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I. INTRODUCTION

Vibrational energy relaxation (VER) is fundamentally important to our under-
standing of chemical reaction dynamics as it influences reaction rates
significantly [1]. In general, estimating VER rates for selected modes in large
molecules is a challenging problem because large molecules involve many
degrees of freedom and, furthermore, quantum effects cannot be ignored [2]. If
we assume a weak interaction between the “system” and the surrounding
“bath,” however, we can derive an estimate of the VER rate through Fermi’s
golden rule {3—6]: A VER rate is written as a Fourier transformation of a force—
force correlation function. Though it is not trivial to define and justify a
separation of a system and a bath, such a formulation has been successfully
applied to many VER processes in liquids [7] and in proteins [8].

Here we apply such theories of VER to the problem of estimating the
vibrational population relaxation time of a CD stretching mode—in short, a CD
mode—in the protein cytochrome ¢ [9]. (We will define the CD mode to be the
system and define the remainder of the protein to be the bath.) Recently
Romesberg’s group succeeded in selectively deuterating a terimnal methyl
group of a methionie residue in cytochrome c [10]. The resulting CD mode has a
frequency s ~ 2100 cm™!, which is located in a transparent region of the
density of states of the protein. As such, spectroscopic detection of this mode
provides clear evidence of the protein dynamics, including the VER of the CD
vibrational mode. Note that at room temperature (T = 300 K) Bhwg ~ 10,
where B = 1/(kgT); hence quantum effects are not negligible for this mode.

Let us mention a little more about cytochrome c (cyt c). Cyt c is a protein
known to exist in mitochondrial inner membranes, chloroplasts of plants, and
bacteria [11]. Its functions are related to cell respiration [12]; and cyt c, using its
heme molecule, “delivers” an electron from cytochrome bc 1 to cytochrome
oxidase—two larger proteins both embedded in a membrane. Recently it was
also found that cyt c is released when apoptosis occurs [13]. In this sense, cyt ¢
governs the “life and death” of a cell.

The heme molecule in cyt ¢ has a large oscillator strength, and it serves as a
good gptical probe. As a result, many spectroscopic experiments have been
designed to clarify VER and the (un)folding properties of cyt ¢ [14]. Cyt ¢ is
often employed in numerical simulations [15,16] because a high-resolution
structure was obtained [17] and its simulation has become feasible. Attempts
have also been made to characterize cyt ¢ through ab initio (DFT) calculations
{18,19].

VER of the selected CD mode in the terminal methyl group of methionine
(Met80) was previously addressed by Bu and Straub [9]: They used equilibrium
simulations for cyt ¢ in water with the quantum-correction factor (QCF) method
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[201], and they predicted that the VER time for the CD mode is on the order of
0.3 ps. However, their results are approximate: The use of the QCF method is
not justified a priori, and their analysis is based on a harmonic model for cyt c.
To extend that previous analysis, in this work, we model cyt ¢ in vacuum as a
normal mode system and include the lowest anharmonic coupling elements. A
similar analysis has been completed for another protein myoglobin by Kidera’s
group [21] and by Leitner’s group [22]. Use of a reduced model Hamiltonian
allows us to investigate the VER rate of the CD mode in cyt ¢ more “exactly”
and to move beyond the use of quantum correction factors and the harmonic
approximation.

This chapter is organized as follows: In Section LB, we derive the principal
VER formula employed in our work, and we mention the related Maradudin-
Fein formula. In Section I.C, we apply those theoretical results for the rate of
VER to the CD mode in cyt c, and we compare our results with (a) the classical
simulation by Bu and Straub and (b) the experiments by Romesberg’s group. In
Section LD, we provide a summary of our results, and we discuss further
aspects of VER processes in proteins.

II. VIBRATIONAL ENERGY RELAXATION (VER)

A. Perturbation Expansion for the Interaction

We begin with the von Neumann equation for the complete system written as
L d
ih=p(t) = [, p(0)] (1)

The interaction representation for the von Neumann equation is

0 25(0) = [7°(0), () @
where
H=Ho+V =Hs+Hp+7V (3)
and
pt) = ei)fot/ﬁp(t) e~ iHot/R 17(1‘) = iHot/liogr g—idot/h (4)

Here s is the system Hamiltonian representing a vibrational mode, 5#'p the
bath Hamiltonian representing solvent or environmental degrees of freedom, and
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¥ the interaction Hamiltonian describing the coupling between the system and
the bath. An operator with a tilde means the one in the interaction picture. If we

assume that ¥ is small in some sense, we can carry out the perturbation
expansion for ¥~ as

b0 = p(0) + 3 [ af 7). ()
— p(0)+ ihjo a1 (1), p(0)]
1 ! ’ ! It { o VP
+(i—h)5j0dr L"’ (), 17 ("), p(O)]] + --- (5)

Let us calculate the following probability:

Py(1) = Tr{p,p(1)} = Tr{p,e /" p(t)e*o'/"} (6)
Py =) {v|®1p (7)
p(0) = ps ® pg = |vo) (vo| @ e P2/ Zp (8)
Zp = Trg {e P¥2} 9)

where the initial state is assumed to be a direct product state of pg = |vo)(vo| and
pp =€ P*»/Zg. Here |v) is the vibrational eigenstate for the system
Hamiltonian ¢, that is, #’s|v) = E,|v). The VER rate T'y,—v may be defined
as follows:

_d
Tupy = lim = Py(1) (10)

Note that the results derived from this definition are equivalent to those derived
from Fermi’s golden rule [23]. Hence we refer to them as a Fermi’s golden rule
formula. ‘

B. General Formula for VER

First we notice that

Py(1) = Tr {p,e /" p(1)e™*/"} = Tr {p, (1)} (11)
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as p, commutes with . If we assume that v # vy, then p,p(0) = 0. Using this
fact, we obtain the lowest (second)-order result

P = oo jdr j di" Te {p,[7°(1), 17°(1"), p(O)]]}

x| drj &' Te {p, 7 (0O () + 0,7 (0O (1))

(12)
1 d ; ¢ —t" +*
= dl dt" [ = — 1)
o Jo
+ eiﬂ)vo.,(t"—-t')c(t/l _ tl)]
where
C(r) = <1~/VOV(3)VWO(O)> = TrB{pB";/voV(t)Vvvo(o)} (13)
P (1) = (7 (1) vo) (14)
Oy = (Evy — Ev) /B (15)
Hence the lowest-order estimate of the VER rate is given by
Do = fim = J de' [Tt — 1) + eI )
(16)

1= ;
= J dt £ C(1)
—00

If we assume that a system variable g is small in some sense, the interaction
Hamiltonian is expressed as

¥V = —qF({a}, {pe}) (17)

where {q:}, {px} are position and momentum variables for the bath. This
F({qr}, {p«}) is a force applied to the system by the bath. Thus we finally obtain
the following Fermi’s golden rule formula [3-6]:

o= B3E [ itz 030 (19



184 HIROSHI FUJISAKI ET AL.

with
Ivor = (volq|v) (19)
9‘2(}‘) — ei.?fpl/h'g,—e—ig#Bl/h (20)
(F()F(0)) = Tra{psF (1 F(0)} (21)

In most situations, the transition from vg = 1 to v = 0 is considered. In such a

case, g10 = \/h/2msmg, where mg is the system mass and ws = ®y is the system
frequency in the harmonic approximation. Hence

dt &' (F (1) F (0)) (22)

(o0}
Ty = J
=0 2mshos |,

C. Use of a Symmetrized Autocorrelation Function

It is useful to define a symmetrized force—force correlation function as [3-6]
S(1) =3 [(Z () Z(0)) + (Z (0)F (1))] (23)

Since S(r) is real and symmetric with respect to ¢, S(¢) = S(—t), we consider it to
be analogous to S (1), the classical limit of the correlation function. Hereafter we
drop the tilde on & for simplicity. By half-Fourier transforming S(¢) with the use
of the relation (F (0)% (t)) = (# (t — iBh)F (0)), we have

Jm dte®'s(r) = 1 [~ dt e (1) 7 (0)) + %r dt € (F (0)F (1))
0 JO 0

. dt & (F (N F(0)) + %J:o dt e (F (t — iBR)F (0))

Nl
e

o0

dt ™ (F (1) F (0)) +Le P r dt ™ (F (17 (0))
0 0

1L
¢

=1(1+4 e P) J:o dt & (F (1).F (0)) (24)

Taking the real parts of both sides, we have

Jm dt cos(ar) S(f) =1 (1 + e P@) F dteé (F(HF0) (25
0 —00
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where we have used the fact that S(—f) = S(¢) is real and (F(1)F(0))" =
(F(0)F (1)) = (F(—1)F(0)). Hence, Eq. (22) can be rewritten as [6]

1 2 0
T o= MTWL dt cos (wst) S(t) (26)

Note that this expression diverges in the classical limit because I'j_g o 1/A.
According to Bader and Berne [4], to make contact with the classical limit, we
introduce another VER rate as

_TL = (1—e PP
! g (27)
— 2C(B, fiws) J dt cos (wst) S(t)
0
where
11— Phos
C(B, hos) = (28)

mshog 1 + e~ Bhos

This is a final quantum expression, which can be interpreted as an energy
relaxation rate and be used to estimate the VER rate.!

D. Quantum Correction Factor Method and Other Methods

Though Eq. (27) is exact in a perturbative sense, it is demanding to calculate the
quantum mechanical force autocorrelation function S(¢f) even for small
molecular systems. Hence, many computational schemes have been developed
to approximate the quantum mechanical force autocorrelation function. .
Skinner and coworkers advocated to use the quantum correction factor
(QCF) method [20], which is the replacement of thé above formula Eq. (18) with

2lgul’ [
[y = Q(os) _Iqhg—',[o dr cos (@) Sa(f) (29)

where Sq(t) = (F(1)#(0)), and the bracket means a classical ensemble
average (not a quantum mechanical average). This approach is very intuitive
and easily applicable for large molecular systems because one only needs to
calculate the classical force autocorrelation function S (z) multiplied by an

! Although the experimental observable is I'; o, we note that 1/T} ~ I';_q because fhws > 1 for
our case of a CD stretching mode.
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appropriate QCF Q(ws). There exist several QCFs corresponding to different
VER processes [20].

However, one challenge that arises in the application of the QCF method is
that we do not know a priori which VER process is dominant for the system
considered. Furthermore, it is possible that several VER processes compete
[24]. Hence one must be careful in the application of the QCF method, and
Skinner and coworkers have provided a number of examples of how this can be
accomplished.

In this chapter, we employ the harmonic approximation for the relaxing
oscillator, and the vibrational relaxation time T?CF. Hence Eq. (29) is
transformed to

1 _ Qws) J°° Q(ws) 1
—oE = ———1 dt 1) Sa(t) = — 30
T?CF mghwmg 0 cos ((l)s ) Cl( ) ﬂh(l)s Tfl ( )
where we have introduced the classical VER rate 1/7¢!
L-—irodt cos (wst) Su(?) (31)
T T mgs o S0

which is the classical limit % — O of Eq. (27). This result can also be derived
from a classical theory of Brownian motion, and is known as the Landau-
Teller-Zwanzig (LTZ) formula.

Alternatively, one may calculates S() itself systematically using controlled
approximations. Calculating a correlation function for large systems has a long
history in chemical physics [25], including recent applications to VER
processes in liquid [26,27]. The vibrational self-consistent field (VSCF) method
[28] will also be useful in this respect.

On the other hand, if we approximate % as a simple function of {g;}, {re}s
we can calculate S(¢) rather easily and, in a sense, more “exactly.” In the next
section, we explore such an approach.

E. Approximations for the Force-Force Correlation Function

1. Taylor Expansion of the Force

We can formally Taylor-expand the force as a function of the bath variables

{qk}v {pk}:

2 2
Flah b)) =D A e+ D> BUpe+Y Al aaqe + 3 B pupe + -
k k ki kK

(32)
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where the expansion is often truncated in the literature following the first term.
Depending on the system-bath interaction considered, higher-order coupling
including the third and fourth terms can be relevant. For example, the fourth term
appears in benzene to represent the interaction between the CH stretch and CCH
wagging motion [29] through the Wilson G matrix [30]. In the case of a CD
stretching mode in cyt c, as discussed below, or a CN~ stretching mode in water
[24], the third term is relevant for VER.

2. Contribution from the First Term

If the first term ZkA,(Cl)qk is dominant in the force, then the force-force
correlation function becomes

(D32 4
h(A ) [(n l)e‘i"’*’+nke’m*']

(FOF0) = Y A AL @(0)qe(0) = Y5k
kX k

(33)

[ h i i
a(t) = o0 (are™™ + a}:e Oty (34)
i

and (agap) = mdp with e =1/ (eP"™* — 1) because

where we have used

pB o e—BX’, —_ e—ﬂzkhmk(alak—}—l/z) (35)

Here we have assumed that the bath Hamiltonian is an ensemble of harmonic
oscillators:

2 2
Hpg = thok(a,tak +1/2) = Z(% + —i'iqﬁ) (36)
X 3

where wy is the kth mode frequency for the bath, and

. T0)
pe=—iy| =" (a - a}) 37)

Thus we obtain

A(A <‘>)
NOES Z (2ne + 1) cos (38)
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and

(1
= = nhC(B, hms)Z(A

(2m + 1)[8(ws — o) + 8(ws + )] (39)

The contribution from the second term ), B,(cl)pk is calculated in the same way.
3. Contribution from the Third Term
If the third term Zk,k’ A,E?;qqu: is dominant in the force, then
(FOFO) = > AQADw (a(1)ax (1)aw (0)ai(0))
Rk K (40)
=R__() + Ry+ (1) + R4 (1)

where
2 ;
R_.. (t) = — Z Dl(c?lz',k”,k"" (akak’alualm>e_l(mk+mkl)t (41)
k,kl,kll,k/l!
r? ;
Res="2 5 0, pdafawae)etorons @)
k,kl,k”,klll
K 2 o
R+_ (t) = Z Z DI((,IZ’,k”,k’” [(akaL (a,t,,akm —+ akna}:,,,))e i~y )t
k,k’,k",k’" .
t 1 f i(ex—wy )t
+ (aav(apapn + apa,))e ] (43)
with
)
A% AL
(2 k kl kll klll
Dk,k’,k",k’" = T—_‘ (44)
V/ O O O Wi
Using the following

(maral,al,) = (1 +m)(1 + ne) (S + B Sinr)  (45)
(afalapapr) = mmp (SuenSiegn + SyonBpi) (46)
(aal, (az/rak”’ + ak”azm)> = (1 4+ m)(1 + 24 )8 Spngen
+ (1 + m ) (Sger S + Spgem Syerpr) (47)
(@fax (alaw + aaln)) = me(1 + 2ngs ) S Sy

+ (1 + ne ) (Buaer S + S Sy ) (48)
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we have
K ~i(a+oy)
0 =5 2D m)(1 e
ki

O+ )t
Rii(t) = z k k’ &, oy e o)
K

R, (1) = (F(0)) +# ZDkk’ e (1 + mmee™ O
¥

where we have used A;cz,z, = A,(ﬁ, and

hz
(F ) =7 > Digpw(l+2n)(1 + 2ne)
(24

Hence we obtain

sO=3 [C,EI? cos(@x + wp)t + €3 cos(ax — mk,)z] +(F(0))?

kK

and
— = nC(B, hms) Z{ (+)[8(0)k + op — 0s) + 5((0/( + oy + 0)3)]
+C,(;,d) {S(mk — o — O) + 3(0 — ap + ms)]}

where we have assumed oy # 0 and defined

hZ

IEJ;’) = ?Dl(le’,k,k’(l + ng + np + 2mny )
ﬁ2 e

Ckk’ = kk’kk'(nk+nk’ + 2mny)

189

(49)

(50)

(51)

(52)

(54)

(55)

(56)

Though its appearance is rather different, Eq. (54) is equivalent to that derived by
Kenkre, Tokmakoff, and Fayer [5] as well as by Shiga and Okazaki [24]. There is



190 HIROSHI FUJISAKI ET AL.

also a similar result known as the Maradudin—Fein formula [31]

W= Wdecay + Weon (57)
(2) 2
nh (Ayx)
Waecay = Y (1 S (G — @y —
decay 2msos 2 wwp ( + n; + nkf) ((l)s Oy (Dkl) (58)
(2) 2
nth (Ax)
= 2 —ny)d -
Weon p— kEk, =" (e — ny) & (@5 + ey — o) (59)

which has been utilized to describe VER processes in glasses [32] and in proteins
by Leitner’s group [22]. As was demonstrated in Ref. 5, this formula is also
equivalent to Eq. (54); in the following we make use of Eq. (54). A problem with
this formula is that we cannot take its continuum limit in the case of finite
systems like proteins. As a remedy, a width parameter related to the vibrational
lifetime is usually introduced leading to a definite value for the VER rate. We will
discuss this problem in Section HI.C.

III. APPLICATION TO A CD STRETCHING MODE
IN CYTOCHROME ¢

A. Definition of System and Bath

We take horse heart cytochrome c (cyt c) as an example of how one may estimate
the rate of VER for selected modes in proteins. We use the CHARMM program
[33] to describe the force field, to minimize the structure, and to calculate the
normal modes for the system. Starting from the 1HRC structure for cyt ¢ in
Protein Data Bank (PDB) [34], one hydrogen atom of the terminal methyl group
of Met80 was deuterated. The energy of the protein structure was minimized in
vacuum using the conjugate gradient algorithm. We diagonalized the Hessian
matrix (second derivatives of the potential) for that mechanically stable
configuration of the protein:

Ko — 0*Venarmm 1 8*Venarmm
v 62,- 659 o A /m,'m]' ax; ij

(60)

where Vcuarvm is the CHARMM potential, and X; = /m;x; are mass-weighted
Cartesian coordinates. The number of atoms in cyt ¢ is 1745 (myoglobin has
2475 atoms), so the Hessian matrix is 5235 x 5235, and its diagonalization was
readily accomplished using the vibran facility in CHARMM [33].

The result of this calculation was the density of states (DOS) for the system
as shown in Fig. 1. The DOS consists of three regions: (1) below around
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0.001 ¢
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0.0001 £

1e-005 1 1 :
0 1000 2000 3000 4000

o {cm1)

Figure 1. Density of states for cytochrome ¢ in vacuum.

1700 cm™!, (2) from around 1700 cm™! to around 2800 cm™!, and (3) above
around 2800 cm~!. The first region corresponds to rotational and torsional
motions of the protein, and the third corresponds to bond stretching motions
such as CH bonds. The second is rather “transparent,” but one can observe one
mode localized around the CD bond stretching mode in Met80 with frequency
2129.1 cm™! as shown in Fig. 2a. Hence we refer to this as a CD stretching
mode, or CD mode, the dynamics of which is the focus of our study. The other
two modes in Fig. 2b and 2c¢ are strongly coupled modes with the CD mode:
3330th mode (1330.9 cm™!), an angle bending mode of Met80, and the 1996th
mode (829.9 cm™1), a stretch-bend mode in Met80. In the following, we will
discuss the detail of the coupling and how it affects the VER rate.

At this level of description, the system is an ensemble of harmonic
oscillators—that is, normal modes. Since we are interested in VER of the CD
mode, we represent it as a system

2 (02
#s =t 20 2 (61)

while other degrees of freedom are treated as a bath:

Hp= Pe kg (62)
B > 2‘1k

k
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(a) )
z(A) o

Figure 2. Normal modes of cytochrome c¢ in vacuum. (@) 4357th mode (CD mode) with
® = 2129.1 cm™!, (b) 3330th mode (angle bending mode of Met80) with @ = 1330.9 cm™!, (¢)
1996th mode (a stretch-bend mode in Met80) with ® = 829.9 cm™'. Only vectors on the terminal
methy] group of Met80 in cyt ¢ are depicted. These modes are strongly coupled with the Fermi
resonance.

The interaction between the system and bath is described by the interaction
Hamiltonian

V = Hope — Hs — Hp (63)

where ey is the Hamiltonian for the full cyt ¢ protein. We will discuss the
content of ¥” in the following section.
B. Calculation of the Coupling Constants

As in Eq. (17), we assume that the interaction Hamiltonian is of the form
¥V = —qcp¥ (64)

and Taylor expand the force as Eq. (32). The first and second terms do not appear
because this is a normal mode expansion, and the fourth term does not appear as
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the original coordinates are Cartesian coordinates. As in the first approximation,
we take the force to be

F = ZAI(C?IZ'qqu’ (65)
ok

The coupling coefficients A,(f,) are calculated as
o*v
Al(fz) =3

a9 66
29qcp Oqx Oq (66)

A problem arises: How does one calculate these coupling coefficients? The most

direct approach is to use a finite difference method:

A® o 1 Vier Vo Vo =V Vo + Vo 4V —V___
M2 (2Aqcp)(2Agx)(2Aq))

(67)

where Vi = V(£Agqcp, £Aqy, £Aq;). However, this is rather cumbersome.
Instead, we use the approximation [22,24]

2 Kij(Aqcp) — Kij(—Aqep
A7) ~ —%; Uae Uy =~ oA qc;( ) (68)
where Uy is an orthogonal matrix that diagonalizes the Hessian matrix at the
mechanically stable structure Kj;, and K;(+Aqcp) is a Hessian matrix calculated
at a shifted structure along the direction of the CD mode with a shift +=Aqcp.
This expression is approximate but readily implemented using the CHARMM
facility to compute the Hessian matrix. A comparison between Eqs. (67) and (68)
is made in Table I. We also examined the convergence of the results by changing
Agcp, and we found that Agcp = 0.02A is sufficient for the following
calculations. .

TABLE 1
Comparison Between the Finite Difference Method [Eq. (67)]
and Eq. (68)*

()] Equation (68) Finite Difference
(3330, 1996) 223 22.4
(3330, 4399) -29.6 —29.5
(3327, 1996) -5.7 -5.8
(1996, 678) " 064 0.63

> =3
¢We have used Agcp = 0.02 A, and A,(CZ,) is given in kcal/mol/A".
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5000 [ i 5000 | ]
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Figure 3. Distribution of the coupling elements; Left: 50.0 > |A(2)| > 5.0. Right: 5.0 >
!A(Z)i > 0.5. The value of A; J) are given in kcal/mol/A3. Note that (k, I) are mode numbers, not
wavenumbers.

The numerical results for the coupling elements are shown in Fig. 3. The
histogram for the elements is shown in Fig. 4. As one can see from these figures,
most of the elements are small, while the largest coupling elements are
rather large. See Table II. Note that the combination (3330, 1996) is parti-
cularly significant for the CD mode because it approximately satisfies the

L

ol & aal o abo

P(lAGD

aal

II lI

"o 10 40
lA‘”l (kcal/moI/A )

Figure 4. Histogram for the amplitude of the coupling elements.
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TABLE 11
The Largest Coupling Elements®
(k) o
(1996, 1996) 429
(4399, 3330) 29.6
(4622, 3170) 273
(3330, 1996) 223

“The value of A,(:,) are given in kecal/mol/A3,

resonant condition [21]:
locp — o — o] < 0(14Z)) (69)

As shown in Figs. 2b and 2c, these modes are localized near the terminal methyl
group of Met80 as well as near the CD mode. In such a case, resonant energy
transfer (Fermi resonance) is expected as shown by Moritsugu, Miyashita, and
Kidera [21}]. We have observed similar behavior in cyt ¢ when the CD mode was
excited, and the energy immigration to other normal modes facilitated by
resonance was followed.

C. Assignment of the “Lifetime” Parameter

We cannot directly evaluate Eq. (54) because it contains delta functions.
Evaluation of this expression for a finite system like a protein leads to a null
result. To circumvent this problem, we “thaw” the delta function 8(x) as

I v

S(X) - n-YZ + x2 (70)
using a width parameter y. Physically this means that each normal mode should
have a lifetime ~ 1/vy due to coupling to other degrees of freedom—that is, the
surrounding environment including water (or we might be able to interpret 1 /7y as
a time resolution). It is difficult to derive vy from first principles, so we take it to be
a phenomenological parameter as in the literature [22,32].

As a result, the VER rate, Eq. (54), for the CD mode becomes

1 YR ey
. F:C(ﬁ,ﬁﬁ)s)z > 5 > 5
1 o |V + (o +op —os)”  ¥2 + (e + o + o)

o Yor
Y2+ (o — op — 0s)° Y2+ (on — o + o)°

()

We employ this expression in our subsequent calculations.
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Figure 5. Left: Classical data for the force—force correlation function. Middle: Fourier spectra
for the correlation function. Right: The corresponding coarse-grained Fourier spectra. The
“lifetime” width parameter y = 3 cm™'.
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D. Results
1. Classical Calculation

Classical force—force correlation functions and their (cosine) Fourier transfor-
mations are shown in the left and middle column of Fig. 5 for five different
trajectories. Here we have defined a ¢ function as

¢ =mﬂssd<t> (72)

and have defined its (cosine) Fourier transformation as C(w), that is,
1/T$! = {(ws). Note that these data are obtained from molecular dynamics
simulations of cyt ¢ in water [9]. As can be seen, the correlation functions
oscillate wildly, and the (cosine) Fourier transformations are messy. As such, it is
difficult to extract a reliable and stable value for the VER rate.

To address this problem, we introduce the window function

w(t) = exp(—?) (73)

The ¢ functions are multiplied by this function and are (cosine) Fourier
transformed. This corresponds to broadening each peak of a spectrum with a
Lorentzian with width y. The results for five trajectories are shown in the right
column of Fig. 5. (The width parameter is taken as y = 3 cm™'.) The results in
the right column are better behaved than those in the middle column, but there
still remain some fluctuations.

According to Bu and Straub simulations of cyt ¢ in water [9], we take
g = 2135 cm™! to investigate the y dependence of the result as shown in the
left of Fig. 6. We see that {(og) ~ 1.1 ~ 1.2 ps~! for y ~ 3 ~ 30 cm™!. Since
O(ws)/(Bhos) =~ 2.4 ~ 3.0 for two-phonon processes [9], this corresponds to a
VER time of 0.3-0.4 ps according to Eq. (29).2

2.  Quantum Calculation

We use the formula Eq. (71) as a quantum mechanical estimate of the VER rate.
The y dependence of the result is shown on the right-hand side of Fig. 6. We see
that, for y ~ 3 ~ 30 cm™!, the quantum mechanical estimate gives Tj ~ 0.2 ~
0.3 ps, which is similar to the classical estimate Eq. (29): Ty ~ 0.3 ~ 0.4 ps.
In Table III, we list the largest contributions to the VER rate for different
width parameters. For the case of y = 3 cm ™!, the largest contribution is due to
modes (3823,1655). This combination of modes is nearly resonant with the CD

2in the VER calculation of myoglobin {22}, Leitner’s group took ¥ = 0.5 ~ 10 cm™! to be the width,
and confirmed that the result is relatively insensitive to the choice of y in this range.
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Figure 6. Left: Classical VER rate for five trajectories as a function of the “lifetime” width
parameter y. Right: VER rate calculated by Eq. (71) as a function of y.

mode as |®3g23 + Wy655 — Ocp| ~ 0.03 cm™!. Though the coupling element for
the combination is small (|A3823 16551 = 5.1 kcal/mol/A?), this mode combina-
tion contributes significantly to the VER rate. On the other hand, for the case of
¥ =30 cm™!, the largest contribution results from the combination of modes
(3330,1996). This combination is somewhat off-resonant—that is, lw3330+
01996 — Wcp| = 32 cm™!—but the coupling element is very large (|A3§30 199! =
22.3 kcal/mol/A?), and the contribution is significant. In both cases, one
combination of modes dominates the VER rate (=~ 20%), though there are
nonnegligible contributions from other combinations of modes.

We have also examined the temperature dependence of the VER rates using
Eq. (71). As shown in Fig. 7, for T <300 K there is little temperature
dependence as has been addressed in the case of myoglobin [22]. Thus we can
say that the relaxation of the CD mode is quantum mechanical rather than
thermal because the decay at 300 K is similar to that at 0.3 K.

TABLE 111

The Largest Contributions to the - VER Rate (in ps~!) for y = 3 cm™! (left) and ¥ = 30 cm™ (right)

(k,1) Contribution (k1) Contribution
(3823, 1655) 1.10 (19%) (3330, 1996) 0.88 (22%)
(3823, 1654) 043 (8%) (3823, 1655) 0.11 3%)
(3822, 1655) 0.37 (6%) (3170, 2196) 0.07 2%)
(3330, 1996) 0.17 (3%) (1996, 1996) 0.05 (1%)
(3822, 1654) 0.15 (3%) (3823, 1654) 0.04 (1%)
(3823, 1661) 0.14 (3%) (3170, 2202) 0.04 (1%)
(3822, 1661) 0.05 (1%) (3822, 1655) 0.04 (1%)
(3822, 1656) 0.05 (1%) (3327, 1996) 0.03 (1%)

(3823, 1658) 0.04 (1%) (3330, 1655) 0.02 (1%)
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Figure 7. Temperature dependence of the VER rate calculated by Eq. (71). The width

parameter is y = 3 cm™.

3. Discussion

We examine the relationship between the theoretical results described above and
the corresponding experiments of Romesberg’s group, which has studied the
spectroscopic properties of the CD mode in cyt ¢ [10]. They measured the shifts
and widths of the spectra for different forms of cyt c; the widths of the spectra
(FWHM) were found to be Aopwrm ~ 6.0-13.0 cm~L. A rough estimate of the
VER rate leads to

Ty ~ 53/ Awpwam  (PS) (74)

which corresponds to Ty ~ 0.4-0.9 ps. This estimate is similar to the “semi”-
classical prediction computed using Eq. (29) and appropriate QCFs (0.3-0.4 ps)
and the perturbative quantum mechanical estimate using the reduced model 0.2-
0.3 ps). This result appears to justify the use of QCFs and the reduced model in
this situation, and it suggests that the effects of the protein solvation (by water)
are negligible in describing the VER of the CD mode. Of course, we must be
careful in comparing the estimate derived from Eq. (74) because there may be
inhomogeneity in the experimental spectra.3 As such, it is more desirable to

3We have confirmed that the methyl group does not totate during the equilibrium simulations. Thus
we might exclude the rotation as a possible reason of inhomogeneity.
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calculate not only VER rates but spectroscopic observables themselves to
compare with experiments.

Finally we discuss the relation between this work and previous work on
carbon monoxide myoglobin (MbCO). Though there are many experimental
studies on Mb [35], we focus on the experiments of Anfinrud’s group [36] and
Fayer’s group [37] on MbCO. The former group found that the VER time for
CO in the heme pocket (photolyzed MbCO) is =~ 600 ps, whereas the latter
group found that the VER time for CO bounded to the heme is ~ 20 ps. This
difference is interpreted as follows: CO is covalently bonded to the heme for the
latter case, whereas CO is “floating” in the pocket in the former case; that is,
the force applied to CO for the latter case is stronger than that for the former
case. This difference in the magnitude of the force causes the slower VER for
the “floating” CO. In this respect, the CD bond is expected to be stronger than
the CO-heme coupling. This may explain a VER time ~ 0.1 ps, which is similar
to the VER times for the CH(CD) stretching modes in benzene (or perdeutero-
benzene) [29,38]. It will be interesting to apply a similar reduced model to the
analysis of the VER of CO in MbCO.

1V. SUMMARY AND FURTHER ASPECTS

After reviewing the VER rate formula derived from quantum mechanical
perturbation calculations, we applied it to the analysis of VER of a CD stretching
mode in cyt c. We modeled cyt ¢ in vacuum as a normal mode system with the
third-order anharmonic coupling elements, which were calculated from the
CHARMM potential. We found that, for the width parameter y = 3 ~ 30 cm™!,
the VER time is 0.2-0.3 ps, which agrees rather well with the previous classical
calculation using the quantum correction factor (QCF) method, and is consistent
with the experiments by Romesberg’s group. This result indicates that the use of
QCFs or a reduced model Hamiltonian can be justified a posteriori to describe the
VER problem. We decomposed the VER rate into contributions from two modes,
and we found that the most significant contribution, which depends on the
“lifetime” width parameter, results from modes most resonant with the
CD mode.

Finally we note several future directions which should be studied: (a)
Our final results for the VER rate depend on a width parameter 7. Unfortunately
we do not know which value is the most appropriate for y. Nonequilibrium
simulations (with some quantum corrections [39]) might help this situation, and
they are useful to investigate energy pathways or sequential IVR (intramolecular
vibrational energy redistribution) [40] in a protein. (b) This work is motivated
by pioneering spectroscopic experiments by Romesberg’s group. The calcula-
tion of the VER rate and the linear or nonlinear response functions, related
to absorption or 2D-IR (or 2D-Raman) spectra [41-44], is desirable. ©
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Romesberg’s group investigated a spectroscopic change due to the oxidation or
reduction of Fe in the heme; such an electron transfer process [45] is
fundamental for the functionality of cyt c. To survey this process dynamically, it
will be necessary to combine some quantum chemistry (ab initio) calculations
with MD simulations [18,46,47].
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