
Mathematical Methods through Dance

Extrema

Kinesthetic Expressions of the Beauty and Utility of Math



1 Learn more at
http://sites.bu.edu/straub/mathematical-
methods-for-molecular-science/
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Figure 2: A linear equation defines the
distance traveled in a given time when
moving at constant speed.

Scene 1. Expressing equations and the forms of a line

A function is a mathematical equation that translates one variable, x, into
another y. We can plot the function y(x) for varying values of x using the
cartesian coordinate system. The measure of x is plotted on the horizontal
x-axis (the abscissa) and the measure y(x) is plotted on the vertical y-axis (the
ordinate).1

René Descartes and the discovery of linear functions

The equation for a line y(x) = mx + b defines the set of all points x that fall
on the line y(x) (see Figure 1). The set of all ordered pairs (x, y) are plotted
on the xy-plane using cartesian coordinates. Cartesian coordinates are named
for the French philosopher and mathematician René Descartes(1596-1650) who
pioneered the use equations to define geometric shapes like our line. As a plot
can be worth a thousand words, an equation can be worth a thousand plots.
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Figure 1: Like the horizontal x-axis and
vertical y-axis, the red line of slope 2
extends from minus infinity (−∞) to
infinity (∞).

Galileo Galilei, inertia, uniform motion, and the equation of a line

Objects at rest tend to stay at rest. Objects in motion tend to stay in motion,
traveling in a straight line at constant speed unless acted upon by a force. This
is the property of inertia that was first appreciated by the Italian astronomer,
physicist and engineer Galileo Galilei (1564-1642) in his studies of motion. A
linear equation defines the distance traveled in a given time when moving at
constant speed. The greater the speed, the greater the slope and the farther the
distance traveled in a given time (see Figure 2).

Dancers representing the x and y axes move from the origin towards
infinity. The y-axis is distance, the x-axis is time, and the slope is speed.
Points initially at the origin extend to form a line. As the points collapse
on the axes, they are herded toward the origin before moving onto the
plane to form a line of greater slope and faster speed. Again the points
are herded by the axes before being rearranged to form the smallest
slope and slowest speed.
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Figure 4: The amplitude of the oscilla-
tions of the wave slowly diminish in
time and then all but disappear.

Scene 2. Oscillating waves and an undulating line

The world is full of oscillating waves. Waves in water. Waves of sound. Waves of
light. Waves of vibration of atoms and molecules. It is a miracle that all of these
varied waves can be represented mathematically as a simple oscillating function
known as the sine wave.

Two thousand years of sine waves

The sine function oscillates up and down. The wave never grows larger in y
than +1 or smaller than −1. The wave is periodic, repeating every 2π units of x
over and over again to infinity (see Figure 3). The sine function was unknown to
the Greek geometer Euclid (circa 300 BCE). It was first tabulated by Hipparchus of
Nicaea (180 – 125 BCE).
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Figure 3: The sine function oscillates
in the vertical y-direction between +1
and −1 as x varies with an infinity of
maxima, minima, and zeros.

Oscillations that do not last forever

While the sine wave oscillates forever, the amplitude of water waves and
sound waves diminish in time. We can model a diminishing wave by multi-
plying a function that oscillates by a function that grows smaller. The result
is a compound function (see Figure 4). An oscillating function (gray) multiplied
by a decreasing function (blue) results in a compound function with a damped
oscillation (red). Rather than oscillating forever, the amplitude of the damped
wave grows smaller and smaller until the oscillations disappear.

Dancers form an oscillating wave, assuming the roles of maximum,
minimum, zero, or thing-in-between. As the wave oscillates, maxima
decrease, minima increase, and zeros stay in place. For an instant, they
pass through the x-axis forming a line before assuming the form of the
original wave – upside down. The oscillation continues as the points
pass through the x-axis to reform the original wave. Finally, the oscilla-
tion is repeated with a twist. The amplitude of the oscillation diminishes
in time and finally ends with every point a zero.



x

y

(r, θ)

θ

r

x

y

Figure 5: Any point on the infinite
plane can be represented as (x, y) in
cartesian coordinates or (r, θ) in polar
coordinates.

Scene 3. Expressing the form of an undulating wave

A variety of coordinate systems may be used to represent and visualize math-
ematical functions. Transforming between coordinate systems can lead to a
dramatic transformation of the shape of the function and provide insight into
the function’s underlying symmetries.

Newton reimagines Descartes’s xy-plane

The x and y axes of the cartesian coordinates have a “‘square symmetry.”
They are poorly suited for drawing round functions. Fortunately, there is a
coordinate system in which round functions are easily expressed. It is known as
plane polar coordinates and was discovered by British physicist, mathematician,
astronomer and theologian Isaac Newton (1642-1727). In plane polar coordinates.
a point is defined as the ordered pair (r, θ). r is the radial distance from the
origin. θ (pronounced thay-tah) is the angle of counter-clockwise from the x-axis
to the line connecting the point to the origin (see Figure 5).

Two views of an oscillating wave

In cartesian coordinates, the sine function appears as an undulating wave.
The value of y = sin(θ) oscillates between +1 and −1 as x = θ increases. In
polar coordinates, the undulating sine wave appears as a rotation around a unit
circle having r = 1 where y = sin(θ). As the angle θ increases, the magnitude of
the wave oscillates between +1 and −1 (see Figure 6).
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Figure 6: The sine wave oscillates up
and down as it travels left and right
in cartesian coordinates (right) or
rotates about the unit circle in polar
coordinates (left).

Dancers again form an oscillating wave holding their positions in x
while oscillating in y. After one period each point returns to its original
position and the oscillating dance repeats. After several oscillations,
the points leave the square cartesian coordinates to reform the wave in
circular polar coordinates. The oscillations continue as a rotation around
a circle. After several oscillation-rotations, the points return to cartesian
coordinates to reform the familiar undulating wave.


