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Abstract—The continuous wavelet transform (CWT) and the
short-time Fourier transform (STFT) were used to analyze the
time course of cellular motion in the guinea pig inner ear. The
velocity responses of individual outer hair cells and Hensen’s
cells to amplitude modulated (AM) acoustical signals applied to
the ear canal displayed characteristics typical of nonlinear sys-
tems, such as the generation of spectral components at harmonics
of the carrier frequency. Nonlinear effects were particularly pro-
nounced at the highest stimulus levels, where half-harmonic (and
sometimes quarter-harmonic) components were also seen. The
generation of these components was consistent with the behavior
of a dynamical system entering chaos via a period-doubling
route. A negative-stiffness Duffing oscillator model yielded pe-
riod-doubling behavior similar to that of the experimental data.
We compared the effectiveness of the CWT and the STFT for
analyzing the responses to AM stimuli. The CWT (calculated
using a high-Q Morlet-wavelet basis) and the STFT were both
useful for identifying the various spectral components present in
the AM velocity response of the cell. The high-Q Morlet wavelet
CWT was particularly effective in distinguishing the lowest fre-
quency components present in the response, since its frequency
resolution is appreciably better than the STFT at low frequen-
cies. Octave-band-based CWTs (using low-Q Morlet, Meyer,
and Daubechies 4-tap wavelets) were largely ineffective in ana-
lyzing these signals, inasmuch as the frequency spacing between
neighboring spectral components was far less than one octave.
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INTRODUCTION

In the process of hearing, sound waves travel to the
eardrum (tympanic membrane) through the external ear
and ear canal. The sound pressure acting on the tympanic
membrane produces mechanical vibrations that are trans-
mitted, via the ossicular chain in the middle ear, to the
inner ear (cochlea). The cochlea, which is encased in a
bony shell, consists of three fluid-filled canals: scala ves-
tibuli, scala media, and scala tympani. A thin membrane
(Reissner’s membrane), running the length of the cochlea,
separates the scala vestibuli from the scala media (middle
canal). The basilar membrane forms the base of the middle
canal, separating it from the scala tympani. The cochlea is
coiled; there are four and a half turns in the guinea pig
cochlea. The coil diameter is widest at the base of the
cochlea, and narrowest at the apex. There are two open-
ings in the bony shell near the base: (i) the oval window,
through which the stapes drives the fluid in the scala ves-
tibuli, and (ii) the round window, which is covered by a
thin membrane that accommodates the movement of fluid
in the cochlea. The sensory organ of hearing (the organ of
Corti) is located on the scala media side of the basilar
membrane. It consists of several types of specialized cells
that are organized in precise transverse and longitudinal
arrangements. The transverse morphological arrangement
is the same from base to apex, though the width and stiff-
ness of the basilar membrane and the dimensions of most
of the cells change over this region (2,23).

In the past, it has been possible only to measure vibra-
tions at the basilar membrane. More recently, however,
the use of a slit confocal microscope has made it possible
to conduct vibration measurements at arbitrary positions
within the organ of Corti (23), in the third and fourth turns
of a special guinea pig temporal-bone preparation. This
preparation is excised from the animal and kept alive by
immersion in an oxygenated tissue culture medium (42).
The velocity of vibration of individual cells, selected as
desired, is measured with a specially designed confocal
heterodyne interferometer in response to sound applied to
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the ear canal. The details of the stimulus-generation and
measuring techniques have been previously described
(23).

This measurement technique has served to elucidate the
role of individual cells in the complex mechanical trans-
duction process carried out in the organ of Corti. The
measurements show that sensory cells (outer and inner
hair cells) play an important role in this process. Measure-
ments at the reticular lamina (which contains the tops of
the sensory cells) display three types of response: (i) Cells
vibrate at frequencies that are related to the frequency of
the applied signal, with no net displacement. This is the
AC response. The magnitude of the vibration velocity is
frequency dependent, displaying a bandpass characteris-
tic. The frequency of maximum velocity is defined as the
characteristic frequency (CF) of the cell. The CF is highest
at the base of the cochlea, and lowest at the apex (23). In
the third turn of the guinea-pig cochlea, the cells respond
maximally to frequencies in the range of 500-900 Hz,
whereas in the fourth turn the maximum response occurs
for frequencies below 500 Hz. (ii) The outer hair cells
change their length when a tone is applied to the ear, and
retain that length as long as the tone is present. This length
change is called the motile or DC response. The magni-
tude of the motile response is dependent both on signal
level and signal frequency. For a constant signal level, the
length change is largest at the same frequency at which the
AC response is maximum (the CF); however the fre-
quency bandwidth over which the motile response is ob-
served is far narrower than the AC passband (4-8,23).
(iii) Some outer hair cells and Hensen’s cells vibrate spon-
taneously with low amplitude at frequencies near their CF
even when no acoustic signal is applied to the ear
(27,28,30).

A suitable method for studying both the AC and motile
responses is to use sinusoidal-carrier amplitude modulated
(AM) acoustic waves with low-frequency modulation.
This provides an opportunity for studying the change in
cell length over a broad range of carrier levels, as the
envelope increases and decreases. The AM format is also
useful because the heterodyne interferometer can measure
the velocity of an object but not its absolute position.

An AM stimulus is a time-varying signal; accordingly
specific analysis techniques are required to examine the
response. This paper describes the application of time-
scale and time-frequency representation techniques for the
analysis of cellular velocity data, with a particular eye
toward examining routes to chaos (38,39). The relative
advantages of the two techniques are compared for several
data sets. The modulation depth of the AM acoustic signal
was unity and the modulation frequency was 2.44 Hz. The
carrier frequency ranged from 24 to 1800 Hz, and the total
duration of each data set collected was fixed at 0.4096 s
(representing 2048 samples at 200-p.s intervals).

We examined both the continuous wavelet transform
(CWT) and the short-time Fourier transform (STFT) of the
velocity responses elicited by the AM stimuli described
above. Both analysis techniques were useful in discrimi-
nating the frequency components present in the responses,
and revealing period-doubling behavior, though the wave-
let basis for the CWT had to be carefully chosen to provide
the desired frequency resolution. CWTs using a high-Q
Morlet wavelet basis were found to be particularly useful
for identifying low-frequency response components. Oc-
tave-band based CWTs (using low-Q Morlet, Meyer, and
Daubechies 4-tap wavelets) were largely ineffective in an-
alyzing these signals, inasmuch as their frequency resolu-
tion was too poor to distinguish between the closely
spaced frequency components present in the velocity re-
sponses.

In this paper, we show that the nonlinear dynamical
characteristics of cellular motion in the cochlea (37-39)
can be elucidated by using both CWT- and STFT-based
analyses. The character of the cell’s nonlinear response is
found to depend significantly on the carrier frequency of
the applied signal, relative to the innate tuning character-
istics of the cell, and on the signal level. A simple non-
linear system, the Duffing oscillator with negative stiff-
ness, exhibits some of the features seen in our experimen-
tal data, though it is clearly too idealized to serve as a
model for cellular dynamics in the cochlea. We have pre-
viously reported results pertaining to the use of both the
CWT and the STFT in the analysis of cellular velocity data
(18-20,40,41), and provided preliminary results pertain-
ing to chaos in the cochlea (38,39).

THEORY
The Continuous-Time Fourier Transform

Signal analysis addresses the problem of extracting in-
formation from a given signal x(¢) and converting it into a
recognizable form. One approach to this problem is to
transform x(¢), using an information-preserving mapping,
to a different domain (viz., a dual domain), where it is
easier to interpret the signal. The best-known of these
approaches, perhaps, is the continuous-time Fourier trans-
form (CFT). The relations between x(¢) (where ¢ is chosen
to represent time) and its dual representation X(f) are

X = fx x(f)exp(—j2aft)dt, (1)

xt) = |7 X(hexpGanfods. 2)

X(f) is referred to as a spectral representation of x(z), with
the dual variable f defined as (global) frequency.
The CFT reveals how the energy in the signal x() is
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distributed in frequency. One limitation of the CFT is that
the value of X(f) is affected by all values of x(¢) from ¢ =
—® to +%. As a result, any particular feature in X(f)
cannot be linked with a specific time region of x(¢). The
CFT provides a totally global perspective on how a sig-
nal’s energy is distributed as a function of frequency; in

other words, X(f) is a completely nonlocal spectral repre-
sentation of x(f).

The Short-Time Fourier Transform

In many cases, the CFT is a most useful representation,
particularly if x() is stationary or ‘‘steady’’ in time (for a
discussion of the notion of stationarity, see 33). However,
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FIGURE 1. {a) Representation of the STFT in terms of filter-
bank operations. The signal to be analyzed x{t) is passed
through a bank of filters, each with the same shape and band-
width, but slightly different center frequencies f. The output
from each filter is then multiplied by the factor expl{—j2nfr),
which has the effect of shifting the output down to zero fre-
quency and thereby providing the envelope. (b) Tiling of the
time-frequency plane by the STFT. The rectangles centered at
(1 f;) represent regions of the time-frequency plane where the
functions g*{r — 7,) exp{~j2nf) are concentrated. These rect-
angles therefore also indicate the time and frequency resolu-
tion of the STFT.

for many signals, the nature of x(f) changes with time. For
example, if x(f) represents the vertical motion of a point on
the wheel of an automobile over the course of a journey,
its frequency of motion will vary depending on whether
the car is moving at constant speed, accelerating, decel-
erating, or at rest. The CFT of this signal tells us about the
range of frequencies that the motion achieved over the
course of the entire journey, but it fails to provide infor-
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FIGURE 2. (a) Representation of the CWT in terms of filter-
bank operations. The signal to be analyzed x(t) is passed
through a bank of filters, each of which is simply a scaled
version of some prototype filter. Each filter has a fixed shape
and relative bandwidth, but in absolute terms the bandwidths
of the filters increase as the center frequency increases. The
center frequency of the analysis filters is inversely propor-
tional to scale r;. Th\e/g_utput from each filter is then multiplied
by the gain factor V|r/. Since this gain factor increases with
scale r, low-frequency components are accentuated with re-
spect to high-frequency components. (b) Tiling of the time-
frequency plane by the CWT. The rectangies centered at (7, f)
represent regions of the time-frequency plane where the func-
tions h*([t — 7.)/r) are concentrated, with f; = K/r, These rect-
angles also indicate the time and frequency resolution of the
CWT. The CWT cannot resolve components at DC, since the
basis functions do not extend to zero frequency. The figure
shown here represents a dyadic grid, i.e., the rectangles dou-
ble in length as we move along the frequency axis, but of
course their areas are all the same. Our choice of a factor of 2
is illustrative; other ratios could equally well be used.
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FIGURE 3. Four wavelet bases in the time domain and their respective CFTs. (a} Real part of a high-Q Morlet wavelet, h(f) = expljct)
exp(—at?/2), with ¢ = 2z and « = 0.0254. There are many (>40) oscillations within the envelope of the wavelet, and its overall
duration is approximately 40. (b) Magnitude of the CFT of the wavelet shown in Panel a. The relative bandwidth of this function
is narrow (=0.072). It is symmetric about the frequency f = 1. (c}) Real part of a low-Q Morlet wavelet, h(f) = expljct) exp(—at?/2),
with ¢ = 2o and a = 2.64. There are relatively few oscillations within the envelope of the wavelet, and its overall duration is
approximately 4. {d) Magnitude of the CFT of the wavelet shown in Panel c. The relative bandwidth of this function is 0.72. It is
symmetric about the frequency f = 1. (e) Real part of a Meyer wavelet calculated as outlined in Ref. 44 (there is no closed-form
expression for this wavelet in the time domain). As for the Morlet wavelet pictured in Panel c, there are relatively few oscillations
within the envelope. The overall duration of the wavelet is approximately 5. (f) Magnitude of the CFT of the wavelet shown in Panel
e. The relative bandwidth of this function is approximately 1.18. The function is asymmetric about the frequency f = 1. (g}
Time-waveform of a wavelet calculated using an iterative procedure based on a 4-tap filter with coefficients as proposed by
Daubechies (the Daubechies 4-tap filter) (44). This wavelet has no closed-form expression, is purely real, and is not symmetric in

time. (h) Magnitude of the CFT of the wavelet shown in Panel g. The relative bandwidth of the first bandpass region is 1.5. This
function has multiple lobes in the frequency domain.

mation about the time order in which they occurred. A
representation of x(f) that tells us when a particular fre-
quency was present would provide a more useful account
of the journey. To achieve this, a spectral representation
that includes some explicit dependence on time is needed;
a function of the form X(f,1), where f again represents
frequency and T represents time, would be useful.

The first attempt to construct such a function was car-

ried out by Gabor in 1946 (16). His approach retained
the frequency variable f defined by the CFT, but insured
that only values of x(z) in the near vicinity of z = T would
be able to influence X(f,7). He achieved this by multiply-
ing the original signal x(z) by window functions that are
localized in time at ¢+ = 7. In this way, he constructed a
local spectral representation of the signal in the vicinity of
time T.
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FIGURE 3. Continued.

Gabor’s approach was later shown to be a special case
of the short-time Fourier transform (STFT) (22,32), which
is expressed as:

STFTS(fim) = 7 x(0g*( — mexp(~j2mfi)dr.
(3)

Here ¢ and 7 are time variables, x(¢) represents the time
waveform being analyzed, g(#) represents a window func-
tion, f'is the frequency variable, and the superscript aster-
isk denotes complex conjugation. The Gaussian [g() =
exp(— Bt%/2)] is a typical choice for the window function
since it falls smoothly and symmetrically to zero around
the time ¢+ = 0. Accordingly, the function g*(t — 7),
which in this case is equal to g(t — T), is centered about
the time ¢ = T, and falls away quickly to zero for times
away from 7. It is apparent that in the absence of a window

function [g(¢) = 1], the STFT in Eq. 3 reduces to the CFT
given in Eq. 1.

There are several alternative ways of expressing the
STFT that are useful in different circumstances. For ex-
ample, it can be written as an integral in the frequency
domain, viz.:

STFTE(f,7) = exp(—j2mfr)
X f_x X(w)G*(u — fHexp(j2wut)du,

“)

where X(u) and G(u) represent the CFT's of x(¢) and g(¢),
respectively, and u is a dummy frequency variable. Here
STFTE(f,7) is seen to be a frequency-shifted version of the
inverse CFT of [X(u)G*(u — f)] (compare with Eq. 2). If
the function G(u) is taken to represent a lowpass filter in
frequency, then X(w)G*(u — f) is the CFT of x() after
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filtering by a bandpass filter whose shape is simply that of
G(u) translated in frequency so that it is centered about f
instead of 0. The factor exp(~j2mfr) in Eq. 4 simply
frequency shifts the filtered output back down to zero
frequency. The STFT can thus be viewed as the fre-
quency-shifted output from a bank of filters G*(u — f),
each with constant bandwidth but different center fre-
quency. This filter-bank interpretation of the STFT
(43,44) is illustrated in Fig. la.

The STFT can also be written as a convolution in either
the time domain:

STFTE(f,7) = exp(—2mfr)[x(7) * g*(—7)exp(i2nfr)],
5

or in the frequency domain:
STFTE(f,7) = X(P) * [G*(—fexp(—j2mfr)], (6)

where the on-line asterisk denotes the convolution integral
operator [i.e., u(s) = [12 v(w(s — r)dr = v(s) * w(s)].
The convolution formalism represented in Eq. 5 identifies
a limitation of the STFT. In calculating STFT4(f,7,), the
value of x(¢) at time t = 7, is smeared over time by the
convolution integral. Therefore any sharp change in the
value of x(#) at time ¢+ = 7, will not appear in the STFT
solely at 7o, but rather will be spread over a region of time
in the vicinity of 1 = 7. The range of time over which
information is spread depends on the width (time duration)
of g*(—texp(j27ft). (The width of a function can be de-
fined in many ways (35); in this paper, we define it as the
full-width at 1/e-maximum, whether it be a time duration
or a bandwidth. Alternative definitions of bandwidth
would, of course, be acceptable for the transform proper-
ties we discuss provided they are dealt with consistently.)

According to Eq. 6, a sharp spectral feature at fre-
quency f = f, will similarly be blurred by convolution
with G*(—flexp(—j2mft).

The ability to resolve fine features in either the time or
frequency domains is referred to as the time or frequency
resolution of the transform operation, respectively. From
the discussion in the preceding paragraph, it is apparent
that the time and frequency resolutions of the STFT are
dependent on the widths of the functions g(r) and G(f).
These widths are denoted by Az and Af, respectively, and
we would be delighted if both of these quantities could go
to zero.

This is not possible. To illustrate this, consider choos-
ing g(#) as short in time as possible. In the limit, we obtain
g(t) = 8(f), where 8(¢) is the Dirac delta function, which
transforms to G(f) = 1. Substitution into Eq. 3 then shows
that STFT4(f,7) = x(t)exp(—j2mfr) which is simply the
original signal x(#) translated down in frequency. This
STFT has therefore exactly preserved the time information
in the signal x(¢), but it provides no frequency information

whatsoever. This is because the width of the function G(f)
is infinite.

The inability to simultaneously access information at
arbitrarily small values of Az and Afis an inherent property
of the transform. In fact, by using the Schwarz inequality
for any function g(¢), it can be shown that an uncertainty
principle ensues (35) (i.e., that AtAf = C where C is a
nonzero constant whose precise value depends on the def-
inition of width that is selected once. Thus, g(¢) is chosen,
the time and frequency resolutions of the STFT are fixed
for all values of 7 and f. This is shown schematically in
Fig. 1b by drawing regions in the 7-f plane where a set of
functions g*(7-7,)exp(—j2mf;7) are concentrated, since it
is functions of this form that set the time and frequency
resolutions of the STFT. These regions are illustrated as
rectangles of fixed area and dimensions for all values of 7;
and f;, and are said to tile the time-frequency plane
(43.,44).

The Continuous Wavelet Transform

A characteristic of the STFT is that both the time and
frequency resolutions of the transform are fixed over the
entire time-frequency plane. The time resolution At is
fixed for the function g(r)exp( —j2mft), whatever the value
of f. As aresult, Af = C/At is also fixed over the entire
time-frequency plane. In certain circumstances it is desir-
able to relax this restriction. Consider, for example, a
signal with a mixture of short-lived high-frequency events
that are closely spaced in time together with long-duration
low-frequency components that are closely spaced in fre-
quency. A suitable transform for this signal would have
sufficient time resolution to distinguish the brief high-
frequency events, and at the same time, enough frequency

VELOCITY TUNING CURVE FOR THIRD TURN HENSEN’S CELL

—_
o,
O
¥
L

VELOCITY/PRESSURE (cm/s-microbar)

-
o
b

il
PN

300 1000 2000
FREQUENCY (Hz)

FIGURE 4. Velocity tuning curve for a Hensen'’s cell (file num-
ber 0b181153.dt1) in the third turn of the guinea pig temporal-
bone preparation. The ordinate displays the peak velocity in
cm/s per unit sound pressure of 1 pbar (1 dyne/cm?). The CF
for this cell is 693 Hz, but the tuning is rather broad.
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FIGURE 5. Velocity response of a Hensen'’s cell (file number 0b181444.dt1) in the third turn of the guinea pig temporal-bone
preparation to an AM stimulus with carrier frequency 7. = 400 Hz (below CF) and modulation frequency 2.44 Hz. The velocity tuning
curve for this cell is shown in Fig. 4. The highest sound pressure level, occurring at the center of the input envelope was ~116 dB:re
0.0002 dyne/cm?. (a) Time waveform of the velocity response {in cm/s) of the cell. The waveform is asymmetric in amplitude. (b)
3D plot of the modified CWT magnitude (viz., the CWT multiplied by the factor of {r|~"2) of the velocity response shown in Panel
a). The high-Q Morlet wavelet basis shown in Fig. 3a and 3b was used. The x and y axes represent time (ms) and frequency (Hz)
respectively, and modified CWT magnitude is plotted on a linear scale on the z axis. This plot shows spectral components at the
carrier frequency f. and at four higher harmonic frequencies, 2f,, 3f,, 4f, and 5f.. (¢c) Same modified CWT magnitude as shown in
Panel b, but now plotted in 2D format with 80 equally spaced (in modified CWT magnitude) contour lines joining points of constant
magnitude. (d) 3D plot of the STFT magnitude of the velocity response shown in Panel a. Spectral components are present at the
carrier frequency £, and at five higher harmonics, 2f_, 3f, 4f_, 5f,, and 6f_. (e} Same STFT magnitude as shown in Panel d, but now
plotted in 2D format with 80 equally spaced (in STFT magnitude) contour lines joining points of constant magnitude. {f} 3D plot
of the modified CWT magnitude of the velocity response shown in Panel a. The low-Q Morlet wavelet basis was used. This plot
shows a large-bandwidth spectral component centered at the carrier frequency f,. Energy is present at higher frequencies but the
resolution is very poor. (g) Same modified CWT magnitude as shown in Panel f, but now plotted in 2D format with 80 equally
spaced (in modified CWT magnitude) contour lines joining points of constant magnitude. (h) 3D plot of the modified CWT
magnitude of the velocity response shown in Panel a. The Meyer wavelet basis was used. As in Panel f, this plot shows a
large-bandwidth spectral component centered at the carrier frequency £, and higher frequency spectral components that cannot
be clearly resolved. (i} Same modified CWT magnitude as shown in Panel h, but now plotted in 2D format with 80 equally spaced
{in modified CWT magnitude) contour lines joining points of constant magnitude. (j) 3D plot of the modified CWT magnitude of
the velocity response shown in Panel a. The Daubechies 4-tap wavelet basis was used. As in Panels f and h, this plot shows a
large-bandwidth spectral component at the carrier frequency . and higher frequency spectral components that cannot be clearly
resolved. (k) Same modified CWT magnitude as shown in Panel j, but now plotted in 2D format with 80 equally spaced (in modified
CWT magnitude) contour lines joining points of constant magnitude.

resolution to separate the closely spaced low-frequency provides good time resolution at high frequencies and
components. These two aims are incompatible with the good frequency resolution at low frequencies. One such
STFT—the time and frequency resolutions are both fixed. representation is the continuous wavelet transform (CWT)

One possible approach is to calculate two STFTs with (9,17,22,34,43,44). The CWT is expressed as:
different choices of g(¢): a short-lived g(s) with a small

value of At for good time fesolution, and a long-liyed‘g(t) CWTf(r,'r) _ 1  MOh* t— &
for good frequency resolution. An alternative solution is to \/m — r

use a representation that has variable time-frequency res-

olution over the (1,f) plane, chosen in such a way that it where ¢ and T are time variables, x(¢) is the time waveform
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FIGURE 5. Continued.

being analyzed, h(¢) is the wavelet basis function, and r is
a variable known as scale. As with the STFT, the CWT
can also be expressed as an integral in the frequency do-
main (compare with Eq. 4):

CWT;’(r,'r) = \/m fjc X(WH*(ur)exp(j2mut)du,
t))

or as a convolution in the time domain (compare with Eq.

S):
o @) o

where, as before X(x) and H(u) denote the CFTs of x(9)
and h(¢), respectively.

The prefactor of \/H that appears in Eq. 8 illustrates
that the standard CWT does not map equal-amplitude si-

CWT(r,7) =

nusoids of different frequencies to CWTs of the same
magnitude; rather it suppresses low-scale (high-frequency)
components relative to those at high scale (low fre-
quency). To facilitate comparison of the CWT results with
those obtained with the STFT, it is useful to eliminate this
difference. We therefore generally plot |r| ~'2/CWT],
which we refer to as the modified CWT. This has no effect
on the time-frequency resolution characteristics of our
analysis.

To understand how the CWT differs from the STFT,
consider Eq. 9, which is the formulation of the CWT as a
convolution in the time domain. As with the STFT, the
value of x(f) at t = 7, is smeared over a time equal to the
width of the function A(7/r). In this case, however, the
width of h(7/r) is not fixed, but rather depends on the
value of r. As an example, h(2¢) has half the width of h(r)
while h(#/2) has twice the width of k(7). The larger the
value of r, the wider the function A(t/r). Since time res-
olution depends on the width of this function, the follow-
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FIGURE 5. Continued.

ing situation obtains: as r decreases, h(7/r) becomes nar-
rower in time so that the time resolution improves. Con-
versely, as r increases, the time resolution is degraded, but
the frequency resolution is simultaneously enhanced be-
cause the quantity ArAf must be maintained constant. This
is also apparent from Eq. 8, where H(ur) becomes nar-
rower as r increases, hence improving the frequency res-
olution. The reason the variable r is called scale is that it
stretches and contracts the function A(7/r). The net result is
that such a transform is in fact useful for analyzing the
kind of mixed signal discussed above.

The CWT is strictly defined as a time-scale represen-
tation; however it often proves easier to interpret CWTs in
terms of time and frequency rather than time and scale. A
short-lived function (r small) inherently contains high fre-
quencies, so that r is inversely related to frequency. For a
given wavelet transform, the mapping f = K/r can be
used, allowing the CWT of a signal to be interpreted in
terms of frequency rather than scale. This mapping is dis-
cussed further under the section that deals with the details
of implementation.

As with the STFT, a filter-bank interpretation (43,44)
can be invoked for the CWT, as illustrated in Fig. 2a. In
this case, the CWT is obtained by filtering the original
signal by a bank of filters with fixed relative bandwidth

rather than fixed absolute bandwidth, as for the STFT.
The relative bandwidth (BW, ) of a filter (or function) is
defined as the absolute bandwidth (Af) of the bandpass
region surrounding the filter’s center frequency divided by
the center frequency (f,) itself. It is the inverse of the
Q-factor:

BW,=—= (10)

1
o

For the CWT filter-bank illustrated in Fig. 2a, the relative
bandwidth of the filters remains fixed, since both the ab-
solute bandwidth and the center frequency of the functions
H(ur) vary in inverse proportion to r. The tiling of the
time-frequency plane associated with the CWT is shown
in Fig. 2b; it consists of rectangles of fixed area but vari-
able shape. At low frequencies, the rectangles are broad in
time but narrow in frequency, since for large r the time
resolution is poor and the frequency resolution is good.
The converse is true at high frequencies.

Wavelet Bases

Many different functions A(f) can be used as prototypes
in forming a CWT. Much work in recent years has focused
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on the issue of defining and using different wavelet bases
for a variety of purposes. In this paper we examine three
particular wavelet bases—the Morlet, Meyer, and
Daubechies 4-tap. It is useful to calculate CWTs using
these different bases, with the aim of determining which
are most useful for analysis purposes.

All wavelet basis sets should satisfy an *‘admissibility
condition’’ (17,34,44), which states that if h(z) is a wave-
let basis for #? (the set of square-integrable functions),

then:
+oo 2
’I:x 'il(;)—l df < eo. an

A consequence of the admissibility condition is that H(0)
= 0 (otherwise [H(f)|*/f diverges at f = 0). In general, it
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is also true that H(f) = 0 as |f| — . Combined, these two
conditions show that the CFTs of wavelet basis functions
represent bandpass filters since they remove components
at both low and high frequencies.

In Fig. 3, we show four different wavelet bases in the
time domain, along with the magnitudes of the CFTs in
the frequency domain. For ease of comparison, we have
normalized the CFTs so that their maxima always have
unity magnitude and lie at f = 1. The Morlet and Meyer
wavelet bases (Fig. 3a, c, and e) are complex and only the
real part of the wavelet is plotted; the Daubechies 4-tap
wavelet (Fig. 3g) is purely real.

Figure 3a shows the real part of the single-sided Mor-
let wavelet (17) given by h(f) = exp(jct)exp(—atz/Z)
[with ¢ = 2w and a = 0.0254], and the magnitude
of its Fourier transform (Fig. 3b), which is given by
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FIGURE 6. Velocity response of the same Hensen’s cell as shown in Fig. 5, but now to an AM stimulus with carrier frequency £,
= 693 Hz (at CF) and modulation frequency 2.44 Hz. The highest sound pressure level, occurring at the center of the input envelope
was ~130 dB:re 0.0002 dyne/cm?. (a) Time waveform of the velocity response (in cm/s) of the cell. There is a distinct chink in the
response at t = 115 ms. (b) 3D piot of the modified CWT magnitude of the velocity response shown in Panel a. The high-Q Morlet
wavelet basis was used. This plot shows spectral components at the carrier frequency 7, and at two higher harmonic frequencies,
2f, and 3f.. Components at three half-harmonic frequencies (f/2, 3f/2, and 5f,/2) are also present, and their sudden appearance
corresponds in time to the chink apparent in the time waveform at t = 115 ms. (c) Same modified CWT magnitude as shown in
Panel b, but now plotted in 2D format with 80 equally spaced (in modified CWT magnitude) contour lines joining points of constant
maghnitude. (d) 3D plot of the STFT magnitude of the velocity response shown in Panel a. Spectral components are present at the
carrier frequency £, at two higher harmonics (2f, and 3f,), and at four half-harmonic frequencies (f./2, 3f./2, 5f,/2, and 7f_/2). (e)
Same STFT magnitude as shown in Panel d, but now plotted in 2D format with 80 equally spaced (in STFT magnitude) contour

lines joining points of constant magnitude.
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V2m/a exp[— (2wf —c)*2a]. For the values of ¢ and «
that we have chosen here, A(f) is a windowed sinusoid and
H(f) is a narrow bandpass filter centered at f = 1. The
relative bandwidth of this wavelet is readily calculated
to be:

2

§

BW,y = H (12)

¢

which equals 0.072 for this choice of parameters. Conse-
quently, the Q-factor for this wavelet is 0 = 1/0.072 =
13.9 > 1, which is why it is referred to as a high-Q Morlet
wavelet in the remainder of this paper.

Figure 3c and d also shows a Morlet wavelet, but this
time with ¢ = 2w and o = 2.54. As in Fig. 3b, this
Morlet wavelet is also a bandpass function; however its
relative bandwidth (=0.72) is much larger than that for
the previous choice of parameters, and the number of os-
cillations in the time domain is lower than in Fig. 3a. This
wavelet is referred to as a low-Q Morlet wavelet in the text
and figures that follow since its Q-factor is only 1.39.

Figure 3e and f shows the Meyer wavelet similarly
normalized (for details concerning the construction of the
Meyer wavelet see 44). Its structure is similar in both the
frequency and time domains to the Morlet wavelet shown
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FIGURE 6. Continued.

in Fig. 3c and d. However, unlike the Morlet wavelet,
there are no free parameters that can be used to alter the
Meyer wavelet’s relative bandwidth. This is a conse-
quence of the constraints under which the Meyer wavelet
is constructed. The relative bandwidth of the Meyer wave-
let is 1.18.

Finally, in Fig. 3g and h we show a wavelet generated
by an infinite iteration of a 4-tap finite impulse response
(FIR) filter proposed by Daubechies (for details pertaining
to the construction of this wavelet see 43 and 44). Unlike
the previous three wavelets, this basis is not symmetric, it
has multiple peaks in the frequency domain, and there are
no closed-form expressions for h(f) or H(f). The effect of
these properties is discussed in the Results section, which
includes a CWT calculated using the Daubechies 4-tap
wavelet. Like the Meyer wavelet, the relative bandwidth
of this wavelet is also fixed, as a result of the manner in
which it is calculated. The relative bandwidth of the
Daubechies 4-tap wavelet (where the center frequency of
the filter is defined as the frequency at which the maxi-
mum of the first bandpass region occurs) is 1.5.

The principle feature of the Morlet wavelet of interest
to us is that its relative bandwidth is easily adjusted by
choice of the parameters ¢ and o. We later show that this
allows us complete flexibility in setting the CWT to have
a desired frequency resolution at any particular frequency.
However, the Morlet wavelet, unlike the Meyer and
Daubechies wavelets, has two theoretical limitations.
Though these are worthy of mention, they have no bearing
on the usefulness of this basis set for our purposes. Firstly,
the Morlet wavelet does not strictly satisfy the admissibil-
ity condition since H(0) # 0. However, for BW,,, < 0.8,
the value of H(0) is close to zero, and the Morlet wavelet
is deemed to be practically admissible. For the Morlet
wavelets shown in Fig. 3a and ¢, BW,, = 0.072 and 0.72,
respectively. Secondly, the Morlet wavelet cannot be used
as the prototype wavelet h(f) to create an orthonormal
basis for £? of the form {h(r) = 2"%h(2't — j}, i, je %
(the set of natural numbers) (9,34,43,44). The ability to
form such a basis is central to the design of wavelet bases
for use in perfect reconstruction filter banks.

For the functions shown in Fig. 3c~h (low-Q Morlet,
Meyer, and Daubechies 4-tap wavelets), the relative band-
width of the wavelet’s CFT is of the order of unity. Such
wavelets are loosely termed octave-band, since the func-
tions H(f) and H(2f), whose center-frequencies are sepa-
rated by an octave, are just about far enough apart in
frequency to be resolved. This octave-band property arises
naturally in wavelets that are designed to satisfy two-scale
equations (43,44). Both the Meyer and Daubechies wave-
lets satisfy such equations, and can be rigorously used as
prototype wavelets to form an orthonormal basis for $2 of
the form indicated above. However, while orthonormal-
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FIGURE 7. Velocity response of the same Hensen'’s cell as shown in Figs. 5 and 6, but now to an AM stimulus with carrier frequency
f. = 986 Hz (above CF) and modulation frequency 2.44 Hz. The highest sound pressure level, occurring at the center of the input
envelope was =124 dB:re 0.0002 dyne/cm?. (a) Time waveform of the velocity response {in cm/s) of the cell. The response follows
the envelope of the input closely. (b) 3D plot of the modified CWT magnitude of the velocity response shown in Panel a. The high-Q
Morlet wavelet basis was used. This plot shows spectral components at the carrier frequency £ and at 2f... {c) Same modified CWT
magnitude as shown in Panel b, but now plotted in 2D format with 80 equally spaced (in modified CWT magnitude) contour lines
joining points of constant magnitude. (d) 3D plot of the STFT magnitude of the velocity response shown in Panel a. This plot shows
a spectral component at the carrier frequency 7., along with a just-visible component at 2f.. (¢) Same STFT magnitude as shown
in Panel d, but now plotted in 2D format with 80 equally spaced (in STFT magnitude) contour lines joining points of constant

maghnitude.

basis-generating wavelets do provide a useful set of func-
tions for constructing efficient wavelet series expansions
of x(7) (44), they are not always suited for use as a CWT
basis, as our examples will show.

STFT and CWT Implementation

A sampled version of the STFT, often referred to as the
discrete STFT, was calculated using a summation approx-
imation of Eq. 3:

L-1

—j2mmk
STFT? [k,n] = 2 x[n + mlg*[mlexp (%i),
m=0
O0ssk=N-—-1, (13)

where k is the discrete frequency index, n is the discrete
time index, L is the window length in samples, and g{m]
is chosen to be samples of a Gaussian window g(#) =
exp(-Br3/2), with g(z) falling to ¢ * at the sampled end-
points:

4m \?
glml =exp{—{ -2+ ,0=m=<L-— 1.

L-1
(14)

The formulation presented in Eq. 13 reminds-us that the
discrete STFT is simply a sequence of discrete Fourier
transforms (DFTs) of the windowed signal segments.
Once a window length L is chosen, the time-frequency
uncertainty product is fixed—a good rule of thumb is to
choose the window length so that the signal appears *‘rel-
atively stationary’’ within it. For example, in the analysis
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of AM responses, as discussed subsequently, a window
length L = 256 samples was appropriate. This corre-
sponds to 51.2 ms at the 5-kHz sampling rate used in
recording our data. The value of N (which sets the number
of discrete frequencies at which the STFT is sampled in
the frequency domain) was chosen equal to L. The STFT
was not evaluated for all values of n; moving the time
window through 80 time samples for successive evalua-
tions of the STFT provided a sufficiently detailed picture
for our purposes. For our particular choice of window
length and sampling rate, the time resolution of the STFT
was Ar = 25.6 ms, and the frequency resolution was Af
= 49.7 Hz. The uncertainty product AtAf = C = 4/m =
1.27.

We present the STFT magnitude in two visual formats.
The first is a three-dimensional representation, often re-
ferred to as a 3D spectral plot. In this format, time and
frequency form the bottom plane, and the STFT magni-
tude is represented on a linear axis in the third dimension.
The second format provides 2D contour plots, on which
contours of equal STFT magnitude are traced on a time-
frequency plane.

To calculate the CWT, we implemented the fast-CWT
algorithm proposed by Jones and Baraniuk (24). This

technique avoids carrying out a time-consuming direct
time-convolution of the data with the scaled wavelet time
waveform; instead we express the time-convolution as
multiplication in the frequency domain. Efficient algo-
rithms are then exploited to carry out the calculation.

To see explicitly how this is done, reconsider Eq. 8, in
which the CWT is written as an integral in the frequency
domain:

CWT!r,m) = \/]r| [ f_“ X H*(ur)exp(i2mur)du |,

(15)

where 7 is scale, 7 is time, and u represents frequency. The
term inside the square brackets is the inverse CFT of
X(u)H*(ur) (compare with Eq. 2), which suggests that an
inverse fast Fourier transform (FFT) can be used to eval-
uate the CWT. Specifically, consider x{n] as a well-
sampled version of the continuous time function x(¢) with
sampling time equal to T, and h[n] as a well-sampled
version of h(t), normalized as shown in Fig. 3, with a
sampling time equal to T,. There are N, samples of x[n]
and N, samples of h[n]. The discrete-time Fourier trans-
forms (DTFTs) of x[n] and k(] are denoted by X(¢/*) and
H(), respectively, where o represents digital angular
frequency (32). The sampling theorem tells us that for
well-sampled signals, X(¢’*) = X(f)/T, at f = w/2aT,
over the range = [—r,]. Since we assume that x(7) is
well sampled, X(f) is essentially zero for f > 1/2T,, which
allows us to write Eq. 15 in terms of the DTFTs of x[n]
and h[n]:

CWTHr,7) =

|| [f—ﬂ T X(e)H (e Nexp(wriT,) dw}- (16)

Restricting ourselves to evaluating the CWT at a dis-
crete set of r = [r;] and T = nT, brings us to a sampled
version of the CWT,

CWT!(r;,n] =

X

Hl o [T X expGondw, (17
2% -7

which is recognizable as a multiple of the inverse DTFT of
the function Y(¢™, r,) = X(e*)H*(£“"). This inverse
DTFT is efficiently implemented by the inverse FFT:
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Mi2—1

T:
CWT; [r;,n] = \/m IY; 2 Y[k, rlexp(j2mwkn/M),

k=—M12
(18)

where Y[k,r] = Y(&®,1,) evaluated at @ = 2wk/M, with k
ranging from —M/2 to M/2 — 1. Since efficient compu-
tation algorithms exist for the inverse FET, only two ques-
tions remain: how to calculate Y[k,r,], and what is an
appropriate value of M? We can write Y[k,r;] as
X[k]H*[k,r;] where X[k] = X(¢/*) evaluated at @ = 2wk/
M, and H*[k,r,] = H*(¢“7), also evaluated at » = 27mwk/
M. X[k] is now simply the FFT of the sequence x[n], and
Hlk,r;] is the chirp z-transform of the sequence h[n]. Ef-
ficient algorithms exist for both the FFT and the chirp
‘z-transform, allowing us to evaluate both X[k] and H{k,r,],
which in turn leads us to Y[k,r;] and ultimately to
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CWT"{r,,n] via the inverse FFT. (For a complete discus-
sion of the chirp z-transform, see pp. 623-628 of 32).

To choose an appropriate value of M, we must insure
that the frequency multiplication of H(¢/*") and X(¢™")
really gives us the desired linear convolution in time from
Eq. 15. This is insured by selecting M greater than the
combined lengths of the sequences x[n] and the longest
wavelet basis we use (which is N, multiplied by max[r/],
since the largest value of r will produce the most stretched
wavelet function). In practice, the next highest power of
two greater than N, + max(r)N, — 1 is chosen, so that
power-of-two FFTs can be used.

There is a remaining subtlety in the fast-CWT algo-
rithm. At the outset, we assumed that H(f) = O for all
values of |f| > 1/2T,. Therefore, to correctly carry out the
multiplication of Eq. 15, we must insure that aliased ver-
sions of H(¢'“") are not brought into the range [ —m,].
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FIGURE 8. Velocity response of the same Hensen’s cell as shown in Figs. 5-7, but now to an AM stimulus with carrier frequency
f. = 400 Hz (below CF), modulation frequency 2.44 Hz, and an 8-dB increase in sound pressure level in comparison with Fig. 5. The
highest sound pressure level is now =124 dB:re 0.0002 dyne/cm?. {a) Time waveform of the velocity response {in cm/s) of the cell.
(b) 3D plot of the modified CWT magnitude of the velocity response shown in Panel a. The high-Q Morlet wavelet basis was used.
This plot shows spectral components at the carrier frequency f., and at four higher harmonic components (2f,, 3f,, 4f., and 5f,).
{c) Same modified CWT magnitude as shown in Panel b, but now plotted in 2D format with 80 equally spaced (in modified CWT
magnitude) contour lines joining points of constant magnitude. (d) 3D plot of the STFT magnitude of the velocity response shown
in Panel a. Spectral components are present at the carrier frequency 7., and at five higher harmonic components (2f,, 3f,, 4f_, 5f,
and 6f.). Near the center of the modulation cycle, where the stimulus is strongest, the components at odd harmonics (3f_ and 5f,)
are greater than those at even harmonics. (e) Same STFT magnitude as shown in Panel d, but now piotted in 2D format with 80
equally spaced (in STFT magnitude) contour lines joining points of constant magnitude.
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Therefore, we set H(¢“™) = 0 for |wr,| > . Since we are
using @ = 2wk/M, this implies Y[k,r;] = O for k > M/2r,.
As k ranges from —M/2 to M/2 — 1, this only occurs for
r; < 1.

As stated earlier, scale r is inversely related to fre-
quency. For convenience in interpreting CWTs, we have
mapped scale to frequency using the mapping f = K/r as
indicated earlier. We choose this mapping to assign a
given scale r; to a frequency f; equal to the center fre-
quency of the filter H(fr;). The proportionality constant K
is evaluated by obtaining the center frequency of the func-
tion H(f), since this corresponds to H(fr;) at r; = 1. There-
fore, we must find what H(f) the samples h[n] represent.
The set h[n] is constructed by taking N, samples of the
continuous function A(f) normalized as shown in Fig. 3.
To provide a complete representation, but without undue
oversampling, h[r] is constructed by sampling () at a
different rate (1/7,) compared with the sampling rate 1/T,
for x[n]. However, in evaluating the CWT as described
above, the h[n] are taken as a set of samples at rate 1/7T,.
This means that h[n] represents samples of a continuous
function h(«T,/T,). The center frequency of this function’s
CFT, which is |T,/T,| H(fT /T,), occurs at f = T,/T, rather
than at f = 1. This center frequency T)/T, corresponds to
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scale r = 1. Substituting these values into f = K/r, we
find that K = T,/T,. This allows us to map the CWTs on
a time-frequency plane, but we remind the reader that this
is only an interpretational convenience; strictly speaking
the CWT is a time-scale representation.

A word is in order describing the link between the
CWT and its discrete counterpart, the discrete wavelet
transform (DWT) (43,44). The DWT provides a multires-
olution approximation of the sequence x[r]. This approx-
imation involves repeated highpass and lowpass filtering
of the original signal x[n], with downsampling by a fac-
tor of two after each filtering operation. The various high-
pass sequences are retained as a useful approximation of
the signal. The number of samples contained in the com-
plete set of highpass sequences plus the residual lowpass
sequence is equal to the number in the original signal, and
the highpass sequences contain nearly all the information
of the original signal (however the DC component is lost
as it is contained in the lowpass residual). This process
decomposes the sequence x[n] into various frequency
bands, as represented by the set of highpass sequences.
The center frequency of each band differs by a factor of
two as a result of the downsampling factor used in calcu-
lating the DWT.

In a similar manner, the CWT decomposes the original
signal x(¢) into an infinite set of time sequences
CWTﬁ(r,*r), also distributed in various frequency bands
across the time-frequency plane. However, unlike the
DWT, the various frequency bands are not constrained to
differ by a factor of two; rather, they can be evaluated at
arbitrary values of r. Essentially, the CWT is an interpo-
lated version of the DWT in which a decomposition at
arbitrary scales can be examined. This is analogous to
considering the CFT as an interpolated version of the FFT.
The DWT and FFT may alternatively be viewed as sam-
pled versions of the CWT and CFT, respectively.

As in the case of the STFT, we use two visual formats
for the CWT. The first is a three-dimensional (3D) repre-
sentation, in which time and frequency form the bottom
plane, and CWT magnitude (multiplied by the factor of
|r] 2 for ease of comparison with the STFT) is repre-
sented on a linear axis in the third dimension. The second
format provides 2D contour plots, on which contours of
equal modified CWT magnitude are traced on a time-
frequency plane.

RESULTS

We used the modified CWT and STFT to examine the
behavior of the velocity response of cochlear hair cells and
Hensen’s cells. AM acoustic signals (with unity modula-
tion depth and a fixed modulation frequency of 2.44 Hz)
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were applied to the ear canal, using different carrier fre-
quencies and levels. This allowed us to examine the non-
linear velocity response of a given cell as the carrier fre-
quency was altered from well below to well above the CF,
and as the stimulus intensity was varied. To investigate
routes to chaos in the cellular motion, we examine veloc-
ity responses both at high and at very high peak intensities
(but below the threshold for damage). The sampling fre-
quency was fixed at 5 kilosamples/s in recording the re-
sponses.

Figure 4 shows the velocity tuning curve of a Hensen’s
cell in the third turn of the guinea pig temporal-bone prep-
aration. The measured peak velocity of the cell, per unit

applied sound pressure, is shown over frequencies ranging
from 300 to 2000 Hz. This tuning curve displays its largest
value at 693 Hz, but it is rather broad.

Responses to AM Stimuli of High Intensity

Figure 5 shows the response of the cell when an AM
tone with a carrier frequency f, = 400 Hz (below CF), and
a peak sound pressure level of =116 dB:re 0.0002 dyne/
cm?, is applied to the ear. The velocity response of the cell
during one cycle of the modulation envelope is displayed
in Fig. 5a. The response does not follow precisely the
shape of the input envelope; rather the envelope is skewed
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FIGURE 9. Velocity response of the same Hensen’s cell as shown in Figs. 5-8, but now to an AM stimulus with carrier frequency
f. = 693 Hz (at CF), modulation frequency 2.44 Hz, and an 8-dB increase in sound pressure level in comparison with Fig. 6. The
highest sound pressure level is now =138 dB:re 0.0002 dyne/cm?2. (a) Time waveform of the velocity response {in cm/s) of the cell.
The waveform is jagged, and only approximately follows the envelope of the stimulus. A chink appears in the waveform at
approximately the same velocity value as in Fig. 6a. (b) 3D plot of the modified CWT magnitude of the velocity response shown
in Panel a. The high-Q Morlet wavelet basis was used. This plot shows the presence of many spectral components. Firstly, as for
the lower sound pressure level shown in Fig. 6b, there are spectral components at the carrier frequency f,, and at two higher
harmonics (2f, and 3f,). Secondly, again as before, half-harmonic components are present (£./2, 3f,./2,5f/2, and 7f /2). Finally, when
the envelope is near its maximum we see the emergence of multiple quarter-harmonic components (f/4,3f_/4,5f /4, 7f /4, and 9f /4
are clearly visible). (c) Same modified CWT magnitude as shown in Panel b, but now plotted in 2D format with 80 equally spaced
{in modified CWT magnitude) contour lines joining points of constant magnitude. Note the good frequency resolution at the
lowest frequency components. (d) 3D plots of the STFT magnitude of the velocity response shown in Panel a. This plot shows the
same type of behavior as does the CWT, though the improved frequency resolution at high frequencies now allows us to identify
additional quarter-harmonic components at 11f./4 and 13f/4. (¢) Same STFT magnitude as shown in Panel d, but now plotted in
2D format.with 80 equally spaced (in STFT magnitude) contour lines joining points of constant magnitude.
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towards positive velocity values. In this, and other such
curves, the reconstructed waveform has been upsampled
by a factor of 4 and interpolated by sinc functions to
reduce the artifact known as “‘false modulation.”’

The modified CWT magnitude of the velocity re-
sponse, shown in 3D and 2D formats in Fig. 5b and c,
respectively, reveals the time behavior of the signal at
different scales, which are represented as different fre-
quencies as discussed earlier. The mapping from scale to
frequency was accomplished using f = K/r with K = 491.
This CWT was based on the high-Q Morlet wavelet shown
in Fig. 3a and b. The modified CWT shows five spectral
components at multiples of the carrier frequency. At the
beginning and end of the modulation cycle, when the mag-
nitude of the envelope is low, the response closely follows
the input and is principally at the carrier frequency. Be-
cause the CWT is only shown at a restricted number of
time points, the plot presented in Fig. 5c, and indeed all
2D plots shown subsequently, do not extend all the way to
the left and right borders. As the magnitude of the enve-
lope increases, a spectral component at 2f, appears, fol-
lowed later by components at 3f. and 4f. as the envelope
increases. Then, as the envelope decreases, the spectral
components disappear in inverse order to their appear-
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FIGURE 9. Continued.

ance. The higher the frequency of the spectral component,
the worse its frequency resolution, as expected for the
CWT. Of course, this loss of frequency resolution is ac-
companied by an improvement in time resolution. The
presence of harmonic generation clearly indicates nonlin-
earity in the cellular response. The generation of multiple
harmonic components for carrier frequencies below CF is
typical of the 24 cells we have examined.

For comparison, Fig. 5d and ¢ shows the STFT mag-
nitude of the velocity-response, calculated as described
earlier. The time and frequency resolution of the STFT
were chosen to match those of the CWT shown in Fig. 5b
and ¢ at 693 Hz, which is the CF of the cell. Like the
CWT, the STFT clearly shows spectral components at f_,
2f,, 3f., 4f,, and 5f,.; a component at 6f, is also just barely
visible in the 3D plot of Fig. 5d.

As expected, the spectral widths represented in the
STFT are constant whatever the frequency of the compo-
nent; unlike the CWT, the frequency resolution is fixed for
all frequencies. Similarly, the time resolution remains
constant at all frequencies.

To evaluate the relative merits of different wavelet
bases, the CWT of the same velocity-response waveform
shown in Fig. 5a was calculated using the three other
wavelet bases shown in Fig. 3c-h.

Figure 5f and g displays the modified CWT magnitude
calculated using the low-Q Morlet wavelet basis displayed
in Fig. 3c and d. The proportionality constant X, mapping
scale to frequency, was 49. The spectral resolution in
these figures is significantly degraded in comparison with
both the high-Q Morlet wavelet modified CWT and the
STFT shown earlier. The component at f, is still apparent,
but none of the harmonic components can be clearly re-
solved. This is because the relative bandwidth of this
wavelet basis is a factor of 10 larger than that of the
high-Q Morlet wavelet, so the frequency resolution at any
given frequency is diminished by a factor of 10. At a
frequency f, = 400 Hz, for example, the frequency res-
olution of the high-Q Morlet wavelet is 28.6 Hz; that of
the low-Q Morlet wavelet is 286 Hz. In the latter case, the
spectral component at 400 Hz therefore still has a rela-
tively large skirt at 800 Hz. Thus, the modified CWT
magnitude at 800 Hz contains residual contribution from
the 400 Hz component as well as the 800 Hz component
itself. At higher frequencies, of course, the frequency res-
olution is worse: at 800 Hz it is 572 Hz, whereas at 1200
Hz it is 860 Hz. The improved time resolution accruing at
higher frequencies is of little advantage, however, since
the poor frequency resolution makes it hard to ascribe time
events to a particular frequency component.

Figure 5h and i shows the modified CWT magnitude
calculated using the Meyer wavelet basis shown in Fig. 3e
and f. The proportionality constant K, mapping scale to
frequency, was 313. The results are similar to those for the
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low-Q Morlet wavelet, as expected. However, there is
more roughness in the CWT; this reflects the roughness of

the absolute value of the Meyer wavelet, whose real part

is displayed in Fig. 3e. .. ...

Finally, Fig. 5j and k shows the modified CWT mag-
nitude calculated using the Daubechies 4-tap wavelet basis
shown in Fig. 3g and h. The proportionality constant K,
mapping scale to frequency, was 14. Unlike the previous
three wavelets, this wavelet is real and asymmetric. The
CWT is therefore also real, and is capable of switching
between positive and negative values. As a consequence,
- the absolute value of the CWT often goes to zero, leading
to a highly scalloped structure for the CWT magnitude. A
further difficulty in using the Daubechies 4-tap wavelet
basis as an analysis tool is the presence of multiple band-
pass regions in the CFT of the wavelet basis, as is evident
in Fig. 3h. This allows the energy from a single frequency
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component to enter the CWT at a variety of different fre-

~ quencies. In the CWT shown here, for example, the en-

ergy from the component at 400 Hz appears in the CWT
magnitude not only at 400 Hz, but also at 400/4=100 Hz
and 400/8=50 Hz (the component at 400 Hz arises when
the main lobe of the analysis wavelet is at 400 Hz, the com-
ponent at 100 Hz appears when the second lobe of the anal-
ysis wavelet is at 400 Hz, and the component at 50 Hz appear
when the third lobe of the analysis wavelet is at 400 Hz).
The most useful wavelet basis for analyzing the responses
recorded in our experiments is the high-Q Morlet wavelet.
This is because the frequency separation of the spectral com-
ponents we need to resolve is relatively small compared
to the absolute values of the frequencies themselves. The
Morlet wavelet basis works well since we can control
its relative bandwidth by adjusting the ratio Va/c. The
other wavelet bases we have investigated are unsuit-
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FIGURE 11. Velocity response of the same Hensen’s cell as shown in Fig. 5-10, but now to an AM stimulus with carrier frequency
f. = 986 Hz (above CF), modulation frequency 2.44 Hz, and an 8-dB increase in sound pressure level in comparison with Fig. 7. The
highest sound pressure level is now =132 dB:re 0.0002 dyne/cm?. (a) Time waveform of the velocity response (in cm/s) of the cell.
There is a dip in the response at ¢t = 190 ms. (b) 3D plot of the modified CWT magnitude of the velocity response shown in Panel
a. The high-Q Morlet wavelet basis was used. This plot shows spectral components at the carrier frequency 7, and at three
half-harmonic frequencies (f,/2, 3f./2, and 5f./2). The appearance of the half-harmonic components corresponds in time to the dip
in the waveform at t = 190 ms. (c) Same modified CWT magnitude as shown in Panel b, but now plotted in 2D format with 80
equally spaced (in modified CWT magnitude) contour lines joining points of constant magnitude. {d) 3D plot of the STFT magnitude
of the velocity response shown in Panel a. Spectral components are present at the carrier frequency 7., at the second harmonic
2f,, and at three half-harmonic frequencies (f./2, 3f,/2, and 5f,./2). (e) Same STFT magnitude as shown in Panel d, but now plotted
in 2D format with 80 equally spaced (in STFT magnitude) contour lines joining points of constant magnitude.
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able as analysis tools for the class of data examined here
since they are octave-band in nature. In the data analysis
that follows, therefore, we restrict ourselves to use of the
high-Q Morlet wavelet CWT and the STFT.

Figure 6 shows the response of the same cell when an
AM tone with a carrier frequency f. = 693 Hz (at CF),
and a peak sound pressure level of =130 dB:re 0.0002
dynes/cm?, is applied to the ear. The velocity response of
the cell over one modulation cycle is displayed in Fig. 6a.
The average magnitude of the velocity is about a factor of
3 greater than that shown in Fig. 5a since the carrier fre-
quency is now at the CF of the cell and the sound pressure
level is =14 dB higher. (The frequency response of the
acoustic transducer used in these experiments was not flat,
so that the sound pressure level for a constant input volt-
age varies with frequency.)

The response envelope does not follow the shape of the
input envelope exactly; in particular it exhibits a chink at
time £ = 115 ms. The modified CWT magnitude of the
velocity response (Fig. 6b and c), calculated using the
high-Q Morlet wavelet, again shows the presence of mul-
tiple spectral components, but the behavior is more com-
plex than that manifested at lower frequencies in Fig. 5b
and c. At low values of the modulation envelope, the
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FIGURE 11. Continued.

response is only at the carrier frequency. At slightly higher
values, however, harmonic components emerge at 2f, and
3f.. Shortly after the appearance of the harmonics, com-
ponents are seen at three half-harmonic frequencies (f/2,
3f/2, and 5f,/2); their appearance corresponds in time to
the chink apparent in the time waveform presented in Fig.
6a. We have previously observed half-harmonic compo-
nents in the vibration of outer hair cells in the third turn of
the guinea pig cochlea (18-20,41). It is of interest to note
that Davis et al. (13) and Dallos and Linnell (10,11) long
ago observed the presence of half-harmonic components
in guinea pig cochlear-microphonic potentials and in the
sound field in front of the tympanic membrane when high-
intensity pure-tone stimuli were applied to the ear canal.
Dallos (12) also observed the presence of odd-fractional
harmonics (which they determined to be rare in guinea
pigs).

Figure 6d and e shows the STFT magnitude of the
velocity response. Again, the STFT and modified CWT
magnitudes display similar information. In this particular
case, however, the STFT was able to discern a component
at 7f/2, which the modified CWT did not show.

Figure 7 shows the response of this cell when an AM
tone with a carrier frequency f, = 986 Hz (above CF), and
a peak sound pressure level of =124 dB:re 0.0002 dynes/
cm?, is applied to the preparation. The velocity response
of the cell over one cycle of the modulation envelope is
displayed in Fig. 7a. The response follows the shape of the
input envelope with practically no distortion, and has
about the same magnitude as that shown in Fig. Sa.

Figure 7b and ¢ shows the modified CWT magnitude of
the velocity response calculated using the high-Q Morlet
wavelet. The modified CWT shows components at f, and
2f.. The envelope of the component at the carrier fre-
quency closely follows the envelope of the input stimulus.

The STFT magnitude of the velocity response (Fig. 7d
and e), on the other hand, shows the presence of a dom-
inant component at f_ and a small component at 2f,.

Responses to AM Stimuli of Very High Intensity

Our principal interest here is the investigation of routes
to chaos in the inner ear. Since these are more apparent at
higher stimulus levels, we increased the peak sound pres-
sure level attained by the AM stimulus by 8 dB at all
carrier frequencies and repeated the set of measurements.

Figure 8 shows the response of the same cell as de-
scribed in the previous section, when an AM tone with a
carrier frequency f. = 400 Hz (below CF) is applied to the
preparation. The peak sound pressure level of the stimulus
is now ~124 dB:re 0.0002 dyne/cm®. The velocity re-
sponse of the cell over one modulation cycle is displayed
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in Fig. 8a. Its magnitude is approximately 2.5 times
greater than the corresponding velocity-time curve shown
in Fig. 5a, as would be expected for a linear system under
the influence of an 8-dB increase in sound pressure level.
However, the system is anything but linear. The response
envelope does not follow the input envelope. Though
there is less asymmetry in the time waveform than evident
in Fig. 5a, the CWT and STFT reveal a substantially in-
creased level of nonlinearity.

The modified CWT magnitude of the velocity response
(Fig. 8b and c), calculated using the high-Q Morlet wave-
let, shows the presence of five spectral components: at f,,
2 f., 3f.. 4f., and 5f,. Substantial dips in the components
at 2f, and 4f, are visible in the central region of the mod-
ulation envelope, where the sound pressure level is great-
est. Unlike the corresponding figures at a lower intensity
(Fig. 5b and c), the third harmonic and fifth harmonic

components are stronger than their neighboring even har-
monic components. We have previously reported this ten-
dency of odd-harmonic components to dominate at the
highest sound pressure levels (18,20,40). The STFT mag-
nitude of the velocity response (Fig. 8d and e) shows the
same five components as seen in the modified CWT, plus
a component at 6f, that is not clearly visible in the latter.

Figure 9 shows the response of this same cell to an AM
tone with a carrier frequency f, = 693 Hz (at CF) and a
peak sound pressure level ~138 dB:re 0.0002 dyne/cm?.
The velocity response of this cell over one modulation
cycle is displayed in Fig. 9a. The waveform is highly
irregular. Its magnitude is again approximately 2.5 times
greater than that observed in Fig. 6a, and exhibits a chink
at about the same value of velocity (which now occurs
earlier). This illustrates the repeatability of the nonlinear
response and its dependence on level. The modified

g ©
=
=
O
g 4
= 400
= - 200
2079 1386 693 0 0 TIME
CARRIER FREQUENCY = 693 FREQUENCY
2 T Y T T
(a)
C
> o000t O —= < ]
o O
o ! =
— w = = —
11| )
> T 1000t - ]
-1 T <~
(VN
—
0 100 200 300 400 @ 700 200 300 400
TIME TIME

FIGURE 12. Velocity response of a model system based on the Duffing oscillator with negative stiffness (as described in text) to
an AM stimulus with carrier frequency £, = 693 and modulation frequency 2.44. The characteristic frequency of the model system
has been set at 693. (a) Time waveform of the velocity response of the model system. There is a dip in the response at t = 240.
(b) 3D plot of the modified CWT magnitude of the velocity response shown in Panel a. The high-Q Morlet wavelet basis was used.
This plot shows spectral components at the carrier frequency £, at two harmonic frequencies (2f. and 3£.), and at three half-
harmonic frequencies (f/2, 3f,/2, and 5f,2). The appearance of the half-harmonic components corresponds in time to the dip
apparent in the time waveform at t = 240. (c) Same modified CWT magnitude as shown in Panel b, but now plotted in 2D format
with 80 equally spaced (in modified CWT magnitude) contour lines joining points of constant magnitude. (d) 3D plot of the STFT
magnitude of the velocity response shown in Panel a. Spectral components are present at the carrier frequency £, at two harmonic
frequencies (2f, and 3f,), and at three half-harmonic frequencies {£./2, 3f /2, and 5f,/2). (e) Same STFT magnitude as shown in Panel
d, but now plotted in 2D format with 80 equally spaced {in STFT magnitude) contour lines joining points of constant magnitude.
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CWT magnitude of the velocity response (Fig. 9b and ¢)
shows a large number of components at different scales.
As illustrated in Fig. 6a at a sound pressure level that is
8 dB lower, clearly defined harmonic components (at £,
2f,, and 3f)), and half-harmonic components (at f./2,
3f./2, 5f/2, and Tf/2), are visible. In addition, however,
a large number of components at quarter-harmonic fre-
quencies (f /4, 3f./4, 5f /4, Tf./4, and 9f./4) have emerged;
these were not present at the lower stimulus level. The
improved frequency resolution of the CWT at low fre-
quencies is especially useful in clearly resolving the com-
ponents at f/4, fJ/2, 3f/4, and f.. We clearly observe
period-doubling behavior, which often serves as a pre-
lude to deterministic chaos as discussed further in the
section dealing with the negative stiffness Duffing oscil-
lator.

The STFT magnitude of the velocity response illus-
trated in Fig. 9d and e shows similar results. However, the
superior frequency resolution of the STFT at high frequen-
cies is beneficial for identifying further quarter-harmonic
components at 11f/4 and 13f/4.

The relative magnitudes of the various spectral compo-
nents for this stimulus level and frequency are most clearly
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discerned in Fig. 10a and b. These are magnified versions
of Fig. 9b and d, respectively, illustrated in color with
more time resolution points plotted. It is clear from this
figure that the half-harmonic components are similar in
magnitude to the third-harmonic, and larger than the sec-
ond-harmonic. Furthermore, the quarter-harmonic compo-
nents are seen to emerge at about ¢+ = 180 ms, just prior
to the envelope reaching its peak. They are asymmetri-
cally skewed toward the falling portion of the envelope,
and persist to about t = 320 ms.

Finally, in Fig. 11, we show the response of the same
cell, but now to an AM tone with a carrier frequency f, =
986 Hz (above CF) and a peak sound pressure level of
~132 dB:re 0.0002 dyne/cm?. The velocity response of
this cell over one modulation cycle is displayed in Fig.
11a. There is a notch in the velocity response at time ¢ =
190 ms. The modified CWT magnitude of the velocity
response (Fig. 11b and ¢) shows a similar notch in the
carrier frequency component at time ¢+ = 190 ms. This dip
is accompanied by the sudden appearance of three half-
harmonic components (at f./2, 3f/2, and 5f./2). The com-
ponent at the second harmonic is barely visible in the
modified CWT plots.

Figure 11d and ¢ show the STFT of the same velocity
response. As with the modified CWT, half-harmonic com-
ponents atf,/2, 3f/2, and 5f,/2 are visible. In Fig. 11d, the
second harmonic component is also visible, albeit at a
very low level. This above-CF behavior is in marked con-
trast to that obtained at a stimulus level 8 dB lower, where
the dynamics are nearly linear as is evident in Fig. 7.

The Negative-Stiffness Duffing Oscillator as a Model of
Cochlear Dynamics

In an attempt to characterize the nonlinear mechanisms
responsible for the unusual behavior detailed above and
elsewhere (18-20,27,29,37-41), we can consider analo-
gies to other well-studied nonlinear systems. Keilson ez al.
(25,26,36) have already analyzed the responses of a class
of bilinear oscillators and compared the results with ex-
perimental findings (37).

Here, we consider a Duffing oscillator model with neg-
ative stiffness (1,14,15,18,20,31), defined by the equa-
tion:

i) + ok() — Bx(0) + y°@) = F(n, (19

where x(f) is position; ¢ is time; o, B, and vy are constants;
F(t) is an arbitrary forcing function of time; and the over- -
dot indicates differentiation with respect to time. This
equation represents an oscillatory system with two sym-
metric potential wells. Since the potential energy is a quar-
tic function of position, this equation models, for exam-
ple, the motion of a ball, subject to an arbitrary driving
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force, oscillating in two valleys separated by an energy
barrier.

Small motions within either of these wells have a
clearly defined characteristic frequency, the value of
which is determined by suitable choice of the parameters
o, B, and y. Motion between the wells gives rise to an-
other, lower, characteristic frequency also determined by
the parameters and by the signal level. For comparison
with the cellular velocity data considered earlier, we
choose F(¢) to be a slowly modulated AM signal.

Figure 12a shows the velocity response x for such a
system driven by a unity modulation-depth AM signal
with carrier frequency 693 and modulation frequency
2.44. The driving function was of the form F(¢f) = Fy[1 —
cos(2mf,)]sin(27f r), where f, and f,, represent the carrier
and modulation frequencies of the AM signal, respec-
tively, and F, is a constant. The characteristic frequency
of the (small-amplitude, undamped) velocity response for
the system was set at 693 (as suggested by the experimen-
tal tuning curve of Fig. 4), by choosing o = 2000, B =
9.48 X 10°% and y = 4.74 X 10°. F, was set equal to 5.0
X 108,

A sudden irregularity appears in the time waveform at
time ¢ = 240. Indeed the dip in the model response bears
some qualitative similarity to the corresponding dips
shown in Figs. 6a, 9a, and 11a. The modified CWT mag-
nitude of this velocity response (Fig. 12b and c) reveals
the presence of multiple spectral components. Near time ¢
= 240, the model response jumps rather suddenly to en-
compass half-harmonic (f/2, 3f/2, and 5f/2), as well as
harmonic frequencies (2f. and 3f,). This is a consequence
of the subharmonic cascade (or period-doubling [3]) route
to chaos that the Duffing oscillator system exhibits. As the
magnitude of the driving force increases further, the spec-
trum broadens and the system is driven toward chaotic
behavior. Similar features are also present in the cellular
velocity data at very large acoustic intensities (18,20,37—
39). However, the cellular data do not generally behave so
abruptly, nor do they exhibit quite as broad a range of
frequencies as the model, at least for the model parameters
illustrated.

The behavior of the Duffing model was studied over a
range of carrier frequencies and driving intensities. For
carrier frequencies well below the CF, multiple harmonic
components are generated, similar to those seen in Figs. 5
and 8. However, unlike the results in Fig. 8, the magni-
tudes of the model’s harmonic components decrease
monotonically with harmonic order. For carrier frequen-
cies well above the CF, the response is mostly at the
carrier frequency as in Figs. 7 and 11. The model response
shown in Fig. 12 perhaps most closely resembles the data
shown in Fig. 11.

We believe that the negative-stiffness Duffing oscilla-
tor is too simple and idealized to be used for modeling

cellular dynamics in the cochlea. Nevertheless some fea-
tures of its behavior, such as the presence of harmonic and
half-harmonic spectral components, and spectral broaden-
ing at high acoustic intensities, suggest that a reasonable
model of cochlear dynamics will contain some of the fea-
tures of the Duffing system. However, many other non-
linear systems with quite different characteristics also
share these features. We are continuing our investigation
of nonlinearities in the cochlea with the goal of developing
more appropriate nonlinear dynamical models.

DISCUSSION

It is apparent from the foregoing discussion and the
data analyses presented in Figs. 5-11 that the CWT and
STFT have different frequency- and time-resolution prop-
erties. It is these properties and their relationship to the
characteristics of the signal itself that determine the rela-
tive advantages of the two techniques for analyzing a
given signal.

The time and frequency resolutions of the CWT vary
with scale, though their product remains fixed. Whatever
the choice of wavelet basis, the frequency resolution is
worst at small scales, and improves (i.e., decreases in
width) with increasing scale. Since frequency is propor-
tional to inverse scale (34,43,44), this means that CWT
frequency resolution is best for low frequencies and worst
for high frequencies.

Given this fundamental property of the CWT, one can
inquire whether a desired frequency resolution Af can be
selected at any arbitrary frequency f. This is equivalent to
asking whether the relative bandwidth (Aflf) of a wavelet
basis function can be freely chosen. Many wavelet bases
(including the Meyer and Daubechies 4-tap wavelets)
were designed to provide a useful multi-resolution frame-
work onto which a signal could be efficiently decomposed
(44), and therefore satisfy two-scale equations. As a con-
sequence, their relative bandwidths are fixed (near unity)
and cannot be freely chosen. These wavelets (and others
like them) were not primarily meant for use in signal anal-
ysis.

The Morlet wavelet, however, was designed as an anal-
ysis tool, and its relative bandwidth can be freely set by
choosing the value of Vale. Explicitly, given a desired

frequency resolution Af at the frequency f, set Vale by
using Eq. 12, i.e.:

Ve _ &
¢ nN2f

The choice of ¢ and « individually is unimportant; rather
it is the ratio Vo/c that determines the relative bandwidth.

(20)
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STFT analysis, on the other hand, requires that the
frequency resolution and time resolution remain constant
at all frequencies. The frequency resolution is determined
by the choice of the window function g(r). In our case, the
window function is a sampled version of g(t) =
exp(— B£/2), so that the frequency resolution (at all fre-
quencies) is given by \/2—L§/Tr. In our discrete implemen-
tation of the STFT, B was a function of the sampled win-
dow length L and the sampling time T, in accordance with
B = 32/L*T%. For L = 256 and T, = 1/5000, which were
used in calculating the STFTs shown here, B = 12207 and
the frequency resolution of the STFT was Af = 49.7 Hz
at all frequencies.

With this kind of control over the time and frequency
resolutions of both the CWT and the STFT, the final
choice of which technique to use is signal-dependent.
From a signal-analysis point of view, the CWT fares best
when the required frequency resolution (or spacing be-
tween spectral components) varies as inverse frequency.
For example, Fig. 9b (or 10a) and ¢ demonstrates a case
where better frequency resolution is needed at low fre-
quencies to clearly distinguish components at f/4, f./2,
3f/4, and f,, and to search for further period doublings at
.48, fJ16, etc. On the other hand, the STFT is best suited
to situations where the spectral components are linearly
spaced in frequency. This is illustrated by comparing the
modified CWT and STFT magnitudes in Fig. 10a and b at
high frequencies. Clearly, the STFT is superior in terms of
frequency resolution. Time resolution is important when
abrupt time changes are contained in the signal, which
does not seem to be the case for our measurements.

Thus, the CWT is the preferred tool when the analysis
requires good frequency resolution at low frequencies to-
gether with good time resolution for impulsive (high-
frequency) events. The STFT is appropriate when the re-
quired frequency resolution (and time resolution) remains
fixed across the time-frequency plane.

Other time-frequency analysis techniques can be used
aside from the CWT and the STFT. Indeed, it can be
shown that the absolute squares of the CWT and the STFT
are members of more general classes of quadratic time-
frequency representations [the affine class for the absolute
square of the CWT, and the Cohen class for the absolute
square of the STFT (22)]. Indeed, other wavelet-based
analysis techniques exist. Of particular interest are wave-
let packets (9,21), which provide a more general tiling of
the time-frequency plane than the CWT. Rather than being
restricted to good frequency resolution at low frequencies
and poor frequency resolution at high frequencies, wavelet
packets permit good frequency resolution to be achieved at
arbitrary analysis frequencies. The product of the time and
frequency resolutions of course remains fixed. Yet other
signal-dependent wavelet techniques have also been de-
veloped (21).

CONCLUSION

The time course of cellular vibration in the guinea pig
inner ear has been successfully studied using both the
STFT and an appropriately chosen CWT. Both analysis
techniques reveal rich and varied nonlinear dynamics in-
herent in the velocity responses of individual outer hair
cells and Hensen’s cells, in response to AM acoustical
signals. Nonlinear effects appear at all stimulus frequen-
cies (20), but have been found to be most pronounced at
the highest stimulus levels near CF, where harmonic, half-
harmonic, and quarter-harmonic components are all
present. The generation of these components is consistent
with the behavior of a dynamical system entering chaos
via a period-doubling route. We have compared the be-
havior of a negative-stiffness Duffing oscillator with our
data. An increase in the bifurcation parameter (input in-
tensity) for the pure-tone-driven Duffing oscillator does
indeed cause first the appearance of harmonic compo-
nents, then half-harmonic components, and then quarter-
harmonic (and possibly further inverse power-of-two har-
monic) components, prior to the onset of full-blown
chaos. The appearance of the half-harmonic components
in the Duffing model is often quite sudden in time. These
features are also characteristic of the experimental data we
have presented here, strengthening the likelihood that cel-
lular dynamics in the cochlea can be driven into a chaotic
regime under sufficiently strong (and probably nonphysi-
ological) stimulus conditions.
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