties
of the data, while exactly preserving the interevent-
interval histogram. It provides a method for generating a
renewal point process with an identical ITH as that of the
original data set.

Rescaled Intervals. The second set of surrogate data is
formed by rescaling, but not changing the order of, the se-
quence of interevent intervals {7} of the original data set.
This modifies the interevent-interval histogram while essen-
tially preserving the long-term correlation properties of the
data. The rescaled-intervals surrogate is, in a sense, the op-
posite of the shuffled-intervals surrogate (which maintains
the IIH but destroys the long-term correlation properties).
This surrogate set is used, for example, for calculating var-
ious normalized Fano and Allan factors. We consider four
versions of it:

(A) Normalized counting time: F(T) is calculated in
the usual way, in accordance with Eq. (6), and the count-
ing time T is then divided by the mean interevent interval
(7) for each data set. The shape of the FF is not altered
when plotted on a logarithmic abscissa. (B) Normalized
interval mean: The mean interevent interval {t) of the
point process is normalized to unity before the FF is con-
structed. The transformed point process exhibits unity
mean rate. The result is the same as normalizing the count-
ing time, as considered above. (C) Normalized interval
mean and variance: The intervals of the point process are
linearly transformed so that the mean and variance of the
interevent intervals for each data set are normalized to
(t) = 1.0 sec and var(t) = 0.04 sec?, respectively (the
value of the variance was arbitrarily selected to make the
standard deviation 20% of the mean). The shape of the FF
is altered. (D) Normalized interval histogram: Normal-
izing the moments of the interval histogram can be gen-
eralized to normalizing the entire histogram to a specified
form. First, a sequence of exponentially distributed ran-
dom variables with unity mean is generated and they are
ranked from smallest to largest. The relative position from
the mean of each interval in the original data set is
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noted, and the interval is then replaced by the interval
which has the same relative rank in the ordered sequence
of exponential random variables. Imposing this ordering
on the heartbeat intervals essentially allows the long-term
interevent-interval correlations to persist in the trans-
formed point process while imposing on it an exponential
ITH. This approach is similar in spirit to the normalizing
transform used by Theiler et al. (61), but their express
purpose was to transform the amplitude of a time series to
Gaussian form, whereas ours is to transform the inter-
event-interval histogram to exponential form.

Randomized Phases. The third class of surrogate data we
consider is obtained by Fourier transforming the general-
ized rate, and then randomizing the phases while leaving
the periodogram magnitude intact. The modified function
is then inverse transformed to return to a time-domain
representation of the generalized rate. This rate is, in turn,

fire mechanism as discussed subsequently. This technique
preserves the second-order temporal correlation properties
of the point process while removing other temporal struc-
ture essential for phase-space reconstruction.

RESULTS

The interevent-interval and event-number measures de-
scribed in Methods were applied to 12 electrocardiogram
records from normal patients and 15 records from heart-
failure patients. Three of the heart-failure patients also
suffered from atrial fibrillation (Table 1). The recordings
were made with a Holter monitor (Del Mar Avionics,
Model 445, Irvine, CA), digitized at 250 Hz. The beat-
to-beat (R-R) intervals were measured automatically with
a computer program (38). The data were provided to us by
Ary Goldberger and David Rigney of Beth Israel Hospital
(BIH), Boston, as part of the BIH Congestive Heart-
Failure Database. Various characteristics of the data sets

converted into a point process through an integrate-and- are summarized in Table 1.

TABLE 1. Characteristics of the data sets. The parameters were generally obtained from the entire duration of the recording.

Mean FF AF RBP IBP
File Number of Duration Rate (1) var(r) Exponent Exponent Exponent Exponent CD
Number  Intervals (sec) (sec™ ") (sec) (sec?) a ¥ 8 s D,
NORMAL PATIENTS
16265 100460 80061.9 1.255 0.7970 0.0291 0.95 0.95 0.93 1.04 2.66
16272 93177 84395.5 1.104 0.9058 0.0202 0.87 1.14 1.21 1.24 2.64
16273 89846 74348.6 1.208 0.8275 0.0212 0.87 1.06 1.20 1.23 275
16420 102081 77761.0 1.313 0.7618 0.0102 0.90 1.15 1.01 1.23 2.4
16483 104338 76099.5 1.371 0.7294 0.0079 0.94 1.04 0.87 1.29 2.58
16539 108331 84669.3 1.279 0.7816 0.0225 0.87 1.07 1.07 0.97 2.81
16773 82160 78141.1 1.051 0.9511 0.0600 0.96 0.93 1.00 0.95 2.84
16786 101630 84051.4 1.209 0.8270 0.0134 0.93 1.15 1.11 1.20 3.04
16795 87061 74734.7 1.165 0.8584 0.0448 0.94 1.24 1.21 1.37 245
17052 87548 76399.6 1.146 0.8727 0.0251 0.84 1.18 1.19 1.20 2.98
17453 100674 74482.0 1.352 0.7398 0.0106 0.92 0.95 0.86 1.12 294
c4 88140 71398.7 1.234 0.8101 0.0172 0.87 1.28 1.30 1.47 2.84
average 1.224 0.8219 0.0238 0.91 1.10 1.08 1.19 2.75
std. dev. 0.097 0.0667 0.0153 0.04 0.1 0.15 0.15 0.20
HEART-FAILURE PATIENTS

6796 75821 71940.9 1.054 0.9488 0.0081 0.85 1.03 1.40 1.48 1.70
7257* 118376 71166.4 1.663 0.6012 0.0013 0.88 1.09 0.93 0.94 244
8519 80878 719414 1.124 0.8895 0.0040 0.78 1.50 1.48 1.63 1.81
8552* 111826 71827.0 1.557 0.6423 0.0039 0.77 1.30 1.76 1.71 1.99
8679 119094 71180.1 1.673 0.5977 0.0026 0.94 1.52 1.35 1.45 2.37
8988* 118058 71140.3 1.660 0.6026 0.0081 0.94 1.27 1.28 1.23 244
9049 92497 71964.8 1.285 0.7780 0.0033 0.96 1.28 1.35 1.58 244
9377 90644 71965.0 1.260 0.7939 0.0033 0.87 1.31 1.24 1.31 2.13
9435 114959 71196.7 1.615 0.6193 0.0008 0.94 1.55 1.42 1.32 1.60
9643 148111 72015.6 2.057 0.4862 0.0002 0.92 1.62 1.44 1.34 2.03
9674 115542 71976.3 1.605 0.6229 0.0071 0.92 1.22 1.57 1.53 2.29
9706 115064 71320.0 1.613 0.6198 0.0103 0.96 1.34 1.21 1.22 2.53
9723 115597 71999.9 1.606 0.6229 0.0003 0.91 1.46 1.75 1.80 2.19
9778 93607 71946.3 1.301 0.7686 0.0051 0.96 1.60 1.69 1.89 2.17
9837 115205 71947.0 1.601 0.6245 0.0043 0.95 1.26 1.62 1.69 2.37
average 1.512 0.6812 0.0042 0.90 1.36 1.43 1.47 217
std. dev. 0.259 0.2158 0.0031 0.06 0.18 0.22 0.25 0.29
p values <0.002 <0.005 <0.001 not significant <0.001 <0.001 <0.005 <0.001

Asterisks indicate heart-failure patients who also suffered from atrial fibrillation. The average values of all parameters (except o)
show a statistically significant difference (p < 0.005} between normal and heart-failure patients.
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The analysis presented in this section relies on two
representative data sets: normal set 16265 and heart-
failure set 6796 (see Table 1). These files are, by-and-
large, typical of their respective classes of data. In the
following section, we consider the behavior of collections
of normal and heart-failure data sets.

In Fig. 3, we present interevent-interval histograms for
the normal data (solid curve) and the heart-failure data
(dotted curve). For these particular data files the mean
interevent interval is greater for the heart-failure than for
the normal (i.e., the normal has a higher heart rate),
though on average the opposite is true (Table 1). The
narrow width of the histogram for the heart-failure patient
is reflected in its small interval variance [var(t) = 0.0081
sec” for data set 6796]. By comparison, the normal patient
generates an excess of both shorter and longer intervals
[var(t) = 0.0291 sec” for data set 16265]; this is typical.
Since random reordering of the intervals does not alter the
relative frequency with which they occur, the IIHs of the
shuffled data sets are the same as those of the originals.

A rescaled range analysis for the two data sets is pre-
sented in Fig. 4. The open circles represent the reference
function k"2, Positive correlation among interevent inter-
vals is present in both cases since R(k) grows more rapidly
than £'/2. On the whole, this measure reveals no substantial
difference between data from normal subjects and those
with heart failure. Shuffling the intervals (lower two
curves) results in a dependence quite close to k72, as ex-
pected for renewal point processes (4,11,23,24).

The averaged interval-based periodograms S_(f) gener-
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FIGURE 3. Interevent-interval histograms for the normal data
(solid curve) and for the heart-failure data {dotted curve). For
the particular data sets portrayed here, the mean interevent
interval is greater for the heart-failure than for the normal (i.e.,
the normal has a higher heartrate), though the reverse is gen-
erally true (see Table 1). The interevent-interval variance of
the heart-failure data is substantially smaller than that of the
normal data, as is generally the case.
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FIGURE 4. Rescaled range analysis (R/S) for the data from a
normal subject (upper solid curve} and for a patient with heart
failure (upper dotted curve). The resuits are nearly indistin-
guishable and reveal the presence of positive correlation.
Shuffling the intervals {lower two curves) results in a depen-
dence very close to k', as expected for sequences of inde-
pendent random variables.

ated from the sequence of intervals {7;} are presented in
Fig. 5a for the normal subject (solid curve) and for the
heart-failure patient (dotted curve). The approximately
straight-line behavior of the curves for sufficiently low
frequencies on these doubly logarithmic coordinates indi-
cates the presence of power-law correlation among the
sequence of intervals. The IBP is reasonably well de-
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FIGURE 5. (a) Averaged interval-based periodograms (IBPs)
S. (A for normal subject (solid curve) and heart-failure patient
(dashed curve) generated from the sequence of interevent in-
tervals {7}. The IBP was caiculated by partitioning the data
into successive blocks of 1024 intervals. The periodogram of
each block was calculated and the average was obtained. (b)
The IBPs for the sequence of shuffled intervals are flat, corre-
sponding to uncorrelated intervals.
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scribed by the function S.(f) = af ° over the range
0.0001 < f << 0.005 cycles/interval, where g is a constant
(the data is illustrated in the figure only down to 0.001
cycles/interval, however). From Table 1 it is seen that
8 = 1.04 for the normal subject, whereas & = 1.48 for
the heart-failure patient. The integral of the IBP is some-
what greater for the normal data set; this reflects its larger
interevent-interval variance (Fig. 3). However the steeper
negative slope of the IBP for the heart-failure patient in-
dicates that the relative proportion of low-frequency
power, corresponding to slow time fluctuations, is greater
than for the normal patient. The IBPs for the sequence of
shuffled intervals (Fig. 5b) are flat since the intervals are
uncorrelated after shuffling.

The event-number histogram for normal (lower solid
curve) and heart-failure data (lower dotted curve), ob-
tained with a counting time of T = 10.0 sec, is shown in
Fig. 6. The normal ENH is substantially broader than the
heart-failure histogram, indicating greater count variance
arising from the clustering of events in the underlying
point process. This implies greater rate variability in the
normal data. This variability cannot be attributed solely to
the interevent-interval variance, since the ENHs of the
shuffled data sets (higher solid and dotted curves) both
show reduced count variance, indicating that the count
variance of the original process arises at least in part from
the ordering of the intervals.

The Fano factors for the same two data sets are shown
as the upper solid curves in Fig. 7a. For short counting
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FIGURE 6. Event-number histogram (ENH) for normal {lower
solid curve) and heart-failure data {(lower dotted curve) using
a counting time of T = 10.0 sec. The normal ENH is wider than
the heart-failure histogram, indicating its greater count vari-
ance on this time scale. Shuffling the intervals eliminates
long-duration correlation while leaving the lIH unaffected. The
substantially narrower ENHs for the shuffled data sets dem-
onstrate the presence of long-duration correlation in the orig-
inal sequence of interevent intervals.
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FIGURE 7. {a) Fano factor (FF) for normal and heart-failure
data (solid curves). The FFs of the phase-randomized surro-
gate data (dotted curves) were obtained by carrying out a
65536-point DFT of the rate and then assigning independent
and uniformly distributed vaiues of the phase over the interval
[0, 27r). The sequence was then inverse transformed to pro-
vide a rate function R(t) with correlation properties identical
to those of the original data but with other temporal structure
removed; this rate was converted into a point process by
using an integrate-and-fire construct. The phase-randomized
surrogate FFs are nearly identical to those of the original data,
indicating that second-order correlation is sufficient for un-
derstanding the behavior of the FF. The FFs for the shuffled
surrogate processes (dashed curves) always fall below unity,
since long-duration correlation has been eliminated, leaving
only the anticorrelation arising from the short-term regularity
of the heartbeat intervals. The surrogate data presented is the
mean value of F(T) calculated from an ensemble of 10 realiza-
tions. Error bars are not included because the thickness of the
plotted curves is greater than a standard deviation for the
randomized-phase surrogates, and there is only a small (but
discernible) standard deviation for the shuffled surrogates,
but only for T > 100 sec. (b) Allan factor {AF) for normal and
heart-failure data (solid curves). The AFs and FFs for the shuf-
fled surrogate processes (dashed curves) are essentially the
same,
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times (T’ — 0), the Fano Factor approaches unity, in ac-
cordance with Eq. (7). For time scales where the under-
lying events are highly regular, and thereby exhibit low
variance, the FF dips well below unity. The oscillations of
the FF in the vicinity of T = 1 sec in Fig. 7a (the dips are
particularly pronounced for heart-failure patients), arise
from the clocklike regularity of the heartbeats on this time
scale. When the counting time T is such that the number of
beats per counting time is almost always the same, vari-
ability is greatly diminished and the FF dips to a low
value. A slight increase in T then occasionally admits an
extra event, resulting in a greater variance-to-mean ratio
and a rise in the curve. This behavior is considered more
thoroughly in the subsequent discussion surrounding the
normalized Fano factor shown in Fig. 13a.

For counting times greater than approximately 10 sec,
the Fano factor increases above unity and grows as a frac-
tional power-law function proportional to 7, consistent
with the behavior of an FSPP. The observed values of o
are all rather similar and lie below unity, as shown in
Table 1. The appearance of the power-law behavior (frac-
tal onset time) occurs when the counting window is suf-
ficiently large so as to allow fractal event clustering to
overcome the anticlustering imposed by the pause between
heartbeats.

The phase-randomized surrogate data yields an FF that
is nearly identical to that of the original data. Since this
surrogate retains the same periodogram magnitude as the
generalized heartrate, but not the details of its trajectory in
phase space, this indicates that the power-law increase in
the FF can be explained in terms of the second-order tem-
poral correlation properties of the data. This issue is dis-
cussed subsequently. The shuffled surrogates (lower
dashed curves), on the other hand, lack the long-term,
positive correlation in the sequence of heartbeats, result-
ing in FFs whose values at long counting time reflect only
the magnitudes of var(T).

The Allan factors shown in Fig. 7b have similar fea-
tures which, for the most part, share the same explana-
tions. There are, however, two important distinctions that
ultimately render the AF more suitable than the FF as a
clinical diagnostic measure: first, the AF curves dip to
lower values as a result of delayed fractal onset time rel-
ative to the FF, as can be understood from Eq. 12 (the
shuffled versions of the FF and AF are essentially indis-
tinguishable); and second, the power-law exponent vy that
describes the growth of A(7) for large counting times may
assume a wider range of values than «, and they almost
always exceed unity (see Table 1). The differences be-
tween the normals and heart failures shown in Fig. 7, for
both the AFs and the FFs, are typical of the data sets
examined.

In Fig. 8a we present the rate-based periodograms Si(f)
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FIGURE 8. (a) Generalized-rate-based periodograms Sg{f) for
normal subject {solid curve) and heart-failure patient (dotted
curve) generated from the sequence of generalized rates {R}.
A periodogram with 4096 points was formed from a segment
of data using a binwidth of 10 sec. The function 1/fis included
for comparison {dashed curve). (b) After shuffling, the RBPs
are flat, indicating that the rates are uncorrelated, as expected
for a renewal process with J/M > (7).

for the normal subject (solid curve) and heart-failure pa-
tient (dotted curve), generated from the sequence of gen-
eralized rates {R;} using a binwidth /M = 10.0 sec. The
straight-line behavior of the curves on these doubly loga-
rithmic axes indicates the presence of power-law correla-
tion among the sequence of rates. The RBP is well de-
scribed by the function S,(f) = cf P over the range
0.0002 < f << 0.05 Hz (cycles/sec) for the normal data,
and over the range 0.0002 < f < 0.01 Hz for the heart-
failure data (the dashed line represents 1/f behavior and is
shown for comparison). The decreasing power-law behav-
ior of the RBPs is consistent (8) with that of the IBPs
evidenced in Fig. 5a. Indeed, it is apparent that the values
B = 0.93and 8 = 1.04 from Table 1 compare favorably
for the normal subject, asdo 3 = 1.40and & = 1.48 for
the heart-failure patient. The decreasing power-law form
is also consistent with the power-law growth of the AFs
for large counting times, as discussed subsequently.

As shown in Fig. 8b, the RBPs become flat after shuf-
fling the intervals, reflecting the absence of correlation
among the values of the generalized rate. The sequence of
generalized rates is therefore a white-noise process for
this binwidth; however in general, it is only flat for
JI/M > (7). For smaller values of the binwidth, the RBP
reveals correlation in the point process associated with the
form of the interevent-interval histogram, even though the
intervals have been shuffled. This correlation occurs be-
cause an interevent interval that extends beyond a bin-
width affects the values of all succeeding binwidths across
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which it falls, for all point processes other than the Pois-
son.
The interval-based periodograms (IBPs) of the shuffled
intervals shown in Fig. 5b are also white, as expected for
a renewal process. However, as discussed above, a white
sequence of intervals does not imply a white sequence of
rates. The two periodograms are not equivalent measures
in general (8), and indeed have different units on their
abscissas. Nevertheless, both periodograms show that the
total power in the heart-failure patient record is lower at
all frequencies than in the normal record, reflecting the
lower variances of the heart-failure histograms in Figs. 3
and 6.

In Fig. 9 we display the capacity dimension D, ob-
tained from a phase-space reconstruction based on gener-
alized rate with 7' = 10 sec, for a normal subject (solid
curve in upper panel) and a heart-failure patient (solid
curve in lower panel). The value of D, for the data (solid
curves) increases with the embedding dimension until m
reaches about 5. The behavior shown in Fig. 9 is typical of
the other data sets: curves from normal patients (Fig. 9a)
saturate at a slightly higher value of D, (approximately 2.7
in this case) than curves from heart-failure patients (Fig.
9b) (approximately 2.4 in this case).

The saturation of D, with increasing m is one hallmark
of a low-dimensional dynamical system,-but its presence
is not sufficient to conclude that such dynamics are present
(39). Indeed, both sets of surrogate data reflecting
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FIGURE 9. The capacity-dimension estimate D, of the attrac-
tor obtained from the sequence of generalized rates, with a
counting time 7 = 10 sec, as a function of the embedding
dimension m. The data presented are from a subset of the
record and are representative of their respective classes, with
the normal data [{a), solid curve] typically attaining a slightly
larger value of D, than the heart-failure data [(b), solid curve].
For both sets of data, D, reaches its maximum at about m = 5.
Also shown is the average dimension estimated from ensem-
bles of 10 simulations of the shuffled-interval surrogate
{dashed curves} and of the phase-randomized surrogate {dot-
ted curves), along with their o error bars. D, was calculated
using the same segment of data that was used in Fig. 8.

purely stochastic behavior also show saturation. The
greater temporal correlation in the phase-randomized sur-
rogate data (dotted curves) yields a smaller value of D,
than for the shuffled intervals (dashed curves). Neither
surrogate provides a perfect replica of the results obtained
from the original data, which lie 1-3 standard deviations
away from the mean values of the surrogates. It is unclear
why D, for the phase-randomized surrogate should lie
below the value for the raw data. The heart data may
contain a form of temporal structure (other than second-
order) that imbues it with a larger apparent capacity di-
mension than its second-order correlations alone would
generate. Nevertheless, the general behavior of these sto-
chastic surrogates is similar enough to that of the original
data to suggest that the saturation of D, with increasing m
arises from temporal correlation in the heartbeat time se-
ries rather than from underlying low-dimensional deter-
ministic dynamics. This observation is supported by the
fact that the model simulations presented in the final sec-
tion of this paper emulate the D, vs m data very well (Fig.
26).

The relationship between F(T) and g®(1) was pre-
sented in Eq. (10) and discussed in Methods. Similarly,
we can forge a connection between the behavior of the FF
and the saturation of the capacity dimension D,. This con-
nection is illustrated in Fig. 10, where the reconstructed
trajectories of the generalized rate (see Methods) in a two-
dimensional (m = 2) embedding space are shown for a

PHASE—SPACE RECONSTRUCTION {N 2—DIMENSIONAL EMBEDDING SPACE
T = 10 sec T = 100 sec

T T T T T T T

T =1 sec
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N
o
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FIGURE 10. Reconstructed trajectories of the generalized rate
in a two-dimensional (m = 2) embedding space for a range of
counting windows 7. Normal heart data (data set 16265) are
displayed in the lower panels, whereas their shuffled surro-
gates are represented in the upper panels. The lag / was cho-
sen to be 1 count sample for all counting times. For the orig-
inal fractal process {normal patient, unshuffled intervals,
lower panels), the spatial extent of the trajectory is relatively
unaffected by increases in 7, whereas for the nonfractal re-
newal process {normal patient, shuffled intervals, shown in
the upper panels), the extent of the trajectory contracts far
more dramatically with increasing 7.
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range of counting windows T. The lag (on the ordinate)
was chosen to be [ = 1 count sample. Normal heart data
(data set 16265) are displayed in the lower panels,
whereas their shuffled surrogates are represented in the
upper panels.

For a particular value of T and m, D, provides a mea-
sure of the fractal dimension of the set of trajectory points.
The Fano factor F(T), on the other hand, provides a mea-
sure of the spatial extent of the trajectory in phase space,
which is independent of the embedding dimension . This
can be demonstrated by considering the construction of
F(T) from a rate trajectory, such as that shown in Fig. 10.
The coordinates of each trajectory point are multipled by
T (to convert to count). The relative frequency of count
value for any dimension is equivalent to the event-number
histogram with counting time 7, which allows the event-
number variance-to-mean ratio to be calculated.

Indeed, when the FF increases in power-law fashion
due to power-law decaying temporal correlation (Fig. 7a),
the reconstructed phase space will necessarily contract
slowly, in power-law fashion, with increasing counting
time (lower panels in Fig. 10), as with the heartrate esti-
mate displayed in Fig. 1b. For the shuffled-interval sur-
rogate, on the other hand, the FF fails to increase with
increasing counting time (Fig. 7a), the spatial extent of
the phase space contracts substantially with increasing
counting time (upper panels in Fig. 10), and the fluctua-
tions in the heartrate estimate decrease substantially (Fig.
la).

Clearly, long-duration correlation affects the depen-
dence of D, on m. In particular, it prevents D, from in-
creasing with m as it would for uncorrelated noise.

COMPARISON OF RESULTS FROM NORMAL
SUBJECTS AND HEART-FAILURE PATIENTS

Reduced variability of the point process representing
the ECG is evident in heart failure. The relative regularity
of the heartbeat of these patients manifests itself in short-
term measures such as the reduced variance of the inter-
event-interval histogram (Fig. 3), and in measures such as
the reduced variance of the event-number histogram (Fig.
6). However, aside from the lower overall power, the
spectral distribution is different in heart failure: there is
relatively more power at low frequencies than in normal
patients. Quantitative values for all of the measures that
we have investigated are reported in Table 1, both for the
individual patients and as averages over collections of nor-
mal and heart-failure data sets separately.

The results are striking. Nearly every parameter mea-
sured shows a statistically significant difference between
the two classes of data (see p values in Table 1). In com-
parison with normal patients, heart-failure patients dis-

play, on average, a significantly smaller mean interevent
interval (p < 0.005), interevent-interval variance
(p < 0.001), and capacity dimension (p < 0.001); and a
significantly larger mean heartrate (p << 0.002), and frac-
tal exponent [as estimated from the IBP (p < 0.005), RBP
(p < 0.001), and AF (p < 0.001)], using the Student’s
t-test of significance. The only exception is the fractal
exponent o estimated from the Fano factor, which shows
no statistically significant difference between the two
classes of data. This is expected since the FF is con-
strained to fractal exponents less than unity.

Ideally, a clinical diagnostic should completely sepa-
rate the ill from the well. Though the average values of the
two classes of patients are well separated, there are nev-
ertheless regions in each of the parameter spaces in which
the membership of individual patients in one or the other
group is ambiguous. This is displayed in Fig. 11, in which
several interevent-interval and event-number measures
displayed in Table [ are graphically presented. One mea-
sure of clinical significance may be developed by choos-
ing a threshold value of the parameter at hand such that all
normal patients are so identified (100% specificity); the
sensitivity is then defined as the proportion of heart-failure
patients that lie to the opposite side of this threshold and
would therefore be correctly identified as suffering from
heart failure. As is evident in Fig. 11a, the variance of the
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FIGURE 11. (a) The variance of the interevent intervals is gen-
erally smaller for heart-failure patients {solid circles) than
that for normal subjects (open circles). (b) The capacity di-
mension D, is also typically smaller for heart-failure patients
than that for normal subjects. {c) The RBPs were fit by a
power-law function of the form Sg{f) = cf # over the range
0.0002 < f < 0.05 Hz (cycles/sec) for the normal data, and over
0.0002 < f < 0.01 Hz for the heart-failure data. The best-fitting
values of ¢ are shown for all data sets. The heart-failure RBPs
generally exhibit a larger exponent, so this parameter also
separates the two classes of data on average, but not quite as
well as does var(7) and D,. {d) The IBPs were fit by a power-
law function of the form S_{f) = af~® over the range
0.0001 < f < 0.005 cycles/interval. The best-fitting values of 3
are shown for all data sets. This parameter separates the data
less well than var(t), D,, and B.
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interevent intervals [var(t)] for heart-failure patients (solid
circles) is, on average, significantly smaller than that for
normal subjects (open circles). However, three heart-
failure sets fall among the normal sets. Thus, choosing the
threshold just to the left of the leftmost open circle (at
var(t) = 0.0079), under this criterion three heart-failures
to the right of this value would fail to be diagnosed with
heart failure, leading to a sensitivity of (15-3)/15 = 80%.
The capacity dimension D, of the phase-space trajectory,
an event-number measure, behaves similarly, as shown in
Fig. 11b. In this case, four heart-failure sets fall among
the normal sets (sensitivity = 73%). The decaying
power-law exponent 3 of the generalized-rate-based peri-
odogram (RBP) is, on average, significantly larger for
heart-failure patients, which separates the two classes of
data as shown in Fig. 1lc, but it is not as sensitive a
measure as var(t) since four heart-failure sets fall among
the normals (sensitivity = 73%). The power-law expo-
nent of the interval-based periodogram (IBP), like the
RBP, is also larger for heart-failure patients on average,
but in this case it is even more difficult to properly assign
a patient to one or the other groups; there are seven heart-
failure patients among the normals (sensitivity = 53%).

Though the Fano factor exponent « is not useful for this
purpose because it saturates at unity, the magnitude of the
Fano factor for large counting times provides a reasonable
measure of separation between the normals and the heart-
failures, as shown in Fig. 12. Two heart-failure sets fall
among the normals (sensitivity = 87%) so, at least for the
data at hand, this measure discriminates the two classes of
data a bit better than the variance of the interevent inter-
vals.

The underlying basis for the separation provided by the
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FIGURE 12. Fano factors for all data sets presented in a single
plot. Two heart-failure sets fall among the normals. The FF
therefore is slightly more effective than the variance of the
interevent intervals in separating the two classes of data.

FF is elicited by examining this count-based measure for
various surrogate data sets, as shown in Figs. 13 and 14.
Normalizing the counting time (Fig. 13a), or the interval
mean (Fig. 13b), does not affect the ability of the FF to
separate the two classes of data, thereby demonstrating
that the origin of the separation does not lie in differences
in heartrate. However, normalizing the interval mean and
variance (Fig. 13c), or the interval histogram (Fig. 13d),
seriously impairs the ability of the FF to discriminate be-
tween normals and heart failures, demonstrating that the
separation provided by the FF has its principal origin in
the underlying interval statistics.

The interval statistics are exhibited not only in interval-
based measures, but are also manifested in event-number
(count-based) measures such as the FF, in which they can
persist to arbitrarily long counting times. The behavior of
the shuffled-surrogate FF readily illustrates this point.
Shuffling preserves the ITH while destroying long-term
correlations. The shuffled-FF, shown in Fig. 14, reveals
three heart-failures among the normals. For 100% speci-
ficity, the shuffled-FF magnitude at large counting times
therefore has the same sensitivity (80%) as the interevent-
interval variance. Renewal theory shows that F(») =
var(t)/ (t)?, providing the link between these two mea-
sures (7). Thus, it is principally differences in the inter-
event-interval statistics that are responsible for the sepa-
ration of normals and heart failures by the FF, and by
surrogates that leave the IIH statistics intact.

The Allan factor is more successful at separating the
two classes of data, as shown in Fig. 15a, because the AF
1s jointly responsive to both short- and long-term charac-
teristics of the heartbeat time series. The AF curves de-
scend to lower values than the FF curves because the AF
fractal onset time is delayed, as can be understood from
Eq. 12. This delay permits the two classes of data to
become more distinguishable at intermediate times than
can be achieved using the FF. The smaller interevent-
interval variances for the heart-failure patients result in
their curves reaching lower levels than the normal curves,
thereby enhancing distinguishability. The asymptotic val-
ues of the AF and FF for the shuffled data, determined by
the contributions from the interevent-interval variance
through the relation A(®) = F(*) = var(t)/{t)* and valid
for any renewal point process, are approached until the
fractal characteristics begin to dominate and the AF curves
turn upward. As 7 increases, the AF curves rise more
aggressively for the heart-failure patients because they
have a relatively greater proportion of low-frequency
spectral components (long-time-scale fluctuations). Since
the fractal exponent v for the AF is not pinned at unity, as
a is for the FF, the range of steepness with which the
curves rise differs for the two classes of data. The net
result is two sets of AF curves, one for the normals and
another for the heart-failures, that differ in character. Both
sets exhibit dips, but their shapes are sufficiently different
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FIGURE 13. Fano factors for surrogate data sets: (a) Normalized counting time: Because the variable T on the abscissa in Fig. 12
is plotted on a logarithmic scale, dividing it by the constant (t) simply serves to shift the entire curve horizontally without changing
its shape. It is evident from the figure that all of the curves normalized in this way first attain a local minimum at 7/(t) = 1, viz,,
when the counting time 7 is equal to the mean interevent interval (7). This can be intuitively understood by considering a nearly
periodic point process such as the ticks of an imperfect clock. For T = (1), the counting time will almost always admit exactly one
tick and the count variance {and thereby the Fano factor) will dip to a very small value (for a perfect clock the Fano factor would
dip precisely to zero). For T = 1.5(t), on the other hand, two ticks will be admitted just about as frequently as a single one,
depending on where the counting window falls in relation to the occurrence times of the ticks. For a yet larger counting time,
T = 2(1), two ticks will almost always occur within the counting time, which again resuits in a dip in the Fano factor. Minima in
the FF will therefore occur at integer multiples of (7). The imperfect ticking (along with the logarithmic spacing of the FF samples
chosen for the plot) cause the dips to become less crisp as 7/(1) increases. Of course, the less periodic the ticking, the less dramatic
the dips. The net result is that normalization of the counting time by the mean interevent interval results in the first few minima
of the FF coming into register. This particular normalization leaves intact the reasonable effectiveness of the FF in separating
normals and heart-failure patients. (b} Normalized interval mean: The curves are essentially the same as those shown in (a); the
only distinction is the effective difference in the data sampling strategies. This normalization therefore also leaves intact the ability
of the FF to separate the two classes of data. {c} Normalized interval mean and variance: As with the counting-time and interval-
mean normalizations discussed above, the mean interevent interval of all data sets are the same, so that the first minimum of the
FFs are in register. However, the normalization of the interval variance causes the shapes of the individual FFs to change so that
the normals and heart-failures can no longer be separated by the FFs. This illustrates that it is the interevent-interval statistics, and
not the rate, that enables the FFs to distinguish them. (This procedure resulted in a few events (<10) for which 7 < 0; these
intervals were arbitrarily set to 1 msec with no significant effect on the results.) {d) Normalized interval histogram: The lIH is
exponentialized (see Methods). Those properties of the FF that depend on details of the interspike-interval histogram are modified,
whereas those that depend on the long-term correlation properties of the point process remain virtually unchanged. The Fano
factor is always greater than unity because the anticlustering arising from the regularity in the point process that causes the FF
to dip below unity in the original data has been eliminated by the transformation. As in the case of the normalized interval mean
and variance considered in (c), the normal and heart failure data are not segregated. The normalization of the IIH has, as a
byproduct, resulted in a normalization of the first two moments which, as demonstrated in (c), is sufficient for eliminating the
segregation. In short, the two classes of data remain separated in (a) and (b), but not in (c) and {d), demonstrating that the
separation provided by the FF has at its root the interevent-interval statistics.
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FIGURE 14. Fano factors for shuffled surrogate data sets. The
ability of the shuffied FFs to separate the two classes of data
is the same as that of the interevent-interval variance shown
in Fig. 11a (three heart-failures among the normals). This con-
firms that it is princiaplly, but not exclusively, differences in
the underlying interevent-interval statistics that are responsi-
ble for the ability of all forms of the FF to separate normals
from heart failures.

that there is a region of counting time, in the vicinity of
T = 10 sec, for which the magnitude of the AF falls into
a different region for each class of data. Thus, a threshold
can be chosen that yields both 100% sensitivity and 100%
specificity.

The AF is the most successful measure we have con-
structed to date for separating heart-failure from normal
patients. A surrogate AF with normalized counting time,
shown in Fig. 15b, behaves quite similarly to the original
AF, also allowing the two classes of data to be neatly
divided. The shuffled-surrogate AF (not shown) is barely
distinguishable from the shuffled-surrogate FF displayed
in Fig. 14, as expected. The decreases in the AF and FF
then result purely from short-term effects that are com-
pletely characterized by var(t) and (), and the asymptotic
value A(®) = F(») is fully realized. The failure of this
surrogate to completely separate the two classes of data
confirms that long-term correlations contribute to the abil-
ity of the AF to discriminate as well as it does.

From the foregoing discussion, it is apparent that the
FF fractal-exponent estimator a will generally be smaller
than the AF fractal-exponent estimator vy for heart data.
This limitation is shown explicitly in Fig. 16a, where it is
clear that o is pinned below unity, whereas -y seldom lies
below unity. Furthermore, the experimental values of the
AF fractal-exponent estimator vy generally agree with
those of the RBP fractal-exponent estimator 8, as shown
in Fig. 16b. Finally, in Fig. 16¢, we demonstrate that B is
in accord with the IBP fractal-exponent estimator 8. All of
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FIGURE 15. {a) The AFs of all data sets presented in a single
plot. In the vicinity of T = 10 sec, the magnitude of the Allan
Factor falls into different ranges for heart-failure patients and
normal subjects, providing a measure with 100% sensitivity
and specificity. (b) The AF with normalized counting time.
This normalization leaves intact the effectiveness of the AF for
separating normals and heart-failures.

the results we observe are therefore in accord with expec-
tations (8,58).

It is of interest to examine which aspects of the AF
curves are the most suitable for discriminating the two
classes of data. In Fig. 17, we graphically display the
discriminability provided by several different features of
the Allan-factor curves. The mean heartrate v, shown in
the upper-left panel, fails to separate the classes of data
very well. The AF fractal-exponent estimator y (upper
right-hand panel), like the RBP estimator § and the IBP
estimator 8 (see Fig. 11), provides only partial separation,
exhibiting a sensitivity of 60% at 100% specificity. The
most successful indicators are the value of the AF at
T = 10 sec (lower-left panel), and the minimum value of
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the AF (lower-right panel). Indeed, A(T = 10 sec) com-
pletely separates the heart failures from the normals, ex-
hibiting both a sensitivity and a specificity of 100%.
Finally, it is useful to compare our results with those of
Peng et al. (41), who assumed that fractional Brownian
motion (36,65) provides a suitable model for the sequence
of heartbeat intervals. These authors examined the corre-
lation properties of the increment process of the heartbeat
intervals /() = {r,,, — T}, and obtained the exponent of
the associated power-law periodogram (they denoted this
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FIGURE 16. {a) AF fractal exponent v vs FF fractal exponent a.
Because « is constrained to lie below unity, it provides an
artificially low (biased) estimate of the true fractal exponent.
The AF is more general than the FF because v is constrained
only to lie below 3. (b) AF fractal exponent vy vs RBP fractal
exponent B. vy agrees quite well with B, as expected from
theory. (c) IBP fractal exponent & vs RBP fractal exponent §3. &
agrees quite well with B, as expected from theory.

quantity as {; in the following we denote it as B’ to avoid
confusion with our RBP fractal exponent). Because (i) is
generated from the original time series by passing the
interval sequence through a simple differencing digital fil-
ter, however, it is straightforward to relate ' directly to 3,
the fractal exponent of the interval-based periodogram
S(f) (see Methoads). In the frequency domain we have
SN = HOPS.(H = 2(1 — cos2mf)S.(f), where H(f) is
the transfer function of the differencing filter. For suffi-
ciently small f (=0.2 cycles/interval), a Taylor-series ex-
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COMPARISON OF PARAMETERS FROM AF
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FIGURE 17. Comparison of AF parameters associated with all
of the data sets. The mean heartrate p. (upper-left panel) fails
to separate the classes of data very well. The AF fractai-
exponent estimator vy (upper-right panel), like the RBP and IBP
fractal-exponent estimators [see Fig. 11}, provides only partial
separation. The most successful indicators are the vaiue of the
AF at 7 = 10 sec (lower-left panel) and the minimum value of
the AF {lower-right panel). Indeed, A(T = 10 sec) completely
separates the heart failures from the normals, providing a
sensitivity and specificity of 100%. The AF is a successful mea-
sure for separating the two classes of data because it is jointly
responsive to both short-term and long-term statistical char-
acteristics of the heartbeat time series.

pansion of the cosine function leads to S,(f) ~ f°S.(f)
which, using S,(f) ~ f*F" and S.(f) ~ f 2, yields

B =2~ 4.
Peng et al. (41) calculated the average value of 8’ for
ten normal data sets, obtaining B’ = 1.01 = 0.16

(mean * s.d.); for ten heart-failure data sets they obtained
B’ = 0.54 = 0.25. The corresponding values of
8 =2 — B’ would therefore be 0.99 * 0.16 and
1.46 £ 0.25, respectively. These values are, in fact, in
good agreement with the values of 8 we obtained directly
from the IBPs (see Table 1), using independent calcula-
tions: 1.19 = 0.15 for the average of 12 normal data sets
(including the 10 that they used), and 1.47 = 0.25 for the
average of 14 heart-failure data sets (including the 10 that
they used). Further evidence that & and 3’ are equivalent
is provided by the two data sets illustrated in Fig. 3 of their
paper (41): in Fig. 3a they reported B’(data set
17453) = 0.93 for a normal patient, corresponding to
8 = 1.07; in Fig. 3b they reported B'(data set
9778) = 0.14 for a heart-failure patient, corresponding to
d = 1.86. Again, these values closely match those we
obtained directly from the IBPs (Table 1): 3(data set
17453) = 1.12 and d(data set 9778) = 1.89.
Effectively, therefore, Peng er al. (41) propose that
normal and heart-failure patients be distinguished by mak-
ing use of the parameter 3, the exponent of the interval-
based periodogram. Indeed & does distinguish the two
classes of data, on average, with good statistical signifi-
cance (p < 0.005 from Table 1), as discussed earlier.
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However, this measure has limited ability for properly
classifying individual heart-failure patients, as was illus-
trated in Fig. 11d. Comparing the four panels in Fig. 11
reveals that the sensitivity of Peng er al.’s measure B’,
which is the same as that of 3, i.e. 53%, is substantially
inferior to that achievable by using var(t), D,, or 8.

The magnitude of the Allan factor at 7 = 10 sec, be-
cause it is determined by short-term as well as long-term
characteristics of the heartbeat series, is a superior mea-
sure to all of these, inasmuch as it completely separates
the patients into two distinct classes and therefore exhibits
both a sensitivity and specificity of 100%.

In a more recent contribution, Peng er al. (42) used
detrended-fluctuation analysis to identify crossover behav-
ior arising from differences in scaling over short versus
long time scales, and introduced a stochastic model for
pathologic data. However, in the following section, we
show that a stochastic integrate-and-fire model, compris-
ing a fractal-Gaussian-noise kernel, provides results in ac-
cord with all of the experimental measures that we have
investigated, including the IBP and the AF.

INTEGRATE-AND-FIRE MODEL

Integrate-and-fire (IAF) models are widely used in neu-
rophysiology (62) and in cardiology (5,25,26,48). IAF
models are attractive, in part, because they capture known
physiology in a simple way. The integration of a rate can
represent the cumulative effect of neurotransmitter on the
postsynaptic membrane of a neuron, or of the currents
responsible for the pacemaker potential in the sino-atrial
node of the heart, with the firing of an action potential or
a heart contraction occurring when the integrated rate
crosses a preset threshold.

In the context of the heartbeat, Berger et al. (5) con-
sidered an IAF model in which an underlying rate function
R(?) is integrated until it reaches a fixed threshold 0,
whereupon a point event is triggered and the integrator is

THRESHOLD
RATE INTEGRATOR DETECTOR POINT
SIGNAL " PROCESS
R(t) ————> | R(T)dT s(t)
¢ 9
RESET

FIGURE 18. Schematic representation of the integrate-and-
fire (IAF) mechanism for modeling the human heartbeat. An
underlying rate process R(t}, assumed to be bandlimited frac-
tal Gaussian noise (FGN), is integrated until it reaches a fixed
threshold 6, whereupon a point event is generated and the
integrator reset. The continuous rate process is thereby con-
verted into a point process s(t). The IAF approach was also
used for generating the phase-randomized surrogate data
(see Methods).
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reset. As shown in Fig. 18, the occurrence time of the
(k + 1)st event is then implicitly obtained from

9 = |™' R(7)dr. (14)

I

In general, the rate R(f) comprises a constant plus a time-
varying component:

R() = Ry + M(0); (15)

R, is the mean heart rate. Heart rate variability is intro-
duced through M(¢). In the limiting case when M(¢) = 0
and 6 = 1, aregularly spaced deterministic firing pattern,
with rate R, emerges.

Modeling the stochastic part of the rate function as
bandlimited fractal Gaussian noise, and using a constant
threshold 8 = 1, gives rise to a heartbeat sequence that is
in remarkably good accord with observations, as demon-
strated below. Ideal FGN is a continuous stochastic pro-
cess of infinite bandwidth, with Gaussian amplitude sta-
tistics and a power-law decaying correlation function
(36,65); its integral is fractional Brownian motion (FBM).
However, since real data has a low-frequency cutoff A
imposed by the duration of the signal under study, and a
high-frequency cutoff B imposed by the time resolution of
the measurement, bandlimited FGN (34) may be used,
with no loss of generality, to carry out the model calcu-
lations more simply. A convenient point of departure is
the rate-based power spectral density, which is character-
ized by four parameters (B8, ¢, A, B) (see Fig. 19):

S =c¢ P, A<f<B. (16)

The procedures used for selecting model parameter val-
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FIGURE 19. Frequency-domain representation of bandlimited
fractal Gaussian noise. Frequency components lying beyond
the bandwidth admitted by the model contribute to the rate
variance of the data. Because of this, the power-law coeffi-
cient ¢ of the FGN is correspondingly larger than that of the
data over the frequency range of the model.
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FIGURE 20. Comparison of interevent-interval histograms
(IlHs) obtained from the heart data (solid curves, same as Fig.
3) and from the FGN-IAF model (dashed curves). The model
simulations closely follow the general features of the data.
The mean and standard deviation of the model results (indi-
cated by error bars) were estimated from 10 computer simu-
lations. The agreement is representative of the 27 data sets
examined.

ues are as follows. Two of the parameters of the model
(the lower and upper cutoff frequencies, A and B respec-
tively) are imposed implicitly by the duration and resolu-
tion of the simulated sample. The remaining three free
parameters (the mean heartrate R, the coefficient ¢, and
the RBP fractal exponent () are readily obtained from the
data. The threshold 8 specifies the class of models; in the
case considered here, 8 is a fixed constant equal to unity.
The power-law exponent {3 is estimated directly from the
RBP. The coefficient ¢ can be obtained from the data in
one of two ways: directly from the RBP when the latter is
calculated in absolute terms, or from $ and the rate vari-
ance (which is the integral of the RBP). Because fre-
quency components beyond the cutoffs A and B imposed
by the statistical analysis contribute to the variance of the
real data, however, the latter method will generally give
rise to a larger apparent value of ¢ (see schematic illus-
tration in Fig. 19).

For each of the 27 data sets, the best-fitting model
parameters were obtained and 10 computer simulations of
the model point process were constructed. The mean and
standard deviation (indicated by error bars) of various sta-
tistical measures were obtained from these 10 simulations.
Figures 20-26 present both the fractal-Gaussian-noise/
integrate-and-fire (FGN-IAF) model results (dashed
curves) and the heart data (solid curves). The heart data
shown in Figs. 20-26 (data set 16265 for normal and data
set 6796 for heart failure) are identical to those displayed
in Figs. 3 and 5-9. The degree of agreement between the
data and model in Figs. 20-26 is representative of the 27
sets of heart data examined.
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10° — , ‘
102 T

ey,
10! | = ., MODEL
10° | et
10-1 L (a) NORMAL DATA
1072 : '

10° , .
102
10!
10°
1071}
1072

1073 1072 1071
FREQUENCY f (cycles/interval)

S_(f) (relative scate)

(b) HEART FAILURE

FIGURE 21. Interval-based periodograms (IBPs) calculated on
the basis of the FGN-IAF model (dashed curves for mean, error
brackets for s.d.} follow the general form of the data (solid
curves) well, though they lack the spectral features associated
with cyclic processes (e.g., respiration) since these are not
included in the model. The data are the same as those pre-
sented in Fig. 5. The fit of the model to the data is represen-
tative of all the data sets examined.

The interevent-interval histograms are shown in Fig.
20. The FGN-IAF model histograms (both normal and
heart failure) are somewhat smoother than those of the
heart data (in part as a result of the averaging of simula-
tions), but they follow the general shapes of the data
curves well. Indeed, the degree of similarity is particularly
gratifying in light of the fact that the model parameters
were extracted from the long-time-scale properties of the

EVENT~NUMBER HISTOGRAM
COUNTING TIME T = 10 sec

0.4 (a) NORMAL A
— DATA
0.2 } 1
-
5 0.0
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0.2t .
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FIGURE 22. Event-number histograms (ENHs) with a count-
ing time of T = 10 sec, calculated from simulations using the
model (dashed curves for mean, error brackets for s.d.), ac-
cord well with the data (solid curves, same as Fig. 6). The
agreement between the model curves and the data is repre-
sentative of the 27 data sets examined.
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FIGURE 23. Fano-factors (FFs) of the data [solid curves, same
as Fig. 7(a)] and model (dashed curves} are in good agree-
ment. Since the standard deviation associated with the model
curves is less than the thickness of the curve itself, error bars
are not shown. The degree of divergence exhibited by these
particular data sets is typical.

sequence of heartbeats, and no explicit limitations on the
interevent-interval statistics (such as refractoriness or
maximum interval size) were imposed.

As shown in Fig. 21, the interval-based periodograms
calculated from the model also follow the general form of
the data quite well. Cyclic processes such as respiration,
which give rise to peaks in the periodogram, were not
included in the model so the simulations lack the fine
detail of the data.

The model event-number histograms for a counting
time 7 = 10 sec, presented in Fig. 22, are approximately
bell-shaped. Both the mean number of events and the

ALLAN FACTOR
10 T T T T
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10 F -
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1071 100 10! 102 103
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FIGURE 24. Allan-factors (AFs) of the data [solid curves, same

as Fig. 7(b)] and model (dashed curves) accord quite well. The
level of agreement is typical of all the data sets.
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FIGURE 25. Generalized rate-based-periodograms (RBPs)
computed with a binwidth of 10 sec. The model curves
{dashed for mean, error brackets for standard deviation) agree
reasonably well with the data (solid curves, same as Fig. 8).

event-number variance match the data well. Consequently
the Fano and Allan factors, which are both calculated from
the ENH, must be similar for the model and data at
T = 10 sec.

Figures 23 and 24 show that the Fano factors and Allan
factors for the model and data agree well not just at
T = 10 sec, but over a broad range of counting times.

The generalized rate-based periodograms, computed
with a binwidth of 10 sec, are shown in Fig. 25. The
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FIGURE 26. Capacity dimension vs. embedding dimension for
data (solid curves, same as Fig. 9) and FGN-IAF model (dashed
curves for mean, error brackets for standard deviation). The
results predicted by the model level off with increasing em-
bedding dimension m, mimicing quite nicely the way the data
behave. Since the model is purely stochastic, this shows that
such behavior need not be associated with nonlinear deter-
ministic dynamics but can instead arise from temporal corre-
lation in a stochastic process.

shapes of the model curves are quite similar to those of the
data. As described above, however, the method of obtain-
ing the coefficient ¢ can overestimate its value in the band-
limited region (see Fig. 19). This is apparent in Fig. 25a,
where the model RBP has a greater magnitude than the
data. While this overestimation was common, it was not
universal; as shown in Fig. 25b for heart failure, the data
and simulated RBPs are quite similar in magnitude. The
degree of accord of the magnitudes depends on the spec-
tral content of the data outside the bandwidth being sim-
ulated.

Finally, the capacity dimension is presented in Fig. 26.
As with the surrogate data for this measure (Fig. 9), the
FGN-IAF model, though it does not describe the data
perfectly, succeeds rather well in emulating the general
trend of the data, including saturation with increasing em-
bedding dimension m. This confirms that such behavior is
not a definitive indicator of underlying nonlinear deter-
ministic dynamics but also can arise from temporal corre-
lation in a stochastic process.

In short, the IAF model with a FGN kernel is remark-
ably successful at predicting all of the interevent-interval-
and event-number-based measures that we have exam-
ined.

SUMMARY

We have studied the interevent-interval and event-
number statistics of the sequence of human heartbeats
from normal subjects and heart-failure patients. Both
short-term and long-term measures reveal that, on aver-
age, the two classes of data behave differently.

We examined three measures generated from the se-
quence of interbeat intervals. The interevent-interval his-
togram is generally narrower for heart-failure patients, as
determined by its variance. Rescaled range analysis man-
ifests a strong correlation in the sequence of intervals, but
it does not reveal a significant difference in the degree of
correlation between the two classes of data. The interval-
based periodogram also shows strong correlation in the
sequence of intervals, and on average reveals a larger
fractal exponent for heart-failure than for normal patients.

Event-number-based measures also exhibit differences
between the two classes of data. The event-number histo-
gram, computed for a sufficiently large counting time,
reveals that the rate fluctuations are generally greater in
the normal data than in the heart-failure data. The Fano
factor, Allan factor, and rate-based periodogram all show
power-law correlation in the sequence of counts for both
classes of data; the fractal exponent for the heart-failure
group is generally larger. For heart-failure patients there is
less overall power in the ECG but relatively more power at
low frequencies.

The behavior of the capacity dimension D, estimated
from the reconstructed gencralized-rate-based phase
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space, is consistent with a putative low-dimensional at-
tractor of a deterministic dynamical system. It is generally
larger for the normal data. However, randomized-phase
surrogate-data analysis gives similar results for D, sug-
gesting that temporal correlation in the heartbeat time se-
ries, rather than the presence of an underlying attractor, is
responsible for the effect. A similar conclusion has been
reached by Kanters et al. (27), who based their conclu-
sions on a dynamical-systems analysis of interbeat inter-
vals and surrogates thereof.

We have developed a measure we call the Allan factor,
which is jointly responsive to both short-term and long-
term statistical characteristics of the heartbeat time series.
Its success in properly identifying all 27 patients as nor-
mals or heart-failures (100% specificity and 100% sensi-
tivity) leads us to consider it as a possible diagnostic tool
for clinically distinguishing between the two groups of
patients. We expect that it will be possible to devise other
measures responsive to both the short- and long-term sta-
tistical characteristics of the ECG to separate the two
classes of data. After all, the AF is an excellent measure
whereas the FF is less useful; yet they contain the same
information and are in fact related by the simple transfor-
mation provided in Eq. 12. Wavelet-based versions of the
Allan factor are good candidates (58). Various combina-
tions of interval-based measures, such as the interevent-
interval histogram and the interval-based periodogram,
should be examined as well.

For both normal and heart-failure patients, the se-
quence of heartbeats is well modeled by the point process
generated by an integrate-and-fire mechanism with a frac-
tal-Gaussian-noise kernel. It is remarkable that such a sim-
ple stochastic model so successfully characterizes all of
the measures we have examined (save cyclic processes
which are not incorporated in the model), particularly
since they comprise both short- and long-time-scale be-
havior. One implication is that measures that exhibit dif-
ferences between the two classes of data are simply re-
flecting differences in the free parameters used in the
model.

Finally, we note that a more general class of point
processes can be formulated in terms of the IAF model.
For example, the threshold for firing 6 need not be con-
stant, but can be a random variable or a stochastic process.
Randomness imparted to the threshold can then be used to
represent variability in biological elements of the system,
such as the amount of neurotransmitter released per syn-
aptic vesicle or the duration of ion channel openings. The
homogeneous Poisson point process with rate R, would
then be a special case within this construct, generated
when M(r) = 0 and 6 is an independent, exponentially
distributed random variable associated with each inter-
event interval. An inhomogeneous Poisson point process
would result when the condition M(f) = 0 is relaxed.

Models such as these have been used extensively in char-
acterizing neural firing patterns (62).
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LIST OF ABBREVIATIONS

AF = Allan factor

Ccbh = Capacity dimension

DFT = Discrete Fourier transform

DTMP = Dead-time-modified Poisson point process
ECG = Electrocardiogram

ENH = Event-number histogram

FBM = Fractional Brownian motion

FF = Fano factor

FGN = Fractal Gaussian noise

FSPP = Fractal stochastic point process
HPP = Homogeneous Poisson point process
IAF = Integrate-and-fire

IBP = Interval-based periodogram

HHH = Interevent-interval histogram

NCR = Normalized coincidence rate

PSD = Power spectral density

PSR = Phase-space reconstruction

RBP = Generalized rate-based periodogram
R/S = Rescaled range analysis

WAF = Wavelet Alian factor

WEFF = Wavelet Fano factor





