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Abstract— We consider wireless sensor networks with multiple
gateways and multiple classes of traffic carrying data generated by
different sensory inputs. The objective is to devise joint routing,
power control and transmission scheduling policies in order to
gather data in the most efficient manner while respecting the needs
of different sensing tasks (fairness). We formulate the problem as
maximizing the utility of transmissions subject to explicit fairness
constraints. We propose an efficient decomposition algorithm
drawing upon large-scale decomposition ideas in mathematical
programming. We show that our algorithm terminates in a finite
number of iterations and produces a policy that is asymptotically
optimal at low transmission power levels. Moreover, numerical
results establish that this policy is near-optimal even at high
power levels. We also demonstrate how to adapt our algorithm to
accommodate energy constraints and node failures. The approach
we introduce can efficiently determine near-optimal transmission
policies for dramatically larger problem instances than an alter-
native enumeration approach.

I. INTRODUCTION

Wireless sensor networks consist of a potentially large num-
ber of typically small devices – the sensor nodes or sensors –
used to monitor some physical process or system [1]. Wireless
sensors have limited computational capabilities, communicate
wirelessly, and often operate in noisy and potentially adverse
environments. Furthermore, as sensors are usually powered
by limited and non-replenishable energy resources, energy
preservation is also regarded as one of the keys to unlock the
full potential of sensor networks. As a result, efficient resource
allocation and aggressive optimization of network operations
is not merely a desirable luxury but rather an indispensable
necessity.

In this paper, we view the sensor network as a network
that collects data to relay them to some other processing or
communication infrastructure. To that end, it utilizes a host
of gateways whose role is information collection (and fusion)

from the sensor nodes [2–4]. A plethora of applications fit
this paradigm, including process control, industrial automation,
condition monitoring in manufacturing systems, indoor location
detection, environmental monitoring, military, and homeland
defense [5–7].

Sensor network architectures create several new and inter-
esting challenges. For instance, traditional carrier sensing and
random access strategies, as used in the IEEE 802.11 protocol,
are often seen as inefficient and energy wasteful in sensor
network applications [5]. Furthermore, it is unclear what is the
transmission power at which sensors should communicate and
to which node they should forward their data. For instance, is it
preferable to communicate directly with the gateways, possibly
using high transmission power, or via other sensors at a lower
power? Another problem is how to differentiate between data
generated by different sensing tasks so that more sensitive data
is given higher priority. Finally, the question of how to optimize
network operations while guaranteeing a minimum life-time for
the network is another problem of significant theoretical and
practical importance [4].

Several works have addressed subsets of these problems,
showing, for instance, the crucial role played by multi-hop rout-
ing and power control [8–14]. However, as mentioned in [4],
to optimize the use of scarce resources, future sensor network
architectures must address all these challenges (MAC, routing,
QoS, and power control) using an integrated approach. In an
earlier attempt to address this joint optimization problem, the
work in [8] develops a computational approach for deriving an
optimal policy for sensor transmissions. This approach amounts
to an enumeration of all the possible transmission strategies.
Unfortunately, this enumeration requires a formidable amount
of computations and is applicable in practice only to networks
of at most 5 or 6 nodes, which is admittedly very small.



In this paper, we address the joint optimization problem
of [8] and propose a new and much more efficient computa-
tional approach to solve it. Specifically, we consider the regime
of low transmission powers (i.e., 100 mW or less), in which
most sensor networks operate. In this regime, the transmission
rate of sensors scales linearly with the transmission power.
Based on this assumption, and building on some preliminary
work in [15], we present a new methodology to derive the opti-
mal transmission policy for the sensors. Our approach employs
a column-generation method that consists of a master problem
and a subproblem. Apart from establishing the convergence
of the proposed algorithm, a key contribution is the efficient
solution of the subproblem; we establish that it can be solved
in polynomial-time. Our methodology dramatically improves
the size of problems that can be solved. Compared to very
small instances solvable by enumeration [8], we are able to
solve instances with 50 or so nodes in less than a minute.
Furthermore, although our derived policy is provably optimal
only in the regime of very low power levels, in this paper we
show that it can easily be adapted to the regime where the
linear approximation is not in effect. In particular, we present
numerical results that show that our policy is nearly-optimal
even at very high transmission powers.

The optimization problem, as formulated in this paper, is
a utility maximization problem that can accommodate lifetime
constraints, fairness constraints, and potential interdependencies
among sensor objectives. Therefore, throughput maximiza-
tion [8, 11] and maximization of separable utility functions [14]
are special cases of the more general problem considered in our
paper.

As part of the derivation of our solution, we show that the
optimal policy involves time-sharing among several transmis-
sion schemes. We also show that in the case of a node failure
(which is a likely event in sensor network environments), we do
not have to re-compute the transmission schemes from scratch.
Instead, we introduce an optimization technique which reuses
(after appropriate modifications) the previously obtained trans-
mission schemes an an input to the algorithm, thus allowing
the algorithm to converge much faster. Numerical results show
that this optimization technique can speed-up the convergence
rate of the algorithm by close to two orders of magnitude.

The rest of the paper is organized as follows. In Section II we
present the system model and formulate the utility maximiza-
tion problem. Section III discusses the (undesirable) implica-
tions of not enforcing fairness constraints. Section IV presents
our decomposition algorithm and establishes its convergence. In
Section V we discuss how to solve the subproblem efficiently
(in polynomial-time). In Section VI we use the policy structure
obtained from the decomposition algorithm and discuss how
to obtain a policy when the linear approximation of rates is
not in effect. Optimization over power limits is considered
in Section VII. In Section VIII we discuss how to trade-off
achieved utility vs. desirable network lifetime. We deal with
node failures in Section IX. Some illustrative numerical results
are presented in Section X. Concluding remarks are in Section

XI.

Notational Conventions: Throughout the paper all vectors
are assumed to be column vectors. We use lower case boldface
letters to denote vectors and for economy of space we write
x = (x1, . . . , xR) for the column vector x. x′ denotes the
transpose of x and 0 the vector of all zeroes. We use upper
case boldface letters to denote matrices. We use script letters
to define sets and denote by Conv(A ) the convex hull of a
set A , and by |A | its cardinality. We denote by 1A (x) the
indicator function of x ∈ A . When A is described by a simple
condition, say x ≥ 0, we simply write 1(x ≥ 0).

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a Wireless Sensor NETwork (WSNET) with
N sensor nodes each of which can receive, transmit and
relay information with a single port/antenna that it carries.
We assume that sensor nodes do not multicast information,
so each transmission is from one node to another. Since they
carry a single antenna, nodes cannot receive and transmit
simultaneously. Furthermore, receiving nodes cannot receive
information from multiple nodes simultaneously. In addition
to the sensor nodes, the network uses M gateways which
receive information from the sensors and relay it to some
other networking or processing infrastructure. In our model,
gateways can only receive information. However, they are
allowed to receive data from multiple nodes simultaneously
(our model does not assume that gateways must be able to
receive multiple transmissions simultaneously; it just allows
to model this capability). Henceforth, we will refer to all
M+N sensor and gateway nodes alike as nodes of the WSNET.
Nodes 1, . . . , N will correspond to sensor nodes and nodes
N + 1, . . . , N +M to gateways.

Sensors in the WSNET collect different types of data
depending on the physical system or process they monitor
(e.g., temperature, pressure, levels of harmful agents, etc.) and
want to relay them to other (sensor or gateway) nodes. As a
result, the WSNET carries multiple types of traffic, differing in
information content and utility associated with their successful
transmission. We use the term traffic class to refer to types of
traffic with a particular origin and destination. Let K be the
total number of traffic classes. We denote by s(k) and d(k) the
source and destination of class k, for k = 1, . . . ,K.

We model the background noise in the WSNET as a single
source of additive, white and Gaussian noise, with power
spectral density η and bandwidth W . Let pijk denote the
power used by node i to transmit class k traffic to node j,
for i = 1, . . . , N +M , j = 1, . . . , N +M , k = 1, . . . ,K. We
will refer to such a transmission as the (i, j, k) transmission.
Let Gij be the channel gain between nodes i and j when i is
transmitting. When node i transmits class k traffic the received
power at node j is pijkGij . Sensor nodes have limited power
resources; we let p̄i denote the maximum power available at
node i for i = 1, . . . , N . Thus, for any i, j = 1, . . . ,M + N ,



k = 1, . . . ,K, it follows that pijk is upper bounded by

p̄ijk
4
=











0, if i = N + 1, . . . , N +M ,

or i = d(k), or i = j,

p̄i, otherwise,

(1)

where p̄ijk denotes the maximum power available for the
(i, j, k) transmission. The first branch of (1) is an immediate
consequence of the assumptions we made.

Consider an (i, j, k) transmission. The SINR, γijk, is

γijk =
pijkGij

ηW +
∑K
v=1

∑N+M
l=1,l 6=i

∑N+M
u=1 pluvGlj

. (2)

We use the Shannon capacity to determine the maximum rate
for an (i, j, k) transmission and assume that the sending node i
transmits with the maximum possible rate. Let rijk denote the
net flow rate for an (i, j, k) or a (j, i, k) transmission, i.e.,

rijk = W log2(1 + γijk) −W log2(1 + γjik). (3)

When an (i, j, k) transmission is in progress, and under the
transmission restrictions adopted, it follows that γijk ≥ 0,
γuiv = 0 for all u, v, and rijk ≥ 0. Otherwise, when a
(j, i, k) transmission is in progress, γjik ≥ 0, γujv = 0 for
all u, v, and rijk ≤ 0. Clearly, rijk = −rjik. We write r for
the (N + M)2K-dimensional vector of rijk’s and denote by
rijk its component that corresponds to the net flow rate for an
(i, j, k) or a (j, i, k) transmission. Similarly, we write p for the
(N +M)2K-dimensional vector of powers and denote by pijk
its component corresponding to the (i, j, k) transmission.

In this work, we first concentrate on sensor networks in
which power levels are on the order of mWatt or even lower
and the transmission rates in (3) can be well approximated by a
linear function of transmitting powers. A linear approximation
is also used in the literature, as long as nodes do not transmit
at high rates [10, 12, 13]. In particular, taking the Taylor series
expansion of (3) around p = 0 and maintaining up to first order
terms we obtain

rijk =
pijkGij
η ln 2

−
pjikGji
η ln 2

, ∀i, j, k. (4)

In matrix notation we have r = Hp, where the matrix H

is appropriately defined. As outlined in the Introduction, we
use this linear approximation in devising the structure of the
optimal transmission policy. Later on in the paper, we abandon
the linear approximation and derive policies using the exact
form of transmission rates (cf. (3)).

The transmission restrictions introduced thus far translate
into the following set of conditions

pijkpuiv = 0, ∀i, j, k, u, v,
pijkpiuv = 0, ∀(j, k) 6= (u, v),
pijkpujv = 0, ∀(i, k) 6= (u, v), j ≤ N,
0 ≤ pijk ≤ p̄ijk, ∀i, j, k.

These conditions respectively state that at any point in time (i)
nodes cannot transmit and receive simultaneously, (ii) can only
transmit traffic of a single class to a single node and, (iii) except

for gateways, nodes can receive only a single traffic class from
a single node. We denote by P the set of all p ∈ R

(N+M)2K

that satisfy the conditions above. We call valid a transmission
scheme with p ∈ P . Clearly P is bounded. We also denote
R = {r | r = Hp, p ∈ P}.

The next lemma, whose proof is omitted due to space
limitations, establishes some useful properties of P , R, and
their convex hulls.

Lemma II.1 (i) Conv(P) and Conv(R) are polytopes (i.e.,
bounded polyhedra). (ii) Conv(R) = {r | r = Hp, p ∈
Conv(P)}. (iii) For any extreme point r ∈ Conv(R), there
exists an extreme point p ∈ Conv(P) such that r = Hp.

Suppose next that there are totally L valid transmission
schemes. To every valid transmission scheme n corresponds
a rate vector in R, say rn. Let us consider the information
flow in the network in a potentially large but finite time interval.
Normalize the length of this interval to 1. At different times, the
network may employ different transmission schemes, e.g., in
order to implement multi-hop routing. Suppose that during this
time interval, the network uses the L selected schemes only and
spends a fraction of time αn transmitting according to scheme
n = 1, . . . , L. Then the total amount of information delivered
during this interval is characterized by r =

∑L
n=1 αnr

n. This
is also the long-term average transmission rate vector.

Over the long run, the WSNET obeys flow conservation laws,
i.e., the traffic of each class should not accumulate in any node
other than its destination. Hence,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k), ∀k,

that is class k traffic flow into i equals class k traffic outflow
from node i.

We seek to maximize the overall utility of transmissions in
the WSNET, expressed as a function F (r) of the long-term
average transmission rate vector r. We assume that F (r) is
continuous, concave, and bounded in Conv(R). Note that by
considering system utility, we cover a large variety of objectives
studied in the literature, including weighted throughput which
is a linear function of r. Moreover, F (r) needs not be a sum
of individual utilities associated with each traffic class. Rather,
it can represent quite general performance metrics of interest
that model interdependent behavior of the various sensors, e.g.,
when, for instance, clusters of sensors collaborate towards a
common goal.

We are interested in utility maximization subject to fairness
constraints. We model fairness considerations as a set of R
linear inequalities Ar ≤ b, where A ∈ R

R×(N+M)2K and
b ∈ R

(N+M)2K are given. For example, these constraints can
impose equality among all transmission rates. Let S be the set
of rates that satisfy fairness constraints and flow conservation,
i.e.,

S
4
=

{

r | Ar ≤ b,
∑N+M
j=1 rijk = 0,



∀i 6= s(k), d(k),∀k

}

(5)

and to exclude trivial cases assume Conv(R) ∩ S 6= ∅.
We can formulate the utility optimization problem as

max F (r)
s.t. r ∈ Conv(R) ∩ S .

An important observation is that we seek to maximize utility
over the convex hull of R rather than R itself (as for example
in earlier work, e.g., [9]). This is bound to yield higher system
utility and as we have seen the WSNET operates by time-
sharing among different transmission schemes.

Let r1, . . . , rL denote the extreme points of Conv(R). Any
r ∈ Conv(R) can be expressed as a convex combination of
those. Incorporating the definition of S and writing it as a
minimization problem, the problem above is equivalent to

min −F (r)

s.t. r −
∑L
n=1 αnr

n = 0,
∑L
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar ≤ b,
αn ≥ 0, n = 1, . . . , L.

(6)

Note that r1, . . . , rL are also points of R, thus, there exist
corresponding valid transmission schemes (i.e., points in P)
p1, . . . ,pL with rn = Hpn for all n = 1, . . . , L. The problem
above maximizes a concave function over a polyhedron. It
can be solved using, for example, the conditional gradient
method [16]. If F (r) is linear, then it is a linear programming
problem for which very efficient algorithms exist.

Of course, Conv(R) can have a humongous number of
extreme points and this is the key challenge in solving (6).
A simpler version of (6), maximizing throughput and with
no fairness constraints, was considered in [8] and proposed
to be solved by simply enumerating all extreme points and
including them in the formulation (6). As indicated in [8] and
clearly illustrated in Section X, this approach can quickly run
out of steam (that is, memory) in very small networks. As
we will see in Section IV, there are more efficient ways to
solve (6). The decomposition algorithm we propose does not
need to know r1, . . . , rL (or equivalently, the corresponding
transmission schemes) in advance. It generates them as needed
and identifies the ones that should be used to achieve optimality.

III. THE IMPORTANCE OF BEING FAIR

Before we proceed with our agenda we demonstrate why
it is important to explicitly include fairness constraints in the
proposed framework. To this end, we consider a special case.

Consider a WSNET with a single gateway where all infor-
mation transmitted by the sensor nodes is intended for this
gateway. The objective is to maximize total throughput. This
problem can be casted in the general framework of Section II.
More specifically, M = 1 and there are N sensor nodes each
of which transmits traffic intended for the gateway. Thus, there
are N traffic classes and we let class i be associated with sensor

node i for i = 1, . . . , N . Let us adopt the notation of Section II
and suppose no fairness constraints are enforced. The net flow
out of node i equals

∑N+1
j=1 riji, thus, the total throughput

is given by
∑N
i=1

∑N+1
j=1 riji. The throughput maximization

problem becomes (cf. (6)):

max
∑N
i=1

∑N+1
j=1 riji

s.t. r ∈ Conv(R),
∑N+1
j=1 rijk = 0, ∀i 6= k,N + 1,∀k.

(7)

Theorem III.1 Optimality for problem (7) can be achieved
without time division. Furthermore, it is optimal for every node
to transmit directly to the gateway.

Proof: Let us first relax the flow conservation constraints
and consider the following problem

max
∑N
i=1

∑N+1
j=1 riji

s.t. r ∈ Conv(R).
(8)

The objective function is linear and the feasible set is a
polytope, hence, there always exists an optimal solution r∗

which is an extreme point of Conv(R). r∗ is also in R, thus, no
time division is needed to achieve optimality. Since there is no
time-sharing and the transmission scheme corresponding to r∗

has to be valid, it follows that the optimal strategy for problem
(8) is for every node to send directly to the gateway. For such
an r∗ conservation constraints are satisfied and r∗ solves (7).

Theorem III.1 states that the throughput is maximized when
all nodes transmit directly to the gateway at the maximum rate
allowed by the Shannon capacity. This implies that nodes close
to the gateway (i.e., with high channel gains) have a significant
advantage over nodes that happen to be further away. This is a
rather unfair operation of the WSNET and is due to the wireless
medium rather than nodes’ actual needs. In WSNETs collecting
data, for example, it can introduce a “geographic” bias into the
data collection process. One way to mitigate it is to explicitly
introduce fairness constraints into the problem formulation. The
resulting strategy could use multi-hop routing (i.e., where nodes
far away use other nodes as relays to reach the gateway) to
achieve a more balanced operation.

IV. A DECOMPOSITION METHOD

In this section we propose a decomposition method for
solving (6). For linear utilities the method is a column gen-
eration method for solving large-scale linear programming
problems [17]. To handle the nonlinear objective we present
it as a cutting plane method for the dual problem.

To develop the decomposition approach consider the problem
(6), to which we will be referring as the master problem.
Let (λ, µ,σ,ν) be the dual vectors, then the dual function
G(λ, µ,ν,σ) is given by

G(λ, µ,ν,σ) = inf
α≥0,r

{

− F (r) + λ′(r −
∑

n αnr
n)

+ µ(
∑

n αn − 1) + σ′(Ar − b)



+
∑

k

∑

i6=s(k),d(k) νik
∑

j rijk

}

= G1(λ,ν,σ) +G2(λ, µ) − µ− σ′b,

where

G1(λ,ν,σ) = inf
r

{

− F (r) + (λ′ + σ′A)r

+
∑

k

∑

i6=s(k),d(k) νik
∑

j rijk

}

,

G2(λ, µ) = inf
α≥0

∑

n(µ− λ′rn)αn.

Let
D1 = {(λ,ν,σ) | G1(λ,ν,σ) > −∞}
D2 = {(λ, µ) | G2(λ, µ) > −∞}

and note that

D2 = {(λ, µ) | µ− λ′rn ≥ 0, n = 1, . . . , L},

G2(λ, µ) =

{

0, if (λ, µ) ∈ D2,

−∞, otherwise,

and D1 is independent of r1, . . . , rL. Then the dual of the
master problem (6) is

max G1(λ,ν,σ) − µ− σ′b

s.t. (λ,ν,σ) ∈ D1,
µ− λ′rn ≥ 0, n = 1, . . . , L,
σ ≥ 0.

(9)

Since the master problem is a convex optimization problem
there is no duality gap [16].

Suppose now we have an extreme point of Conv(R), say r1,
which belongs to S . Let m ∈ {1, . . . , L}, and consider

min −F (r)
s.t. r −

∑m
n=1 αnr

n = 0,
∑m
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar ≤ b,
αn ≥ 0, n = 1, . . . ,m,

(10)

which we call the restricted master problem at the mth iteration.
Suppose we solve this problem to optimality. The dual of
this problem is identical to (9) with the exception that only
constraints µ − λ′rn ≥ 0, for n = 1, . . . ,m, appear. We refer
to this latter problem as the restricted dual problem at the mth
iteration. Let (r(m),α(m);λ(m), µ(m),ν(m),σ(m)) be an opti-
mal primal-dual pair for the restricted master problem. The dual
variables are dual feasible and satisfy (λ(m),ν(m),σ(m)) ∈
D1, σ(m) ≥ 0, and µ(m) −λ(m)′rn ≥ 0, for all n = 1, . . . ,m.
If it happens that µ(m) − λ(m)′rn ≥ 0 for all n = 1, . . . , L
then we have a primal-dual pair for (6) and we are done.
Otherwise, we need to generate an extreme point, say rm+1,
of Conv(R) that violates dual feasibility, solve the m + 1st
restricted master problem, and continue iterating in this fashion.
We next examine how to produce “cuts” in the dual, i.e., how
to generate at every step an extreme point that violates dual
feasibility.

A. The subproblem

At the mth iteration we seek an extreme point rm+1 of
Conv(R) satisfying µ(m) − λ(m)′rm+1 < 0. As we argued
earlier, the extreme points of Conv(R) are also in R. So we
might as well generate a point r that minimizes µ(m) −λ(m)′r

over R. This suggests the subproblem

max λ′r

s.t. r = Hp,
p ∈ P,

(11)

with cost vector λ = λ(m).
Before we proceed showing that the proposed decompo-

sition algorithm converges we establish some properties of
(11). λ ∈ R

(M+N)2K is the dual vector corresponding to
the first constraint of (6). Denote by λijk the element of λ

corresponding to rijk and let πijk = λijk − λjik. Then

λ′Hp =
∑K
k=1

∑N+M
i=1

∑N+M
j=1 λijk

pijkGij−pjikGji

η ln 2

=
∑K
k=1

∑N+M
i=1

∑N+M
j=1

πijkGij

η ln 2 pijk,

hence the subproblem is equivalent to

max
∑K
k=1

∑N+M
i=1

∑N+M
j=1

πijkGij

η ln 2 pijk
s.t. p ∈ P.

(12)

Next we reduce it to an integer linear programming problem
(ILP).

Proposition IV.1 Problem (12) is equivalent to the ILP:

max
∑

(i,j,k)|ψijk>0 ψijksijk

s.t.
N+M
∑

j=1

K
∑

k=1

sijk +
N+M
∑

j=1

K
∑

k=1

sjik ≤ 1, ∀i ≤ N,

0 ≤ sijk ≤ Iijk,
sijk ∈ {0, 1},

(13)

where ψijk =
πijkp̄ijkGij

η ln 2 and Iijk = 1(ψijk > 0).

Proof: Note that there always exists an optimal solution
p∗ to the problem (12) satisfying the conditions

p∗ijk ∈ {0, p̄ijk}, if ψijk > 0,

p∗ijk = 0, otherwise.

Letting

sijk =

{

1, if pijk = p̄ijk > 0,

0, otherwise,

we obtain that the problem (12) is equivalent to:

max
∑

(i,j,k)|ψijk>0 ψijksijk
s.t. sijk + suiv ≤ 1, ∀i, j, k, u, v,

sijk + siuv ≤ 1, ∀(j, k) 6= (u, v),
sijk + sujv ≤ 1, ∀(i, k) 6= (u, v), j ≤ n,
0 ≤ sijk ≤ Iijk,
sijk ∈ {0, 1}.

(14)



In particular, s∗ is an optimal solution of the above if and only
if p∗ satisfying

p∗ijk =

{

p̄ijk, if sijk = 1,

0, otherwise,
(15)

is an optimal solution of (12). Writing (14) in a more compact
way we obtain (13).

We summarize the discussion on the subproblem as follows:
to compute an optimal solution r∗ of (11) we first solve (13)
to obtain an optimal solution s∗, then compute p∗ as in (15),
and finally compute r∗ = Hp∗. It is evident from the proof of
Proposition IV.1 that s∗ prescribes how to operate the network
under the transmission scheme p∗: (i, j, k) transmissions occur
only if sijk = 1 and if so at maximum power.

B. The decomposition algorithm

We now have all the ingredients to present the decomposition
algorithm and show its convergence. The algorithm is in Fig. 1
and the next theorem establishes its convergence. In the sequel,
we assume that (6) is feasible; we will discuss at the end of
this Section how this assumption can be relaxed.

1) Initialization: Let r1 ∈ Conv(R) ∩ S and set m = 1.
2) m-th iteration:

a) Solve the restricted master problem (10) with
r1, . . . , rm to obtain an optimal primal-dual pair
(r(m),α(m);λ(m), µ(m),ν(m),σ(m)).

b) Solve the subproblem (11) with cost vector λ(m) as
outlined in Section IV-A. Let rm+1 be the optimal
solution obtained.

c) If µ(m) − λ(m)′rm+1 ≥ 0 stop; (r(m),α(m)) is an
optimal solution of (6). Otherwise, set m := m+ 1
and go to step 2a.

Fig. 1. The decomposition algorithm.

Theorem IV.2 Assume that (6) is feasible. Then the decompo-
sition algorithm of Fig. 1 terminates with an optimal solution
of (6) in a finite number of iterations.

Proof: Recall that at the m-th iteration the subproblem
minimizes µ(m) − λ(m)′r over r ∈ R. Thus, if µ(m) −
λ(m)′rm+1 ≥ 0 it follows that µ(m) − λ(m)′r ≥ 0 for
all r ∈ R. Since all extreme points of Conv(R) are in
R, the latter condition implies that µ(m) − λ(m)′rn ≥ 0
for all extreme points r1, . . . , rL of Conv(R). Therefore,
(r(m),α(m);λ(m), µ(m),ν(m),σ(m)) is an optimal primal-dual
pair for (6) and the algorithm terminates.

Next note that due to Proposition IV.1 and the resulting
structure of the subproblem solutions, at each iteration we
generate a transmission scheme in {p ∈ P | pijk ∈ {0, p̄ijk}}
which contains all extreme points of Conv(P). Let p1, . . . ,pm

the transmission schemes generated up to the m-th iteration

and suppose the algorithm does not terminate at the m-th
iteration. The next transmission scheme to be generated, pm+1,
is different from the ones generated earlier since they are
separated by a hyperplane. In particular, since µ(m), λ(m) are
feasible for the restricted dual problem at the m-th iteration we
have

µ(m) − λ(m)′Hpn ≥ 0, n = 1, . . . ,m,

µ(m) − λ(m)′Hpm+1 < 0.

Thus, at each iteration we generate a new point of the finite set
{p ∈ P | pijk ∈ {0, p̄ijk}}. Hence, the algorithm terminates
in a finite number of iterations.

C. Initialization

We conclude this section by outlining how to initialize
the algorithm of Fig. 1. We require an initial vector r1 ∈
Conv(R) ∩ S . In many cases of practical interest r1 = 0

would be feasible, which is the case when b ≥ 0. This includes
b = 0 which can be interpreted to mean that fairness is relative.
Arguably, this covers the majority of practical cases. If b 6= 0,
then it might still possible to reformulate the fairness constraints
so that b ≥ 0. Otherwise, some extra work needs to be done to
discover an initial feasible solution. To this end, consider the
following auxiliary master problem

min −
∑R
i=1 yi

s.t. r −
∑L
n=1 αnr

n = 0,
∑L
n=1 αn = 1,

∑N+M
j=1 rijk = 0, ∀i 6= s(k), d(k),∀k,

Ar + y = b,
αn ≥ 0, n = 1, . . . , L,

(16)

where we introduce the vector of auxiliary variables y. This
problem can be solved using a similar decomposition algorithm
as in Fig. 1. We start with m = 1, r1 = 0, and note that
r = 0, α1 = 1, y = b form a feasible solution. The dual
of (16) is almost identical to (9) with a modified definition of
G1(λ,ν,σ). The subproblem remains the same as before and
the decomposition approach applies. If the optimal solution of
(16) satisfies y ≥ 0 then we are done as we have a feasible
solution of (6) to initialize the algorithm in Fig. 1 (this could
involve time-sharing between several transmission schemes).
Otherwise, (6) is infeasible.

V. SOLVING THE SUBPROBLEM

The efficiency of the algorithm of Fig. 1 critically depends
on how efficiently we can solve the subproblem. As outlined
in Section IV-A, solving the subproblem amounts to solving
an ILP. ILPs are hard to solve (they are NP-complete); solvers
invariably use branch-and-bound methods which, depending on
the problem and its size, can take a long time. Fortunately,
our subproblem has enough of special structure that makes it
polynomially solvable. In this section, we establish that (13) is
equivalent to a maximum weighted matching problem, which is
polynomially solvable.



Let us define the following sets: A = {1, . . . , N} and
Bl = {Nl + 1, . . . , Nl +N} for l = 1, . . . ,M . Each element
of A corresponds to a sensor node of the WSNET and set
Bl corresponds to the gateway l of the WSNET. Let V =
A ∪ (∪Ml=1Bl) and consider the undirected graph G = (V ,E ),
where E is the complete set of edges between nodes in V .
With each edge (i, j) ∈ E we associate a weight wij such that

wij =































max
k=1,...,K

max{ψijk, ψjik}, ∀i, j ∈ A ,

max
k=1,...,K

max{ψi,N+l,k, 0}, ∀i ∈ A , j ∈ Bl,

max
k=1,...,K

max{ψj,N+l,k, 0}, ∀i ∈ Bl, j ∈ A ,

0, otherwise.

(17)

Note that wij = wji ≥ 0, ∀i, j. Also for any i, u, v, if u, v ∈ Bl

for some l, then wiu = wiv , that is, the weight of the link
between i and any node in Bl is the same. Let us also construct
a set K as follows: for each 1 ≤ i ≤ N, 1 ≤ j ≤ N +M , we
select only one, if any, k satisfying the conditions

k =

{

argmaxt=1,...,K max{ψijt, ψjit}, if j ≤ N,

argmaxt=1,...,K max{ψijt, 0}, otherwise,

and ψijk > 0, and let (i, j, k) be an element of K .
The next theorem establishes that solving the subproblem

amounts to solving a maximum weighted matching for graph
G where edge weights are given in (17). We omit the proof
due to space limitations.

Theorem V.1 Suppose x∗ is an optimal solution to the maxi-
mum weighted matching problem

max
∑

(i,j)∈E
wijxij

s.t.
∑

j|(i,j)∈E
xij ≤ 1, ∀i

xij = xji, ∀i, j,
xii = 0, ∀i,
xij ∈ {0, 1}, ∀i, j.

(18)

Then, an optimal solution s∗ to the subproblem (13) satisfies

s∗ijk =



















1K (i, j, k)x∗ij , if 1 ≤ i, j ≤ N,

1K (i, j, k)
∑

v∈Bj−N
x∗iv, if 1 ≤ i ≤ N,

and j ≥ N + 1,

0, otherwise.

Remark : It should be noted that (18) is always feasible (x = 0

is a feasible solution), thus, it is always possible to obtain an
optimal solution of the subproblem as specified above.

The maximum weighted matching problem is a well studied
problem in graph theory. Many algorithms and heuristics for
different matching variants have been proposed and it has been
shown that (18) can be solved in O(|V |3) amount of time [18],
that is, polynomial in the size of the input. In our case, |V | =
(M + 1)N and it takes O(KN(N + M)) additional time to
calculate the weights and obtain s∗ from x∗, thus, subproblem’s
complexity is O(KN(N +M) + (M + 1)3N3).

VI. A TRANSMISSION POLICY WITHOUT THE LINEAR

APPROXIMATION

In this section we outline how to remove the linear ap-
proximation of transmission rates (cf. (4)) and obtain a policy
under the exact expression of (3). We should note that with
the exact rate function, Conv(R) becomes extremely difficult
to characterize, and makes problem (6) intractable. Earlier
attempts in the literature used either approximation techniques,
e.g., discretization, or restricted routing strategies [8, 9]. In this
work, we use linearization to obtain the structure of the policy
and then remove the linearization to devise a policy under the
exact expression (3) for transmission rates.

More specifically, we first solve (6) using the linear approx-
imation in (4) as outlined in Section IV and obtain a set of
transmission schemes under which the network will operate; let
r1, . . . , rD be the corresponding rates. Based on the discussion
in the previous sections, we know that for each transmission
vector rn (n = 1, . . . , D), rnijk > 0 implies that node i
transmits class k traffic to node j. Now letting each node
use the maximum available power if it transmits, the modified
transmission vector r̃n corresponding to rn is given by

r̃nijk = W log2(1 + γ̃nijk) −W log2(1 + γ̃njik),

where for any (i, j, k) and n = 1, . . . , D

γ̃nijk =
1(rnijk > 0)p̄ijkGij

ηW +
∑K
v=1

∑N+M
l=1,l 6=i

∑N+M
u=1 1(rnluv > 0)p̄luvGlj

.

Next we use the modified transmission vectors and solve the
following utility maximization problem

max F (r̃)

s.t. r̃ −
∑D
n=1 α̃nr̃

n = 0,
∑D
n=1 α̃n = 1,

∑N+M
j=1 r̃ijk = 0, ∀i 6= s(k), d(k),∀k,

Ar̃ ≤ b,
α̃n ≥ 0, n = 1, . . . , D,

(19)

with decision variables r̃ and α̃. The optimal solution provides
a transmission policy time-sharing among the schemes with
rates r̃1, . . . , r̃D. Note that we solve problem (19) without
further iterations of the decomposition method to add more
transmission schemes. That is, we adopt and fix the transmis-
sion schemes obtained under the linear approximation. It can
be seen that if b ≥ 0, then problem (19) is feasible if we add
0 to the allowable transmission schemes r̃1, . . . , r̃D. (This is
always possible if we set p̄ijk = 0 for all (i, j, k).) However,
feasibility in general is not guaranteed.

The line of development so far implies that the policy
obtained from (19) is asymptotically optimal as p approaches
0. As we will illustrate later on with numerical examples
the devised policy remains close to the optimal even when
p is far away from 0. To summarize, once we have a set of
transmission schemes obtained under our linear approximation
we can easily produce a policy for the original system under
the exact expressions for transmission rates. In the sequel, we



turn back to discuss some other interesting properties related
to problem (6).

VII. OPTIMIZATION OVER POWER LIMITS

So far we have assumed that the power limits p̄i of all
sensor nodes i = 1, . . . , N are fixed. As we will see higher
power limits lead to higher utility, but, of course, higher energy
consumption. As energy preservation is critical in WSNETs, it
becomes of interest to optimize the power limits used by the
sensor nodes to achieve a certain utility target. In this section
we discuss how this can be accomplished.

Let us view the utility maximization problem formulated
in Section II as parametrized by the vector of power limits,
denoted by p̄ = (p̄1, . . . , p̄N ). Consider

F̄ (p̄)
4
= max F (r)

s.t. r ∈ Conv(R(p̄)) ∩ S ,
(20)

where we write R(p̄) to explicitly denote the fact that the set
of transmission rate vectors depends on p̄. We denote by F (p̄)
the optimal value of the above. The first, and rather intuitive,
property we show is monotonicity.

Theorem VII.1 (Monotonicity) Suppose p̄1 and p̄2 are two
vectors of power limits. If p̄1 ≥ p̄2, then F̄ (p̄1) ≥ F̄ (p̄2).

Proof: Suppose we have two WSNETs A and B with no
difference other than the power limit vectors. Let p̄1 and p̄2

the power limit vectors in WSNETs A and B, respectively. As
p̄1 ≥ p̄2, A can implement the optimal transmission strategy
for B. The optimal strategy for A can be no worse.

Next we show that the optimal utility is concave in p̄ if we
scale the power limits uniformly. The proof is omitted due to
the space limitations.

Theorem VII.2 (Concavity) Suppose the power limit vector p̄

belongs to the set W = {p̄ | p̄ = φp̄0, φ > 0} where p̄0 > 0

is a constant vector. Then F̄ (p̄) is concave in p̄ over W .

The above theorem is critical in trading-off energy con-
sumption with achieved utility. Suppose we are interested in
minimizing energy consumption subject to achieving a utility
level equal to some given value, say Fmin. Assuming that power
limits are scaled uniformly for the whole network by a factor
φ, we can formulate the problem as

min φ
s.t. F̄ (φp̄0) ≥ Fmin,

(21)

where F̄ (φp̄0) is defined in (20). Theorem VII.2 asserts that
the above is a convex optimization problem, thus, a global min-
imum, say φ∗, can be obtained using standard gradient-based
algorithms [16]. One complicating factor is that closed form
expressions for F̄ (φp̄0) and its derivative are not available.
The decomposition algorithm of Fig. 1 can evaluate F̄ (φp̄0)
and its derivative can be obtained using finite differences.

VIII. THE LIFETIME OF SENSOR NETWORKS

In this section we consider what are the implications of
power optimization to the lifetime of the network. Let us
assume that the energy expended by the sensors to receive
and decode information is negligible compared to the energy
expended while transmitting.

We define the lifetime T of a WSNET as the length of time
during which no node runs out of energy resources. As we
have seen, the transmission policies we consider time-share
among several transmission schemes. Assume that T is in
a much longer time-scale than the time-scale in which the
policy switches among the various transmission schemes. Let
p be the vector of average powers consumed during a long
time-interval, i.e., p is the time average of the power vectors
corresponding to all transmission schemes employed by the
transmission policy. For each node i = 1, . . . , N set ci such that
c′ip =

∑M+N
j=1

∑K
k=1 pijk. Then T ≤ χi

c′

i
p

, for all i = 1, . . . , N ,
where χi is the available energy at sensor node i. In matrix
notation, we write Cp ≤ χ/T , where C is an N×(N+M)2K
matrix whose ith row equals c′i and χ = (χ1, . . . , χN ).

To capture the trade-off between system utility and the
lifetime of the WSNET, we propose the following utility
maximization problem with parameter T :

F̂ (T ) = max F (Hp)

s.t. p =
∑J
n=1 αnp

n,
∑J
n=1 αn = 1,

Hp ∈ S ,
Cp ≤ χ/T,
αn ≥ 0, n = 1, . . . , J.

(22)

where p1, . . . ,pJ are the extreme points of Conv(P). Notice
that in problem (22), we still seek to maximize the system
utility with time division, under fairness and flow conservation
constraints. The difference here is that we add a hard constraint
on the lifetime of the WSNET.

Problem (22) is a convex programming problem. (Note that
the objective function F (Hp) is concave in Hp and therefore
concave in p, and all the constraints are linear in p and α.)
Consequently, we have a problem very similar to problem (6)
and a complete analog of the decomposition method in Fig. 1
can be used to solve large-scale instances of (22).

In particular, suppose we have an extreme point p1 of
Conv(P), which belongs to {p | Hp ∈ S ,Cp ≤ χ/T}
and let m ∈ {1, . . . , J}, then the restricted master problem at
mth iteration is

min −F (Hp)
s.t. p −

∑m
n=1 αnp

n = 0,
∑m
n=1 αn = 1,

N+M
∑

j=1

pijkGij−pjikGji

η ln 2 = 0, ∀i 6= s(k), d(k),∀k,

AHp ≤ b,
Cp ≤ χ/T,
αn ≥ 0, n = 1, . . . ,m,

(23)



and the corresponding subproblem is

max λ′p

s.t. p ∈ P,
(24)

with cost vector λ = λ(m), where as before we
have (p(m),α(m);λ(m), µ(m),ν(m),σ(m), ξ(m)) as the opti-
mal primal-dual pair for the restricted master problem (23)
with ξ(m) being the optimal dual variable corresponding to the
lifetime constraint.

Following the same recipe as described in Fig. 1, we can
obtain an optimal solution to problem (22) in a finite number
of iterations. The argument is almost identical and is therefore
omitted for brevity. Furthermore, problem (24) is still equivalent
to the maximum weighted matching problem constructed in a
similar way as in Section V, and is solvable in polynomial
time. In particular, to solve problem (24), we construct the same
undirected graph G = (V ,E ). Let δijk = λijkp̄ijk ∀i, j, k, and
the weight for each edge (i, j) ∈ E is given by

wij =































max
k=1,...,K

max{δijk, δjik, 0}, ∀i, j ∈ A ,

max
k=1,...,K

max{δi,N+l,k, 0}, ∀i ∈ A , j ∈ Bl,

max
k=1,...,K

max{δj,N+l,k, 0}, ∀i ∈ Bl, j ∈ A ,

0 otherwise.

Furthermore, we construct the set K as follows. For each 1 ≤
i ≤ N , 1 ≤ j ≤ N+M , we select only one, if any, k satisfying
the conditions

k =

{

argmaxt=1,...,K max{δijt, δjit, 0}, if j ≤ N,

argmaxt=1,...,K max{δijt, 0}, otherwise,

and
{

δijk = max{δijk, δjik, 0} > 0, if j ≤ N,

δijk > 0, otherwise,

and let (i, j, k) be an element of K . Given the graph G

constructed above, we can obtain the optimal solution of (24)
in the same way as in Section V.

It is interesting to examine how the lifetime parameter T
affects the system utility. The first observation is monotonicity.
Namely, if T decreases, the feasible set of (22) gets larger, thus,
the optimal system utility can be no smaller. The maximum
possible system utility is corresponding to the case T =
0. Furthermore, as problem (22) is a concave maximization
problem, a standard convexity argument shows that F̂ (T ) is
concave in 1/T . We summarize the above observations in the
following theorem.

Theorem VIII.1 F̂ (T ) is monotonically nonincreasing in T ,
upper bounded by F̂ (0), and concave in 1/T .

Though F̂ (T ) is in general non-convex in T , Thm. VIII.1
suggests how to trade-off utility vs. the lifetime T . The first
observation is that our algorithm can be used to efficiently

obtain a transmission policy for any desirable T . Moreover,
it allows us to solve an optimization problem of the form

max
T

(F̂ (T ) − ζ/T ), (25)

for some scalar ζ. This can be interpreted as maximizing utility
while paying a cost for short lifetime. Problem (25) is concave
in 1/T and can be solved very efficiently using line search
techniques (see [16]).

IX. DEALING WITH NODE FAILURES

Next we discuss how to accommodate node failures in our
decomposition framework. As we will see, our approach en-
ables us to re-optimize and adjust accordingly the transmission
policy in response to node failures.

Suppose we solve problem (6) for a WSNET and obtain
the transmission vectors r1, . . . , rD. If we detect that node l
has failed, we do not have to solve the utility maximization
problem from scratch. Instead, we make use of the follow-
ing re-optimization technique: reuse the obtained transmission
vectors and modify them to obtain a set of valid transmission
vectors for the modified WSNET. In particular, the modified
transmission vector r̃n corresponding to rn is given by

r̃nijk =

{

0, if i = l, or j = l, or s(k) = l, or d(k) = l,

rnijk, otherwise.

Then we consider the following problem

max F (r̃)

s.t. r̃ −
∑D
n=1 α̃nr̃

n = 0,
∑D
n=1 α̃n = 1,

∑N+M
j=1 r̃ijk = 0, ∀i 6= s(k), d(k),∀k,

Ar̃ ≤ b,
α̃n ≥ 0, n = 1, . . . , D,

(26)

and view the above problem as the restricted master problem.
Let p̄ljk = 0 ∀j, k, and the subproblem has the same form
as problem (11). Starting from (26) and transmission schemes
with rates r̃1, . . . , r̃D iterate using the algorithm of Fig. 1 to
derive an optimal transmission policy for the modified WSNET
(where node l is removed).

Note that the coefficient matrix in problem (26) is sparse,
as all the rows related to node l are forced to 0; this can be
exploited to reduce the size of the problem and the result-
ing running time of the algorithm. In several cases, this re-
optimization procedure results in much shorter running time
than solving the original problem from scratch; we provide
numerical results in the next section. We close this section by
noting that multiple node failures can be similarly handled.

X. NUMERICAL RESULTS

In this section we present some illustrative numerical results
to assess the efficiency of the proposed approach.

Example 1: The first example we consider is a WSNET with
sensor nodes uniformly distributed in the box [−10m, 10m] ×
[−10m, 10m]. The network has a single gateway at the origin.
We use the same identical parameters as in [8]. In particular,



Gij = KSij(d0/dij)
α, where K = 10−6, d0 = 10, dij

is the distance between nodes i and j, α = 4, Sij = Sji
are independent and identically generated from a lognormal
distribution with a mean of 0dB and variance 8dB, and p̄i = 0.1
Watts for all nodes i. The noise is characterized by η = 10−10

and W = 106.
Comparison with enumeration: We obtain a transmission

policy using the approach outlined in Section VI, namely, we
make the linear approximation to obtain the structure of the
policy and use this structure to devise a policy under the exact
transmission rate expressions of (3). We compare the policy
we obtain in this fashion with what we call the enumeration
approach proposed in [8]. This latter approach does not make
the linear approximation we made in (4); it instead uses directly
the exact expression for transmission rates given in (3). It
solves (6) by enumerating all feasible transmission rate vectors
in Conv(R). To that end, it discretizes the possible values
p ∈ P can take, generates all possible transmission schemes,
and from those it derives the corresponding rate vectors r.
Table I contains the results. In all cases, the objective is to

TABLE I

COMPUTATIONAL EFFICIENCY COMPARISON (SINGLE GATEWAY).

N Enumeration Time Decomposition Time Single-hop
2 14.44 0.02 14.44 0.01 14.4
3 122.28 0.02 122.28 0.01 122.2
4 689.16 0.13 689.16 0.02 167.6
5 7962.63 63.4 7960.87 0.02 582.3
6 out of memory - 6339.97 0.03 191.9

maximize total throughput (reported in bps) and the fairness
constraints have the form ρi+1 ≤ 2ρi, i = 1, . . . , N , where ρi
denotes the throughput of node i. The 1st column of Table I lists
the number of nodes in the network. The 2nd and 3rd columns
list the throughput achieved by the enumeration approach and
the corresponding CPU time in seconds. The 4th and 5th
columns list the throughput achieved by our algorithm and the
corresponding CPU time in seconds. Finally, the last column
reports the throughput achieved by the single-hop strategy, i.e.,
when each node sends directly to the gateway.

A couple of remarks are in order. First, comparing columns
2 and 4 of Table I suggests that even at power levels of 0.1
Watts our approach is very accurate. Typical sensor networks
will operate at lower power levels which is bound to improve
accuracy. Second, the inherent combinatorial explosion of pos-
sible transmission schemes limits the use of the enumeration
method to very small instances (in the 6-node case we run
out of memory). In comparison, computational requirements
in our method scale rather nicely. Without particular effort at
optimizing the code we can currently solve problem instances
with 50 nodes in less than 1 minute. Third, it is interesting
to note that time-sharing (multi-hop strategy) can dramatically
improve performance over the naive single-hop strategy. For
the cases reported in Table I the improvement is on the order
of 3000%.
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Fig. 2. Utility as a function of network lifetime.

Optimization over power limits: To demonstrate the effects of
power optimization we considered the 5-node case in Table I.
Setting Fmin = 6500, the approach of Section VII yields φ =
0.81. That is, sensors can scale down their power by φ and this
is sufficient to achieve a throughput equal to Fmin.

Node failure: The next part considers the re-optimization
technique described in Sec. IX. We first calculate the optimal
utility and rate vectors for a WSNET with N sensor nodes and
then let node N fail. As outlined in Sec. IX we modify the
available rate vectors and re-optimize to compute the optimal
system utility for the network of N−1 sensor nodes. For a test
network with N = 35, the CPU time for re-optimization was
0.57 seconds, while it takes 24.4 seconds to solve the modified
problem from scratch. The optimal values are of course the
same.

Utility vs. life-time: As we discussed in Section VIII, our
framework allows us to trade-off utility vs. the lifetime of the
WSNET. In Fig 2 we plot the system throughput of the 5-
node network when T varies from 0 to 100, and the energy for
each node is 1 unit. The curve F̂ (T ) shows the monotonicity
with respect to T . Obviously F̂ (T ) is not a convex function
and is upper bounded by F̂ (0). We also depict (dashed line)
F̂ (T ) − ζ/T for ζ = 25000. Solving problem (25) yields an
optimal lifetime of T ∗ = 10.

High-power levels: The last part of this example explores
the accuracy of our approach in WSNETs with power levels
far away from 0 (i.e., the linear approximation regime). The
setup is the same except that we now consider much larger
power levels. Again we compare the approach outlined in
Section VI with the enumeration approach. The results are
reported in table II, where p̄ is the maximum available power
(Watt) for every node. Note that for the cases reported the SINR
is typically on the order of 40dB (p̄ = 5000 case) and it can
be much greater for some cases. The results verify that our
approach is fairly accurate even at these unrealistically high



power levels.

TABLE II

ACCURACY OF OUR APPROACH WITH POWER LEVELS FAR AWAY FROM THE

LOW POWER REGIME.

p̄ Our Approach Enumeration Gap
1000 4.486 × 106 4.486 × 106 0%

5000 1.216 × 107 1.249 × 107 3%

8000 1.481 × 107 1.611 × 107 8%

Example 2: Our next example explores the benefits of multi-
hop in a larger WSNET. The objective is total throughput maxi-
mization and the fairness constraints mandate equal throughput
for all nodes. The test network consists of a gateway located
at (0, 0) and two clusters containing equal number of nodes:
one cluster contains nodes uniformly distributed in the box
[10m, 20m]× [10m, 20m] and the other cluster consists of uni-
formly distributed nodes in the box [25m, 35m]× [25m, 35m].
Let us denote by CA and CB , respectively, these two clusters.
All the other settings are identical to our first example, except
that we use the expected value of Sij to calculate the channel
gains throughout. Table III compares the throughput (in bps)
of our algorithm with two alternative policies: a single-hop
and and a 2-hop policy. According to the latter one, nodes
in CB transmit to nodes in CA for a 50% fraction of time
and the remaining 50% fraction of time nodes in CA transmit
directly to the gateway. Note that due to the special (and
deliberate) structure of the WSNET, this 2-hop policy would be
quite effective. Indeed, as Table III illustrates, the 2-hop policy
performs quite well. Still, our policy can improve throughput by
up to 37.4% (30-node case). The performance of the single-hop
policy is understandably dismal.

TABLE III

COMPARISON OF DIFFERENT POLICIES IN LARGER WSNETS.

N Decomposition Single-hop 2-hop
20 672.99 26.59 625.07
26 851.20 27.09 633.41
30 949.77 31.26 691.12

XI. CONCLUSION

We considered the problem of scheduling transmissions in
WSNETs to maximize the total system utility subject to fair-
ness constraints. We proposed a decomposition algorithm and
established its convergence in a finite number of iterations. The
resulting policy involves time-sharing over a number of feasible
transmission schemes. Time-sharing convexifies the achievable
region for transmission rate vectors and thus, achieves higher
utility than any individual scheme. To the best of our knowl-
edge, there is no alternative in the existing literature other than
enumerating all feasible transmission schemes (the enumeration
approach) for solving this problem in the general setting we
consider.

The efficiency of our decomposition algorithm rests on
our ability to efficiently solve a subproblem that identifies

“promising” transmission schemes. To that end, we adopt a
linear approximation of achievable rates which is asymptoti-
cally exact in the regime of low power levels. This regime
is appropriate for WSNETs with rather dispersed nodes or
operating in noisy environments. Still, the subproblem is an
integer linear programming problem. Nevertheless, we show
that it is polynomially solvable due to its structure. The linear
approximation yields the structure of the transmission policy
which we use to derive a policy under the exact (Shannon)
expressions for transmission rates.

Our framework allows us to optimize sensor power levels to
achieve a given utility target. This can translate into significant
energy savings with a certain quality of service guarantee on
the system utility. In our setting, we can solve the utility opti-
mization problem subject to a hard constraint on the network
lifetime. Alternatively, we are able to efficiently find a desirable
operating time on a lifetime vs. utility curve.

The numerical results we presented suggest that our approach
is very accurate even for power levels that are much higher
than typical WSNET applications. They also convincingly
demonstrate that our approach can handle sizable instances
of the problem. For example, we are able to solve problems
with 50 or so nodes in less than a minute. This is a dramatic
improvement over what is computationally feasible with an
enumeration approach (e.g., as in [8]).
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