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1 Originally developed to study the
1666 plague and 1865 cholera epidemics
in London. WO Kermack and AG
McKendrick, “A Contribution to the
Mathematical Theory of Epidemics,”
Proc. Roy. Soc. Lond. A 115, 700-721

(1927).

2 Individuals with immunity or in
physical isolation are not considered.

3 This is like a bimolecular reaction where
the rate of reaction is proportional to
the concentration of each species.

4 In the SIR model, individuals referred
to as infected are infectious and can
transmit the disease.

5 This is like a unimolecular reaction
where the rate of reaction is propor-
tional to the concentration of reactant.

Kinetic models of infectious disease epidemics

A variety of simple models have been developed to predict the progression
of infectious disease. The models are also used, after the fact, to analyze the
mechanism of disease progression to gain insights into the mechanism of
propagation. We will explore two popular models based on a set of coupled first
order ordinary differential equations.

In each model, we start with a population of susceptible individuals who may
become infected with the disease. The fraction of susceptible individuals at a
given time t is written s(t). Those individuals may become infected, and the
number of infected individuals at a given time is i(t). Finally, we track the number
of recovered individuals at a given time r(t). The rate of change in each of these
quantities is described in terms of a first order ordinary differential equation
describing the time-dependence of each population from the initial spread of
the disease until its conclusion. Let’s see how that works.

SIR model of infectious disease

The SIR model divides the total population into susceptible individuals, s(t),
infected individuals, i(t), and recovered individuals, r(t).1 The sum s(t)+i(t)+
r(t)=1. How do we expect each of those quantities to change in time?

Let’s start with the number of susceptible individuals which initially is taken
to be s(0) ' 1.2 The probability of a susceptible individual encountering an
infected individual is proportional to the number of each type of individual

probability of encounter ∝ s(t)i(t)

If you double the number of infected individuals, you double the rate of in-
fection. If you cut in half the number of susceptible individuals, the rate of
infection is cut in half.3

The rate of infection is proportional to the probability of a susceptible
individual encountering an infected individual

rate of infecting susceptible individuals = b s(t)i(t)

where b is a rate constant proportional to the number of infectious contacts per
day that an infected individual makes with another individual.4 As such, the
rate of change in the number of susceptible individuals s(t) is

d
dt

s(t) = −b s(t)i(t)

and the negative sign leads to a decreasing number of susceptible individuals.
As susceptible individuals are converted into infected individuals, the

fraction of infected individuals grows at a rate b s(t)i(t). Assuming no mortality,
after some time the infected individual will recover from the illness at a rate
proportional to the number of infected individuals5

rate of recovery of infected individuals = k i(t)

where 1
k is the average number of days required to recover from the illness. As

such, the rate of change in the number of infected individuals is

d
dt

i(t) = b s(t)i(t)− k i(t)

so that the number of infected individuals increases as susceptible individuals
are infected and decreases as infected individuals recover.
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6 High reproduction numbers can also
result from promiscuous social behavior.
As such, the reproduction number of a
disease can be reduced through social
distancing.

7 Using the chain rule we find

di
ds

=
di
dt

(ds
dt

)−1

=−1+
k

bs(t)

which we solve to find

i(t)+s(t)−
k
b

ln s(t)=C

where C is a constant independent of
time. Evaluating the expression at t = 0
and t = ∞ we can solve for

b
k
= R0 =

ln s∞

s∞ − 1

where s(t=∞) = s∞.

Finally, the rate of change in the number of recovered individuals is

d
dt

r(t) = k i(t)

Note that r(t) can also be determined from r(t) = 1− (s(t)+i(t)). The combi-
nation of these three first order ordinary differential equations forms the SIR
model of infectious disease

d
dt

s(t) = −b s(t)i(t)
d
dt

i(t) = b s(t)i(t)− k i(t)
d
dt

r(t) = k i(t)

By solving these three equations we can determine the time evolution of the
conversion of susceptible individuals into infected individuals and finally into
recovered individuals.

There is an important constant that can be measured at the end of an epi-
demic called the reproduction number, R0, defined to be the total number of
infectious contacts made by individual. In the SIR model the reproduction
number is given by a product of two of the model parameters

R0 = b
1
k
= (# contacts per day)× (infectious period in days)

The reproduction number reflects the virulence or ease of transmission of the
disease as well as the social environment and behavior of the population. High
reproduction numbers are found in densely populated societies with a higher
number of contacts between individuals per day. 6

Let’s explore the predictions of the SIR model for a number of infectious
diseases. The table below lists data for infectious diseases relevant to the SIR
model starting with the influenza epidemic of 1918 and reaching the 2019

coronavirus (Covid-19) epidemic.

Epidemic model parameters

disease daily contacts=b incubation period=
1
q

infectious period=
1
k

R0 =
b
k

mortality=M0

influenza (1918) 1 day−1 4 days 4 days 2.4−4.4 10%
polio (1952) 1/2 day−1 5 days 12 days 5−7 0.025%

measles (1960) 2 day−1 12 days 8 days 12−18 0.1%
Hong Kong flu(1968) 1/2 day−1 6 days 5 days 1.2−3.6 0.5%

SARS (2003) 1/12 day−1 4 days 6 days 0.5 11%
coronavirus (2019) 1/2 day−1 5 days 6 days 2.2−3.6 3.4%

The reproduction number R0 can be determined from a knowledge of the
fraction of susceptible individuals who avoid infection over the course of the
epidemic7

R0 =
ln(s∞)

s∞ − 1
= b

1
k

where s∞ = s(t = ∞). This relation is used to compute R0 at the end of an
epidemic.

A typical number of daily infectious contacts is taken to be b = 1
2 day−1.

Exceptions are higher values for the influenza epidemic of 1918, which impacted
large confined populations, measles, to accommodate the large reproduction
number, and SARS, for which early isolation measures were highly effective.
The infectious period is estimated as the product of the assumed number of
daily contacts and the inverse of the reproduction number

k = b
1
R0
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8 Parameters for the Covid-19 epidemic
were derived from data available in
February 2020 before the widespread
implementation of social distancing
measures in the United States.

9 Parameters for the Covid-19 epidemic
were derived from data available in
February 2020 before the widespread
implementation of social distancing
measures in the United States.

In practice we will vary the parameter b over a range of reasonable values
for the assumed number of contacts per day. This will allow us to test the
sensitivity of our predictions to the value of this variable parameter. The
incubation period is the average time between exposure and the onset of
detectable symptoms. It is not considered explicitly in the SIR model.

Let’s explore the predictions of the SIR model using the model parameters in
the table. The results are shown below.
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Figure 1: SIR model of time evolution
of six epidemics from influenza (1918),
polio (1855), measles (1960), Hong Kong
flu (1968), SARS (2003), and coronavirus
(2019). In the case of influenza (1918)
the infection extends to the majority
of individuals (R0 > 1). In the case of
SARS (2003) the epidemic is prevented
by effective quarantine and social
distancing (R0 < 1).

Note that we can’t solve the equa-
tions of the model exactly, so we
integrate the equations numerically
using a method discovered by Leonhard
Euler (1707-1783). For the differential
equation

dc(t)
dt

= kc(t)

we can say dc(t) = kc(t)dt. Now
suppose we replace the infinitesimal
step in time dt or concentration dc with
a finite step in time ∆t or concentration
∆c. We then find

∆c= c(t + ∆t)−c(t)= kc(t)∆t

where ∆t is the time step. We start at
c(0) and find c(∆t) = c(0)+kc(0)∆t.
Taking another step we find c(2∆t) =
c(∆t)+kc(∆t)∆t. And so on. Repeating
these steps we generate a time series

c(0), c(∆t), c(2∆t), . . . , c(n∆t)

over n time steps out to the desired
time t = n∆t. This method is known
as the forward Euler method. It was
applied to compute the evolution of
the populations as a function of time t
using dt = 1/20 days.

We can make a number of observations based on a comparison of our results for
the six epidemics.8 (1) The large reproduction numbers for polio and measles
leave few members of the population uninfected. (2) The large reproduction
number of the measles leads to a rapid onset of the illness and relatively short
duration of the overall epidemic. The long infectious period of polio has the
opposite effect. (3) This model of the 2019 coronavirus epidemic most resembles
the Hong Kong flu epidemic of 1968.9



6 kinetic models of infectious disease epidemics

10 RM May and RM Anderson, “Infec-
tious diseases of humans: dynamics
and control,” Oxford University Press
(1991).

11 We can add detail to the SEIR model
by including the birth rate as well as
the natural death rate in the population.
The birth rate is a zeroth order kinetic
process, taken to be proportional to
the population as a whole. The death
rate is a first order kinetic process, pro-
portional to the number of individuals
of any subgroup independent of the
illness.

SEIR model of infectious disease

In the SIR model we assumed that the population could be divided into sub-
groups of susceptible individuals, infected individuals, and recovered individ-
uals. To improve the model, we add a fourth subgroup of exposed individuals at
a given time t written e(t).10 Exposed individuals are contacted by an infected
individual after which the illness incubates in the absence of symptoms. Follow-
ing incubation the exposed individual exhibits symptoms and is considered an
infected individual.

The population of exposed individuals will increase as susceptible individu-
als encounter infected individuals and decrease as exposed individuals evolve
into infected individuals where

rate of conversion of exposed individuals to infected individuals = q e(t)

and 1
q is the average incubation period in days. As such, the rate of change in

the number of exposed individuals s(t) is

d
dt

e(t) = b s(t)i(t)− q e(t)

where the negative sign indicates that the population of exposed individuals
decreases as exposed individuals are converted to infected individuals following
an incubation period.

We now need to modify the rate of change in the number of infected in-
dividuals. The population of infected individuals will increase as exposed
individuals are converted to infected individuals and decrease as infected
individuals recover

d
dt

i(t) = q e(t)− k i(t)

The model for the rate of recovery of infected individuals is unchanged. The
final result is the SEIR model defined by the first order ordinary differential
equations

d
dt

s(t) = −b s(t)i(t)

d
dt

e(t) = b s(t)i(t)− q e(t)

d
dt

i(t) = q e(t)− k i(t)

d
dt

r(t) = k i(t)

where s(t)+e(t)+i(t)+r(t)=1 is the total population.11

The incubation period 1
q can be measured through the observation of in-

dividuals, averaging the time between an infectious contact and the onset of
symptoms (see the table). The reproduction number R0 can be calculated us-
ing the total number of susceptible individuals remaining at the end of the
epidemic s(t=∞)=s∞ where the relation

R0 =
ln(s∞)

s∞ − 1
= b

1
k

is identical to that for the SIR model.
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12 Parameters for the Covid-19 epidemic
were derived from data available in
February 2020 before the widespread
implementation of social distancing
measures in the United States.

Let’s explore the predictions of the SEIR model using the model parameters
in the table. The results are shown below.
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Figure 2: SEIR model of time evolution
of six epidemics from influenza (1918),
polio (1855), measles (1960), Hong Kong
flu (1968), SARS (2003), and coronavirus
(2019).

We can make a number of observations based on a comparison of our results
for the six epidemics.12 (1) Explicit inclusion of the incubation period in the
kinetic models delays the overall onset of disease. (2) In the case of polio, the
peak number of infected individuals, imax, exceeds the peak number of exposed
individuals, emax. However, for measles the opposite is true and emax > imax.
(3) As in the SIR model, our model of the 2019 coronavirus epidemic most
resembles the Hong Kong flu epidemic of 1968.
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Exponential and power-law kinetic models of infectious disease

Consider the following data from the World Health Organization (WHO)
representing coronavirus related mortality statistics in China during the early
days of the epidemic.
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Figure 3: The growing number of
deaths †(t) attributed to coronavirus
in the early phase of the epidemic in
China. The data were taken over 25
days spanning 27 January 2020 to 16

February 2020.

The data show rapid growth in the number of coronavirus related deaths over
a 25 day period. Does it represent exponential growth? Let’s analyze this data
using the SEIR model.

Exponential growth of infectious disease

In the figures below are 25 days taken from the SEIR model of the propagation
of coronavirus in metropolitan Boston. We have assumed a population of
NT = 4, 375, 000. An early stage in the epidemic has been chosen over which the
total death count is predicted to rise to numbers comparable to those on day 25

in China. The prediction of the model is shown below.

0

1

2

†(
t)

(t
h
o
u
sa
n
d
s)

0 10 20
t (days)

SEIR model

coronavirus Boston

2

2.5

3

lo
g
1
0
(†
(t
))

0 10 20
t (days)

SEIR model

†(t) ∝ et/4.3

Figure 4: Predictions of the SEIR
model for a coronavirus epidemic in
metropolitan Boston derived from data
available in February 2020 before the
widespread implementation of social
distancing measures in the United
States. (Left) Model predictions for the
number of deaths over 25 days during
an early stage in the epidemic. (Right)
The same data on a log-linear plot
demonstrating the exponential kinetics
predicted by the SEIR model.

On the left, we plot the number of deaths over time. The general pattern of a
rapid rise in deaths, starting from relatively few on day 0 to roughly 1400 deaths
on day 25, seems to mirror the data from China. On the right, we display the
same data on a log-linear plot. The fact that the data fall on a line in a log-linear
plot indicates that we have exponential growth in the SEIR model. The data can
be fitted to an exponential with a time constant of 4.3 days.

In the SEIR model, we assume that (1) the disease spreads in a closed pop-
ulation of some number of individuals, (2) the rate of exposure to an infected
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13 When we consider the spread of
the disease outside of Wuhan the
assumption that the disease spreads in
a closed population would be invalid.
However, we will assume that it is a
reasonable assumption when applying
the model to the initial spread of the
disease.

14 Fractal objects have self-similar
structure that is observed on many
length scales. Such structures are found
in dendritic objects like snowflakes,
trees, ferns, shorelines, and branched
molecules. The form of a tree repeats
itself in each branch, which takes the
form of the tree, as does each branch
of a branch. This is what we refer to
as self-similarity. A piece of the object
shares the form of the object as a whole.

15 S Milgram, Psychology Today 1, 61-67

(1967).

16 A-L Barabasi and R Albert, Science
286, 509-512 (1999).

individual is proportional to the number of susceptible individuals, and (3) re-
covery from the disease provides immunity from future infection. A probability
of contact between a susceptible individual and infected individual is taken to
be proportional to the fraction of each type of individual

probability of encounter ∝ s(t)i(t)

Similarly, the rate of recovery from the infection is taken to be proportional to
the number of infected individuals

rate of recovery of infected individuals = k i(t)

When the rate of change in a quantity is proportional to the quantity itself,
we expect to find exponential kinetics of growth or decay. This explains the
exponential growth observed in the mortality statistics predicted by the SEIR
model for a coronavirus epidemic in metropolitan Boston.

Let’s perform the same analysis on the data from China by plotting the data
on a log-linear plot. The results are shown below.
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Figure 5: (Left) Mortality data over
25 days during an early stage in the
epidemic. (Right) The same data on
a log-linear plot. The data do not
fall on a line demonstrating that the
growing number of deaths did not
follow exponential growth as predicted
by the SEIR model.

The data displayed on a log-linear plot does not fall on a line. As such, it fails
the basic test for exponential kinetics. While the growth in mortality is rapid it
is not exponential. This tells us that one or more of the assumptions of the SEIR
model is not valid when applied to the early spread of coronavirus in China.

Alternatives to exponential growth

The most questionable assumption in the model is that the rate of exposure to
an infected individual is proportional to the number of susceptible individu-
als.13 That assumption implies that there is a constant probability for an infected
individual to encounter any individual in society. The assumption ignores the
existence of social networks that make it more likely for an infected individual to
encounter a member of that individual’s immediate social group as opposed to
a stranger living at a distance.

Rate models that take into account the structure of social networks lead to
different predictions for the rate of growth of infectious disease. Studies have
shown that the network of social contacts can have a fractal structure.14 In the
context of social networks, the fractal structure implies that the probability of
encountering another individual in society diminishes with social distance. This
is sometimes called a small world network after the seminal work of Milgram.15

That idea was generalized to many phenomena including the spread of infec-
tious disease by Barabasi and Albert16 and is now widely applied to model
kinetics of growth in the physical and social sciences.
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17 AL Ziff and RM Ziff, medRxiv
2020.02.16.20023820; doi:
https://doi.org/10.1101/2020.02.16.20023820.

The fractal nature of social networks informs the probability of encounters
between individuals in a way that leads to power-law kinetics modeled as

†(t) ∝ tα

where α is the power-law exponent that is greater than one. While the deriva-
tion of the power-law time dependence is challenging, the assessment of
whether we have power-law kinetics is quite simple. In evaluating data for
exponential growth, we plot the data on a log-linear scale. If the data falls on a
line it follows exponential kinetics. In evaluating the data for power-law growth,
we plot the data on a log-log scale. If the data falls on a line it follows power-law
kinetics. Let’s apply this analysis to the China data.17

Shown below are the coronavirus related mortality statistics from China
displayed on a log-log scale. The points fall on a line showing a clear power-law
time-dependence for the growth in mortality.
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Figure 6: Mortality data over 25 days
during an early stage in the epidemic
shown on a log-log plot. The data
fall on a line demonstrating that the
growing number of deaths follows
power-law kinetics with an exponent
of α = 2.2. Note that in the case of the
exponential growth model, the fitting
parameter was a time constant with
units of days. In the case of power-law
kinetics, the exponent is dimensionless.
This is a property of scale-free networks.

Our analysis of data from the early rise in coronavirus related mortality sug-
gests that predictions of exponential growth resulting from the SIR and SEIR
models fail to capture essential features of the epidemic. An accurate kinetic
model of the spread of the disease and the resulting mortality must reflect the
underlying network of contacts between susceptible and infected individuals.

Growth kinetics reflect the social network

To get more insight into the essential features that the SEIR model is missing,
let’s consider a network of social contacts. Below is a plot of a social network.

random connections small world model

Figure 7: A social network of 114 indi-
viduals (red dots) forming 7 clusters.
The distance between dots represents
social distance. Lines represent en-
counters between individuals formed
randomly (left) or with a diminish-
ing probability with increasing social
distance (right).

Each red dot is an individual. Each line connecting two red dots represents
a physical contact between that pair of individuals. The distance between
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points represents social distance. Pairs of points that are close together indicate
relationships of friends and family living in near proximity. Pairs of points that
are far separated indicate stranger relationships or physical distance that makes
frequent contact less likely. The points form clusters that represent groups of
family members, friends, or coworkers.

Each graph shows a network of 114 individuals forming 7 clusters. The
graph on the left shows 1, 000 encounters between randomly chosen pairs of
individuals. The graph on the right shows the same 114 individuals. However,
the lines represent 1, 000 encounters chosen from a gaussian distribution that
favors near contacts and makes more distant contacts less probable. Intuitively,
the network on the right represents a more realistic pattern of interactions
between individuals reflecting the underlying structure of the social network.

Shown below are histograms of the probability distribution p(d) of contacts
of varying length d.
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Figure 8: Distributions reflecting the
probability p(d) of encounter between
two individuals have a social distance
of d. The SEIR model assumes an en-
counter probability that is independent
of social distance. The random and uni-
form connectivity across a population
gives rise to exponential kinetics.

In the model assuming random connections, encounters between pairs of
individuals within a social group are underweighted while encounters between
pairs of socially distant individuals are exaggerated. In contrast, in the small
world model the probability of encounter reasonably reflects the social distance
between individuals. Encounters between individuals in close proximity within
a social cluster are more probable than contact between individuals who are
distant by being strangers or through physical distance.

The solid line represents the predictions of the SEIR model that assumes a
constant probability of encounter between any two individuals. Both the SEIR
model and random model assume an equal probability of encounter between
any two individuals. The difference in the contact probability distribution
results from the fact that the random encounter model reflects the underlying
structure of the social network, consisting of separate social groups forming
separate clusters, and clusters of clusters, and clusters of clusters of clusters.
The self-similar fractal structure of the small world networks, combined with
encounter probabilities reflecting the social distance between individuals, can
give rise to power-law kinetics.

The widely applied SIR and SEIR epidemiological models predict expo-
nential time dependence in the spread of infectious disease. However, the
assumption of a constant probability of encounter between any two individuals,
on which the SIR and SEIR models are based, fails to reflect the heterogeneous
structure underlying social networks. In contrast, small-world networks can
give rise to power-law behavior reflected in infectious disease epidemics includ-
ing the initial spread of the coronavirus epidemic of 2019.



12 end-of-supplement exercises

End-of-supplement exercises

E.1 Which parameters in the SIR model can be controlled by changes in behavior? Which parameters are largely indepen-
dent of behavior?

E.2 Consider the data below showing predictions of the SEIR model for the time evolution of coronavirus for four values
of b modeling the average number of contacts per day. The initial number of infected individuals is taken to be NI =10 in
a population of NT =4, 875, 390 representing metropolitan Boston. We assume 1

q = 5 days and 1
k = 5 days.
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Explain the observed dependence of the onset of the disease on b.

E.3 The reproduction number R0 = b
k is an important measure of the growth or recession of disease. In our analysis of

the SIR model we found that

R0 =
ln(s∞)

s∞ − 1
= b

1
k

where s∞ =s(t=∞). Below R0 is plotted over a range of s∞ on linear and linear-log scales.
(a) Starting from the first order differential equations defining the SIR model, derive the expression above relating the
reproduction number R0 to the fraction of susceptible individuals s∞ remaining uninfected at the end of the epidemic.

(b) As individuals become immune to a disease through exposure or vaccination, the fraction of susceptible individuals
s(t) can diminish below a critical value sc after which the disease will recede. This is known as herd immunity. Derive the
critical fraction sc as a function of R0.

(c) The reproduction number R0 is shown above as a function of s∞ using linear (left) and linear-log (right) scales. What
does this dependence of R0 on the log10(s∞) imply about the uncertainty in published values of the reproduction number
R0? For the same relative uncertainty in s∞ do you expect to find a larger or smaller relative uncertainty in R0?

E.4 Consider the data below showing predictions of the SEIR model for the time evolution of coronavirus for four val-
ues of NI defined as the number of initially infected individuals in an overall population taken to be NT = 4, 875, 390
representing metropolitan Boston. We assume b = 1

2 day−1, 1
q = 5 days, and 1

k = 5 days.
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Explain the observed dependence of the onset of the disease on NI .

E.5 The reproduction number R0 = b
k is often calculated using the relation

R0 =
ln(s∞)

s∞ − 1
= b

1
k

where s∞ = s(t = ∞). This requires a knowledge of the fraction of susceptible individuals who resist infection over the
course of the epidemic. Recall that in the SIR model the rate of change in the fraction of infected individuals is

d
dt

i(t) = b s(t)i(t)− k i(t)

Evaluate this expression at t∗ defined as the time at which the number of infected individuals reaches a maximum. Use
your result to form an alternative definition of R0. Test the validity of your expression using data in Figure 1.

E.6 Modify the differential equations in the SEIR model to include the natural birthrate, defined by the constant p, and the
natural death rate, defined by the constant d. The birthrate only impacts the number of susceptible individuals while the
natural death rate impacts the populations of each of the four subgroups. Assume the birthrate is a zeroth order kinetic
process proportional to the overall population while the death rate is a first order kinetic process proportional to the
population of each subgroup.

E.7 It is possible to use the SIR model or SEIR model to determine the overall mortality resulting from the disease. In the
SIR and SEIR models, an infected individual is assumed to recover with a rate k. To introduce mortality, we can assume
that a fraction of those individuals who would otherwise have recovered ultimately die. We take that fraction to be

M0 = fraction of individuals who die rather than recover

where the fraction of infected individuals who recover is 1−M0.

(a) Derive an expression for the cumulative number of deaths †(t) resulting from the disease as a function of time t. Your
expression should depend on r(t),M0, and the total population NT .

(b) Derive an expression for the number of individuals dying per day as a function of time ∆(t). Your expression should
depend on i(t).

(c) Derive an expression relating ∆(t) to †(t).

E.8 In the SEIR model, the number of cumulative deaths shows exponential growth

†(t) ∝ et/τ

where τ is the time constant. Consider data for cumulative deaths †(t) plotted on a log-linear plot using the base-10

logarithm. The data can be fit to a line with slope m. Derive an expression relating τ to m.
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E.9 Power-law kinetics converges more slowly than exponential kinetics. Since power-law growth continues to evolve in
time after exponential growth has reached its conclusion, power-law kinetics is said to be characterized by heavy tails or
long time tails. An example is shown below.
What influence will the presence of long time tails have on the progression of an infectious disease epidemic?

E.10 In a small world network, diminishing long distance contacts through practices like social distancing can isolate clus-
ters of individuals from the overall network. Above the so-called percolation threshold there is one connected cluster of all
individuals. It is possible to connect any two points through a series of encounters. Below the percolation threshold it is
no longer possible to connect any two points in the network through a series of encounters. Discuss how the propagation
of disease varies above and below the percolation threshold.

E.11 Consider a chemical reaction where the reactant S undergoes reaction with E to create product P. The rate of change
in S is written

d
dt
[S](t) = −k[S](t)[E](t)

where [S] and [E] are concentrations of S and E. We assume [E](0) � [S](0) so that [E](t) ' [E](0) is approximately
constant in time. The solution for the time dependence of the concentration of S is

[S](t) = [S](0)e−k′t

where k′ = k[E](0). This so-called pseudo-first order kinetics is often observed in chemical reactions.
The mechanism of reaction involves collisional encounters between S and E that lead to reaction, much like contact

encounters between susceptible and infected individuals leads to reaction and a decrease in the number of susceptible
individuals. Why might one expect exponential kinetics to be valid for chemical kinetics, in which reactions occur
through collisional encounters between molecules, but not for the early spread of coronavirus in China?

E.12 The equations defining the SIR model

d
dt

s(t) = −b s(t)i(t)
d
dt

i(t) = b s(t)i(t)− k i(t)
d
dt

r(t) = k i(t)
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Figure 9: Comparison of the conver-
gence of models of exponential and
power-law growth. Note the rapid
convergence of the exponential model
compared with the long time tail of the
power-law.

define the rate of change in the fraction of susceptible s(t), infected i(t), and recovered r(t) individuals at a given time t.
Imagine a molecular reaction where s(t), i(t), and r(t) represent molecular species. Define the molecular species.

E.13 The models we have considered capture essential qualitative features of an infectious disease epidemic. At the very
least, they allow us to organize our thinking about critical factors in the spread of infectious disease. Nevertheless, they
are qualitative models at best. Identify a short-coming of one of the models and suggest how the model can be improved.


