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The antibacterial peptide microcin J25 (MccJ2Bhibits bacte- A . * vers B Thibiion of
rial transcription by binding within, and obstructing, the nucleotide- : rsdivd
uptake channel of bacterial RNA polymerdséiccJ25 is produced So20 21oy0 2ioyc =100
by Escherichia colistrains that harbor a plasmid-borne antibiotic- E Moos 14
synthesis and antibiotic-export cassette, consisting of a gene for © 0.107 / Cm
MccJ25 precursor (a 58-residue peptide containing a 37-residue 000 i Neomtanal! (MBC; mg/ml)

21cyc >>1

N-terminal pro-sequence), two genes for factors that process MccJ25 8 0 12 s 16 1 oz e »T
. retention time (min) Meedes 001

precursor into MccJ25, and one gene for export of McdJ25. - 1 MecJ25 is not a 21resid . RP-H \ysis (dashed

: _di . : : lgure 1. CC. IS not a -resiaue cycle. - F”Lﬂay5|s ashe
Publlshe.d covalent. and thre? dimensional structures |nd|(;ate that"ne’ 21¢yc: dotted line, MccJ25: solid line, both 21cyc and MccJ25). (b)
Mccl25is a 21-reS|d_ue cy(_,\‘?e. Here, we ShOW_ that the published  |nnibition of transcription (IGo from in vitro transcription assays with.
covalent and three-dimensional struct@résire incorrect, and that  coli RNA polymerase; methods as in ref 3). (c) Inhibition of bacterial growth
MccJ25 in fact is a 21-residue “lariat protoknot”, consisting of an (MBC from minimum-bacteriocidal-concentration assays \gttoli strain
8-residue cyclic segment followed by a 13-residue linear segment PH5¢; methods as in ref 3).
that loops back and threads through the cyclic segment.
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The results in Figure 1 indicate that a 21-residue cycle (mie) a1HN (NcAcs) -8 - jsog
. . . « g W G1 HN (CBCACoNH) @ - vauf
syn.theS|zed according to the _publlshed structure (21§y(_$) wlss avor vor omonce | @9 1743
distinct from natural MccJ25peing chromatographically distinct - vech g% Gic® veoP gec! eech

(different retention time in RP-HPLC), biochemically distinct B
(inactive in inhibiting transcription), and biologically distinct IGTG?_M_G‘_HE_W Py
(inactive in inhibiting bacterial growth). We conclude that MccJ25 _J
is not a 21-residue cycle.

The results in Figure 2 indicate that 21cyc and MccJ25 have
identical molecular masses (Figure 2a) but different MS/MS

fragmentation patterns (Figure 2b), indicating that 21cyc and l_ﬂ l‘l
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MccJ25 are isomeric. For MccJ25, MS/MS yields no single- "

cleavage fragments for residues-8° (suggesting that residues

B E
Gig T:kib ;|i15 le_:o Gz MccJ25
1-8 are part of a cyclic structure), but yields an unambiguous series |z L
of single-cleavage fragments for residues2d (suggesting that ~ Figure 2. MccJ25 is a 21-residue lariat. (a) ESI-MS analysis. (b) ESI-

residues 9-21 are not part of a cyclic structure) (Figure 2b, bottom). (")"nsef 'V(':i gc:g’siztA:gsr%gurgeTss f(%rofj%’frgj,s)‘f"(E)O"S‘t?i‘;“tr’,'ﬁ) tcsle?r‘(’)ﬁ’e{h"r"gg_

The MS/MS results are consistent with a “lariat” structure, dimensional HNCACB and three-dimensional CBCAcoNH spéttod
consisting of an 8-residue cyclic segment--with a backbaiee- MccJ25 showing Gly1-MWGlus-C’ and Gly1-HY/GIus-C’ cross-peaks due
chain amide linkage between Glyl and Glu8--followed by a 13- to coherence transfer across the Glyl-backbone/Glug-side-chain amide
residue linear segment. Triple-resonance NMR experirkents linkage.
directly confirm the presence of a backbersde-chain amide
linkage between Glyl and Glu8 and indicate that the linkage has a
trans conformation (through-bond coherence transfer between
backbone nitrogen atom of Glyl and side-chaiha@id C' atoms
of Glu8; strong NOESY cross-peak between Gly' &#hd each
Glu8 H proton; Figure 2c). We conclude that MccJ25 is a 21-
residue lariat.

Figure 3 shows the solution three-dimensional structure of
MccJ25 determined in methanol by triple-resonance NWRIn
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formation of a “protoknot® (also known as an “entanglemeHt9)
(Figure 3a-c). The protoknot has a linking number of =k —1
(conventions for chain topology as in ref 16). The four C-terminal
residues (residues 1) are in contact with, and encircled by,
the cycle, and a short antiparallgisheet is formed comprising
C-terminal residues (residues-190; 52) and residues of the cycle
(residues 6-7; 41)] (Figure 3a-c). The connector between the four
C-terminal residues and the cycle contains a chain reversal (residues
. . ) ._.11-14), the backbone conformation of which is less well defined
the three-dimensional structure, the linear segment of the lariat . . . .
(residues 9-21) loops back, penetrates, and threads through the and possnbly_dynamlcal!y d|sor<_jered (Figure 3a,b). We conclude
cycle of the lariat, as a thread through a needle eye, resulting inthat MccJ25 is a 21-residue lariat proto_knot. L .
' ' Phel9 and Tyr20 bracket the cycle, with the aromatic side-chain
t Rutgers University. of Phel9 being located on one face of the cycle, and the aromatic
#Scripps Research Institute. side-chain of Tyr20 being located on the other face of the cycle
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Restraining Constraints Constraint Violations

total: 198 distance violations, 0.5 A: 0
distance, i=j: 26 r.m.s. distance violation: 0.03 A
distance, li-jl = 1: 53 dihedral violations, =5 0
distance, 1 < li-jl 5 5: 40 r.m.s. dihedral violation: 0.17%
distance, li-jl = 5: &0

dihedral; 13 R.m.s.d.

hydrogen bond: & backbone atoms: 0.5 A
constraints/residus: 9.4 all heavy atoms: 1.0 A

Figure 3. MccJ25 is a 21-residue lariat protoknot. (a) Stereodiagram of
seven superimposed structures of MccJ25 determined by NNARDb)
Representative structure of MccJ25. (c) Two orthogonal views of threading
of the C-terminal segment (residues—1AL in pink; side-chains of Phel9
and Tyr20 in red) through the cycle (residues8lin cyan; backbone
side-chain bond in blue). (d) NMR structurquality statistics.

(Figure 3c). We propose that steric constraints imposed by the side-

chain amide linkage provide an effective means of conferring
defined, stable three-dimensional structure to short peptides.
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