Errata for First Edition of Mathematical Methods for Molecular Science

Substantive edits made to correct equations, clarify passages, or correct solutions to end-of-chapter problems are listed below.

CHAPTER 1

1. Page 17, in section 1.1.3, the last equation should read:

$$x = p_{\text{Cl}_2} = p_{\text{PCl}_3} = \frac{1}{2} K_{\text{p}} \left[-1 + \sqrt{1 + 4/K_{\text{p}}} \right]$$

- 2. Page 26, notation in Figure 1.17 should read $\pi + \tan^{-1}(\frac{y}{x})$.
- 3. Page 27, the caption of Figure 1.18 should read: two lengths dr and $rd\theta$.
- 4. Page 31, in the first paragraph $x = r \cos \theta$ and $y = r \sin \theta$.
- 5. Page 32, end-of-chapter problem 1.5 should read "Identify the roots of the following equations in which y = 0."

CHAPTER 2

- 6. Page 43, the caption of Table 2.1 that reads "over six orders of magnitude" should read "over seven orders of magnitude."
- 7. Page 48, the phrase "For very large *N*, we can approximate this sum in terms of an integral" should read "We can approximate this sum as an integral that is readily evaluated" and so on.

CHAPTER 5

- 8. Page 104, the two references to Figure 5.6 should be to Figure 5.5.
- 9. Page 124, in end-of-chapter problem 5.10, the passage "An interpretation of the *Heisenberg uncertainty principle* is that the operator..." should be replaced with "According to the *Heisenberg uncertainty principle*, the operator..." and so on.
- 10. Page 125, in end-of-chapter problem 5.16, the passage "and the vector $\mathbf{r} = x \,\hat{\mathbf{i}} + y \,\hat{\mathbf{j}} + z \,\hat{\mathbf{k}}$." is better written "and the vector $\mathbf{r} = x \,\hat{\mathbf{i}} + y \,\hat{\mathbf{j}} + z \,\hat{\mathbf{k}}$, where $\hat{\mathbf{i}} = \hat{\mathbf{x}}$, $\hat{\mathbf{j}} = \hat{\mathbf{y}}$, and $\hat{\mathbf{k}} = \hat{\mathbf{z}}$."

CHAPTER 6

- 11. Page 139, in end-of-chapter problem 6.4, the area formula should read A(x, y, z) = 2(xy + yz + zx).
- 12. Page 141, in end-of-chapter problem 6.10, the function should be: $V(x,y) = ((x-y)^2 1)^2 + 20x^2y^2$.

CHAPTER 8

- 13. Page 177, the passage "Every infinite series will converge, to a finite number, or diverge, to positive or negative infinity. How do we know if a given series, such as the harmonic series, will converge or diverge?" should read "Every infinite series will converge, diverge to positive or negative infinity, or oscillate without approaching a limit. How do we know if a given series will converge?"
- 14. Page 188, four occurrences of $(x x_0)$ should be replaced by $(x \bar{x})$.

CHAPTER 9

15. Page 204, the passage "Now consider a crystal consisting of $N_0 = 6 \times 10^{23}$ indistinguishable atoms." should be replaced with "Now consider a crystal consisting of $N_0 = 6 \times 10^{23}$ distinguishable atoms."

CHAPTER 11

16. Page 289, the second Hermite polynomial should be $H_2(x) = 4x^2 - 2$.

CHAPTER 12

- 17. Page 315, below Equation (12.22) the paragraph should read: As such, we can readily express the wave equation in two-dimensional plane polar coordinates for $h(r, \theta, t)$, three-dimensional cartesian coordinates for h(x, y, z, t), cylindrical coordinates for $h(r, \theta, z, t)$, or spherical polar coordinates for $h(r, \theta, \varphi, t)$, by simply using the appropriate form of the operator ∇^2 (as provided in Complement C_5).
- 18. Page 318, the definitions of *heat energy* and *heat energy flux* have been updated as follows: The heat energy per unit length at a position x and time t for a material with heat capacity c and density ρ will be

heat energy =
$$c\rho u(x, t)$$

The flux of heat energy passing any point *x* per unit time will be

heat energy flux =
$$-k \frac{\partial u(x,t)}{\partial x}$$

where *k* is the *thermal conductivity* of the material.

The equality

change in heat energy = difference in heat energy flux

has been revised to read:

$$c\rho\left[u(x,t+\Delta t)-u(x,t)\right]\Delta x=-k\left[\frac{\partial u(x,t)}{\partial x}\Big|_{x}-\left(-k\frac{\partial u(x,t)}{\partial x}\Big|_{x+\Delta x}\right)\right]\Delta t$$

which we can rearrange as

$$\frac{1}{\Delta t} \left[u(x, t + \Delta t) - u(x, t) \right] = \kappa \frac{1}{\Delta x} \left[\frac{\partial u(x, t)}{\partial x} \Big|_{x + \Delta x} - \frac{\partial u(x, t)}{\partial x} \Big|_{x} \right]$$

where $\kappa = k/(c\rho)$ is the thermal diffusion coefficient.

19. Page 320, the definitions of *number of particles* and *particle flux* have been updated as follows: The number of particles per unit length at a position x and time t will be

number of particles =
$$c(x, t)$$

The flux of particles passing any point x per unit time will be

particle flux =
$$-D \frac{\partial c(x,t)}{\partial x}$$

where *D* is the *particle diffusion coefficient*.

The equality

change in number of particles = difference in particle flux

has been revised to read:

$$\left[c(x,t+\Delta t)-c(x,t)\right]\Delta x = -D\left[\frac{\partial c(x,t)}{\partial x}\Big|_{x} - \left(-D\frac{\partial c(x,t)}{\partial x}\Big|_{x+\Delta x}\right)\right]\Delta t$$

CHAPTER 14

20. Page 403, in section 14.2.7, starting with the first full sentence the text should read: When the hermitian conjugate of a matrix is equal to its inverse, it is called a *unitary matrix*. In that case, the matrix has the property that

$$D^\dagger D = DD^\dagger = I$$

CHAPTER 15

- 21. Page 434, in the caption of Figure 15.4, the first equation should read $V(x) = \frac{1}{2}\kappa(x x_0)^2$.
- 22. Page 442, after Equation 15.27 insert the text "where $\psi(0) = \psi(L) = 0$."
- 23. Page 443, the phrase "The real *kinetic energy operator* in quantum theory is hermitian..." should be replaced by "For the particle in a box, the real *kinetic energy operator* is hermitian..." In addition, a footnote was added to read "In general, whether the kinetic energy operator is Hermitian depends on the boundary conditions satisfied by the wave functions it operates on."
- 24. Page 446, in end-of-chapter problem 15.14, the conversion from local mode coordinates **x** to normal mode coordinates **y** should read

$$\mathbf{y}(t) = \mathbf{C}^{-1}\mathbf{x} = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$$

25. Page 451, in end-of-chapter problem 15.20, the phrase "The equations of motion for the displacements s_1 and s_2 ..." should read "The equations of motion for the small displacements s_1 and s_2 ..." In addition, replace "Solve the characteristic equation to find the two eigenvalues ω_1 and ω_2 ." with "Solve the characteristic equation to find the two eigenvalues ω_1^2 and ω_2^2 ."

SUPPLEMENTS

26. Page 502, in Supplement S₉ the following table entry should read:

12.
$$f(t) = e^{-a|t|}\cos(\omega_0 t) \quad a > 0, \ \omega_0 \in \Re$$

$$F(\omega) = \sqrt{\frac{2}{\pi}} \left[\left(\frac{a/2}{a^2 + (\omega + \omega_0)^2} \right) + \left(\frac{a/2}{a^2 + (\omega - \omega_0)^2} \right) \right]$$

- 27. Page 508, in Supplement S₁₀ the answer to end-of-chapter problem 3.17 should read: $\frac{\partial u}{\partial s} = 2st(e^{-s} + t)(1 e^{-s^2t}) e^{-s}(e^{-s^2t} + s^2t)$ and $\frac{\partial u}{\partial t} = s^2(e^{-s} + t)(1 e^{-s^2t}) + e^{-s^2t} + s^2t$.
- 28. Page 511, in Supplement S_{10} the answer to end-of-chapter problem 6.10 should read: For (x,y)=(1,0), V=0, $V_x=0$, $V_y=0$, $V_{xx}=8$ and D=320 making the point a minimum. For (x,y)=(0,0), V=0, $V_x=0$, $V_y=0$, $V_{xx}=0$, and V=0 which is inconclusive. For (x,y)=(1/3,-1/3), $V=\frac{5}{9}$, $V_x=0$, $V_y=0$, $V_{xx}=\frac{52}{9}$ and V=00 making the point a saddle.
- 29. Page 512, in Supplement S₁₀ the answer to end-of-chapter problem 7.7 should be $\frac{4\pi}{15}a^5$.
- 30. Page 515, in Supplement S_{10} the answer to end-of-chapter problem 9.4 for the number of permutations of the letters in Laplace should be 1260.
- 31. Page 517, in Supplement S_{10} the answer to end-of-chapter problem 11.4(a) should be $x^2 \sum_{n=0}^{\infty} na_n x^n$.