
Mathematical Methods through Dance

The SIR Model of Infectious Disease

Kinesthetic Expressions of the Beauty and Utility of Math



1 Originally developed to study the
1666 plague and 1865 cholera epidemics
in London. WO Kermack and AG
McKendrick, “A Contribution to the
Mathematical Theory of Epidemics,”
Proc. Roy. Soc. Lond. A 115, 700-721

(1927).
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Figure 1: SIR model of time evolution of
six epidemics from influenza (1918). In
the case of influenza (1918) the infection
extends to the majority of individuals
(R0 > 1). Initially, the population is
composed of susceptible individuals
s(t) (blue). An infected individual is
introduced. As the infection spreads,
the number of infected individuals i(t)
grows (red). After some recovery time,
the number of recovered individuals
r(t) grows (green). Note that at the end
of the epidemic, most individuals in the
society have contracted the disease.

Scene 1. The SIR model of infectious disease epidemics

Epidemics have plagued humankind for thousands of years. However, it is only
over the last 100 years that mathematical models have been developed to study
the spread of infectious disease. These models have provided insight into the
conditions that lead to epidemics, and measures that can be taken to stop the
spread of disease.

Modeling the rate of infection and recovery

The SIR model divides the total population into susceptible individuals, infectious
individuals, and recovered individuals.1 Susceptible, Infectious, Recovered. SIR.

The model predicts how the number of infected individuals in a population
increases with time. The rate of infection is proportional to the probability that a
susceptible individual encounters an infectious individual

rate of infection = b× # susceptible × # infected

where b is the number of infectious contacts per day made by an infected
individual (and × is the multiplication sign).

Ignoring mortality, the SIR model assumes the rate of recovery is propor-
tional to the number of infected individuals

rate of recovery = k× # infected

where k is the recovery rate and 1
k is the average number of days required to

recover from the illness (see Figure 1).

Rates of infection and recovery define the Reproduction Number R0

When does an infectious disease lead to an epidemic and when can it be con-
trolled. The SIR model provides an answer to that question. If the rate of infec-
tion is greater than the rate of recovery, an epidemic will occur. When the rate
of recovery is greater than the rate of infection, and epidemic can be avoided.
These factors are captured in a single parameter known as the reproduction
number, R0, defined

R0 = b
1
k
= # contacts per day × infectious period in days

When R0 > 1, the rate of infection exceeds the rate of recovery and an epidemic
occurs (see Figure 1).

The susceptible phrase expresses the openness and vulnerability of the
individual lacking infection or immunity to disease. Contact between
a susceptible and infected individual is expressed through expansion,
the outreach to others, and contraction, internalizing the infection. The
infected phrase expresses the fear and anxiety resulting from the abrupt
transition from wellness to illness. The recoved phrase pulls elements
from the previous phrases to embody the comfort and relief of recovery
and the return to openness. In this scene, the reproduction number R0
is less than one and the epidemic is avoided.



Scene 2. Reproduction number and onset of an epidemic

Let’s explore the predictions of the SIR model for a number of infectious
diseases that have occurred over the past 100 years.

A hundred years of epidemics

The table below lists data for infectious diseases relevant to the SIR model
starting with the influenza epidemic of 1918 and reaching the 2019 coronavirus
(Covid-19) epidemic.

Epidemic model parameters

disease b(per day) R0 =
b
k

mortality=M0

influenza (1918) 1 2.4−4.4 10%
Hong Kong flu(1968) 1/2 1.2−3.6 0.5%

SARS (2003) 1/12 0.5 11%
coronavirus (2019) 1/2 2.2 (initial US) 3.4%

A typical number of daily infectious contacts per day in the absence of social
distancing is two (b= 1

2 per day). Exceptions are higher values for the influenza
epidemic of 1918, which impacted large confined populations, and SARS, for
which early isolation measures were effective.
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Figure 2: SIR model of the time evolu-
tion of the coronavirus epidemic with
three different values of the reproduc-
tion number ranging from R0 = 1/2
(controlled) to R0 = 2 (epidemic). A
long recovery time and lack of social
distancing result in epidemic condi-
tions.

Epidemics then and now

In the current coronavirus epidemic, countries implementing effective social
distancing protocols, along with quarantine and contact tracing, lowered
the reproduction number below one, turning back the epidemic. The lack of
effective social distancing led to reproduction numbers R0 > 1 and an epidemic
spread of coronavirus in the US.

An initial population of susceptible individuals is shown in black and
white. Fog covers a single cell representing the first infected individual.
Sepia expresses the contact between an infectious and susceptible indi-
vidual before the onset of infection and fog. Color and clarity are used to
express the state of recovery. In this scene, the reproduction number R0
is one with an equal rate of infection and recovery.
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25 Days in China

Figure 3: The growing number of
deaths †(t) attributed to coronavirus
in the early phase of the epidemic in
China.

Scene 3. Impact of social networks on the evolution of disease

The SIR model assumes the chance of encountering any individual in the
population is equally likely. However, our social organizations are based on
clusters of individuals that we see frequently, such as family members and work
colleagues, and those we see rarely, such as distant relatives or strangers. The
details of the social network have an impact on the spread of disease.

Exponential and power-law growth

Consider the following data from the World Health Organization (WHO)
representing coronavirus related mortality in China during the early days of the
epidemic. The data show rapid growth in the number of coronavirus related
deaths over a 25 day period (see Figure 3). The SIR model predicts exponential
growth of infectious disease in time. It turns out the data in Figure 3 does not
show exponential growth. It is best described as a power-law growth.

Six degrees of separation and small world networks

The network of social contacts assumed by the SIR model fails to reflect
the diverse structure underlying social networks. In contrast, small-world net-
works can give rise to power-law growth reflected in the initial spread of the
coronavirus epidemic of 2019.
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Figure 4: A social network of 114 indi-
viduals (red dots) forming 7 clusters.
The distance between dots represents
social distance.(Left) All clusters are
connected and every individual is
linked to every other individual. (Right)
Clusters are disconnected and there
is no longer connectivity between all
individuals.

Grouping individuals into pods can limit the spread of disease and prevent
epidemics. The hyperconnection of individuals created by frequent and distant
travel facilitated the coronavirus pandemic. Limiting travel and forming pods
can prevent the onset of a pandemic (see Figure 4).

Within the population there are small communities, expressed by four
quadrants. Each community harbors an infected individual. Over time
the infection spreads to reach every individual. The kaleidoscopic vision
expresses the overwhelming feeling of disorientation and confusion
at the onset of an epidemic. In this scene, the reproduction number
R0 is greater than one. The rate of infection is greater than the rate of
recovery, leading to the onset of the epidemic.


