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Abstract—Advance channel reservation is emerging as an
important feature of ultra high-speed networks requiring the
transfer of large files. In this paper, we present two new delay-
competitive algorithms for advance reservation, called BatchAll
and BatchLim. These algorithms are guaranteed to achieve
optimal throughput performance, based on multi-commodity flow
arguments. Unlike BatchAll, the BatchLim algorithm returns
the completion time of a connection immediately as a request
is placed, but at the expense of a slightly looser competitive
ratio than that of BatchAll. We propose a simple approach
that limits the number of parallel paths used by the algorithms
while provably bounding the maximum reduction factor in the
transmission throughput. We show that, although the number of
different paths can be exponentially large, the actual number
of paths needed to approximate the flow is quite small and
proportional to the number of edges in the network. According to
our simulations for a number of topologies, three to five parallel
paths are sufficient to achieve close to optimal performance.

I. INTRODUCTION

Several Grid and data backup applications require the trans-
fer of extremely large datasets on the orders of terabytes and
more. To support such applications, significant efforts have
recently been devoted to develop a protocol stack based on
the concept of advance reservation [1, 2]. The most important
property of advance reservation is to offer hosts and users
the ability to reserve in advance dedicated paths to connect
their resources. The importance of advance reservation in
supporting dedicated connections has been made evident by
the growing number of testbeds related to this technology,
such as UltraScience Net [1], On-demand Secure Circuits
and Advanced Reservation Systems (OSCARS) [3], and Dy-
namic Resource Allocation via GMPLS Optical Networks
(DRAGON) [4].

Several protocols and algorithms have been proposed in
the literature to support advance reservation, see, e.g., [1, 2, 5]
and references therein. However, to the authors’ knowledge,
none of them guarantees the same throughput performance
as an optimal off-line algorithm. Instead, most are based
on greedy approaches, whereas each request is allocated a
path guaranteeing the earliest completion time at the time the
request is placed.

In this paper, we present competitive advance reservation
algorithms that provably achieve the maximum throughput for
any network and request profile. The first algorithm, called

BatchAll, provides a competitive ratio on the maximum
delay experienced by each request in an augmented resource
network with respect to the optimal off-line algorithm in the
original network. BatchAll groups requests into batches. In
each batch, paths are efficiently assigned based on a maximum
concurrent flow optimization.

The BatchAll algorithm does not return the connection
completion time to the user at the time a request is placed,
but only when the connection actually starts. Our second
algorithm, called BatchLim, returns the completion time im-
mediately as a request is placed, but at the expense of a slightly
looser competitive ratio. This algorithm operates by limiting
the length of each batch.

The presented competitive algorithms are based upon mul-
ticommodity flow algorithms, and therefore can be performed
efficiently in polynomial time in the size of the network for
each request.

Our model assumes that the network infrastructure supports
path dispersion, i.e., multiple paths in parallel can be used
to route data. Obviously, a too large path dispersion may be
undesirable, as it may entail fragmenting a file into a large
number of segments and reassembling them at the destination.
To address this issue, we present a simple approach, based
on the max-flow min-cut theorem, that limits the number of
parallel paths while bounding the maximum reduction factor in
the transmission throughput. We, then, propose two algorithms
BatchAllDisp and BatchLimDisp, based upon BatchAll
and BatchLim respectively. These algorithms perform sim-
ilarly to the original algorithms, in terms of the batching
process. However, after filling each batch, the algorithms will
limit the dispersion of each flow. Although these algorithms
are not throughput-optimal anymore, they are still throughput-
competitive.

We provide simulation results illustrating the performance
of our protocols in terms of the average delay. The simulations
show that the proposed competitive algorithms approach a
capacity bound derived in [6]. With respect to path dispersion,
we show that excellent performance can be achieved with as
few as five or so parallel paths per connection.

This paper is organized as follows. In Section II, we
introduce our model and notation used throughout the paper.
In Section III, we describe the BatchAll and BatchLim



algorithms and derive results on their competitive ratios (a
previous version of BatchAll was presented in [6]). Our
method for bounding path dispersion is described and analyzed
in Section IV. In Section V, simulation results evaluating the
performance of the algorithms for different network topologies
and traffic parameters are presented. We conclude the paper
in Section VI. Due to space constraints, some of the proofs
are deferred to the on-line technical report [7].

II. NETWORK MODEL

We present the network model that will be used throughout
the paper. The model consists of a general network topology,
represented by a graph G(V,E), where V is the set of nodes
and E is the set of links connecting the nodes. The graph
G can be directed or undirected. The capacity of each link
e ∈ E is C(e). A connection request, also referred to as job,
contains the tuple (s, d, f), where s ∈ V is the source node,
d ∈ V − {s} is the destination node, and f is the file size.

Accordingly, an advance reservation algorithm computes a
starting time at which the connection can be initiated, a set of
paths used for the connection, and an amount of bandwidth
allocated to each path. Our model supports path dispersion,
i.e., multiple paths in parallel can be used to route data.

In subsequent sections, we will make frequent use of multi-
commodity functions. The multicommodity flow problem is a
linear planning problem returning true or false based upon
the feasibility of transmitting concurrent flows from all pairs of
sources and destination during a given time duration, such that
the total flow through each link does not exceed its capacity.
It is solved by a function multicomm(G,L, T ), where L is a
list of jobs, each containing a source, a destination, and a file
size, and T is the time duration.

The maximum concurrent flow is calculated by the function
maxflow(G,L). It returns Tmin, the minimum value of T such
that multicomm(G,L, T ) returns true. Both the multicom-
modity and maximum concurrent flow problems are known to
be computable in polynomial time [8, 9].

III. COMPETITIVE ALGORITHMS

In this section, we present a new family of on-line,
polynomial-time algorithms that rely on the idea of “batch-
ing” requests. Thus, instead of immediately reserving a path
for each incoming request as in a greedy algorithm, we
accumulate several arrivals in a batch and assign a more
efficient set of flow paths to the whole batch. The proposed
algorithms guarantee that the maximum delay experienced by
each request in a network with augmented resources is within
a finite multiplicative factor of the value achieved with an
optimal off-line algorithm in the original network. Thus, these
algorithms reach the maximum throughput achievable by any
algorithm.

A. The BatchAll Competitive Algorithm

In case no deterministic knowledge on the future requests is
given, one would like to give some bounds on the performance
of the algorithm compared to the performance of a “perfect”

off-line algorithm (i.e., with full knowledge of the future
and unlimited computational resources). We present here an
algorithm, called BatchAll (since it batches together all
pending requests), giving bounds on this measure.

The algorithm can be described as follows (we assume that
there is initially no pending request). We denote by clk the
value of a variable maintaining the clock (initially set to 0):

1) For a request l = {s, d, f} arriving when clk = t, give
an immediate connection starting time and a connection
ending time of tc = t + maxflow(G, l).

2) Set L← null.
3) While clk < tc,

• If another request l′ = {s′, d′, f ′} arrives:
– Set L← L ∪ l′ (i.e. add it to the waiting batch)
– Mark tc as its connection starting time

4) At time clk = tc, calculate t′ = maxflow(G,L).
• If t′ = 0 (i.e., there is no pending request) go back

to step 1.
• Else assign a connection ending time tc = tc + t′ to

all requests in the batch L and go back to step 2.
We note that upon the arrival of a request, the BatchAll

algorithm may return only the starting time of the connection.
The allocated paths and completion time are computed only
when the connection starts (in the next section, we present
another competitive algorithm with a slightly looser competi-
tive ratio but which always returns the completion time at the
arrival time of a request).

We next compare the performance of an optimal off-line
algorithm in the network with that of the BatchAll algorithm
in an augmented network. The augmented network is similar
to the original network, other than that it has a capacity of
(1 + ε)C(e) at any link, e, that has capacity C(e) in the
original network. This implies that the performance of the
competitive algorithm is comparable if one allows a factor ε
extra capacity in the links, or, alternatively, one may say that
the performance of the algorithm is comparable to the optimal
off-line algorithm in some lower capacity network, allowing
the maximum rate of only (1 + ε)−1C(e) for each link.

Theorem 3.1 ([6]): If we augment the resources of a net-
work such that every edge has bandwidth (1 + ε) times the
original bandwidth (for all ε > 0), then for requests arriving
up to any time t∗ in such a network, the maximum waiting
time from request arrival to the end of the transmission using
BatchAll, is no more than 2/ε times the maximum waiting
time for arrivals up to t∗ using the optimal algorithm in the
original network.

Corollary 3.2: The saturation throughput of BatchAll is
optimal because for any arbitrarily small ε > 0, the delay of a
request is guaranteed to be at most a finite multiplicative factor
larger than the maximum delay of the optimal algorithm in the
reduced resources network.

B. The BatchLim Competitive Algorithm

The following algorithm, called BatchLim, operates in a
similar setup to BatchAll. However, it gives a guarantee on
the finishing time of a job when it is submitted.



The algorithm is based on creating increasing size batches
in case of high loads. When the rate of request arrival is
high, each batch created will be approximately twice as long
as the previous one, and thus larger batches, giving a good
approximation of the total flow will be created. When the load
is low only a single batch of pending requests exists at most
times, and its size will remain approximately constant or even
decrease for decreasing load.

The algorithm maintains a list of times, ti, i = 1, . . . , n,
where for every interval, [ti, ti+1], a batch of jobs denoted by
batch i is assigned. When a new request between a source s
and a destination d arrives at time t, then an attempt is first
made to add it to one of the existing intervals by using a
multicommodity flow calculation. If the attempt fails, a new
batch is created and tn+1 = max(tn + (tn − t), tn + M),
where M = f/maxflow(G, s, d) is the minimum time for
the job completion, is added to the time list. Thus, the job is
assigned to the interval [tn, tn+1] with n ≥ 2.

We next provide a detailed description of how the algorithm
handles a new request arriving at time t. We use the tuple
l = {s, d, f} to denote this job and the list Li to denote the
set of jobs already assigned to batch i.

1) Initialization: set i← 1.
2) While i ≤ n− 1

• If multicomm(G,Li ∪ l, ti+1 − ti) = true then
return i and exit (check if request can be accommo-
dated during batch i).

• i← i + 1.
3) Set M = maxflow(G, l).
4) If M > tn − t

then tn+1 ← tn + M ;
else tn+1 ← tn + (tn − t).

5) Create a new batch consisting of job l and assign it to
interval [tn, tn+1].

6) Set n← n + 1.
7) Return n.

Fig. 1 illustrates runs of the BatchAll and BatchLim algo-
rithms for the same set of requests.

The next theorem provides a competitive ratio on the
maximum waiting time in BatchLim. This theorem implies
that BatchLim is also throughput-optimal.

Theorem 3.3: For every ε > 0 and every time t∗, the
maximum waiting time from the request time to the end of
a job for any request arriving up to time t∗ and for a network
with augmented resources, is no more than 4/ε times the
maximum waiting time for arrivals up to t∗ using the optimal
algorithm in the original network.

IV. BOUNDING PATH DISPERSION

The algorithms presented in the previous sections do not
limit the path dispersion, that is, the number of paths simul-
taneously used by a connection. In practice, it is desirable to
minimize the number of such paths due to the cost of setting
up many paths and the need to split a connection into many
low capacity channels. The following suggests a method of
achieving this goal.
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Fig. 1. Illustration of the batching process by the algorithms BatchAll and
BatchLim over a simple network topology consisting of three nodes A,B
and C. The odd numbered jobs request one hour of maximum bandwidth
traffic between nodes A and B and the even numbered jobs request one hour
maximum bandwidth traffic between B and C. In BatchAll, a new batch
is created for all requests arriving during the running of a previous batch. In
BatchLim, for each new request an attempt is made to add it to one of the
existing windows, and if it fails, a new window is appended at the end.

Lemma 4.1: In every flow of size F between two nodes on
a directed graph G(V,E) there exists a path of capacity at
least F/|E| between these nodes.

Proof: Remove all edges of capacity (strictly) less than
F/|E| from the graph. The total capacity of these edges is
smaller than F/|E| × |E| = F . By the Max-Flow–Min-Cut
theorem, the maximum flow equals the minimum cut in the
network. Therefore, since the total flow is F there must remain
at least one path between the nodes after the removal. All
edges in this path have capacity of at least F/|E|. Therefore,
the path capacity is at least F/|E|.

The following theorem establishes the maximum number of
paths needed to achieve a throughput with a constant factor
of that achieved by the original flow.

Theorem 4.2: For every flow of size F between two nodes
on a directed graph G(V,E) and for every α > 0 there exists
a set of at most �α|E|� paths achieving a flow of at least
(1− e−α)F .

Proof: Apply Lemma 4.1, �α|E|� times. Each time an
appropriate path is found, its flow is removed from all of its
links. For each such path the remaining flow is multiplied by
at most 1− 1

|E| ≤ exp
(

1
|E|

)
.

Theorem 4.2 provides both an algorithm for reducing the
number of paths and a bound on the throughput loss. To
approximate the flow by a limited number of paths remove
all edges with capacity less than F/|E| and find a remain-
ing path. This process can be repeated to obtain improving
approximations of the flow. The maximum number of paths
needed to achieve an approximation of the flow to within a
constant factor is linear in |E|, while the number of possible
paths may be exponential in |E|.

Using the above approximation in conjunction with the
competitive algorithms one can devise two new algorithms
BatchAllDisp and BatchLimDisp, based upon BatchAll
and BatchLim respectively. These algorithms perform simi-
larly to BatchAll and BatchLim, in terms of the batching
process. However, after filling each batch, the algorithms will
limit the dispersion of each flow, and approximate the flow.
To achieve a partial flow, each time we select the widest path
from remaining edges (where the weights are determined by
the link utilization in the solution of the multicommodity flow)
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Fig. 2. Simulation topologies.

and reserve the total path bandwidth. We repeat this until either
the desired number of paths is reached or the entire flow is
routed.

V. SIMULATIONS

In this section, we present simulation results illustrating the
performance of the algorithms described in this paper. We
evaluate the average delay of each algorithm, where delay is
defined as the time elapsing from the point a request is placed
until the corresponding connection is completed. The main
points of interest are as follows: (i) how do the competitive
algorithms fare with respect to each other and with respect
to a capacity bound [6]? (ii) what value of path dispersion is
needed to ensure good performance?

A. Simulation Set-Up

We have developed our own simulator in C++. The simula-
tor uses the COIN-OR Linear Program Solver (CLP) library
[10] to solve multi-commodity optimization problems and
allows evaluating our algorithms under various topological
settings and traffic conditions. The main simulation parameters
are as follows:

• Topology: our simulator supports arbitrary topologies. In
this paper, we consider the two topologies depicted in
Figure 2. One is a fully connected graph (clique) of eight
nodes and the other is an 11-node topology, similar to the
National LambdaRail testbed [11]. Each link on these
graphs is full-duplex and assumed to have a capacity of
20 Gb/s.

• Arrival process: we assume that the aggregated arrival of
requests to the network forms a Poisson process (this can
easily be changed, if desired). The mean rate of arrivals
is adjustable. Our delay measurements are carried out at
different arrival rates, referred to as network load, in units
of requests per hour.

• File size distribution:
We consider two models for the file size distribution:

1) Pareto:

F (x) = 1−
(

xm

x− γ

)β

, where x ≥ xm + γ.

In the simulations, we set β = 2.5, xm = 1.48 TB
(terabyte) and γ = 6.25 ∗ 10−3 TB, implying that
the mean file size is 2.475 TB.
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Fig. 3. Performance comparison of algorithms BatchAll and BatchLim for
the 8-node clique and exponential file size distribution.

2) Exponential:

F (x) = exp(−λx), where x ≥ 0.

In the simulations, 1/λ = 2.475 TB.

• Source and Destination: for each request, the source and
destination are selected uniformly at random, except that
they must be different nodes.

All the simulations are run for a total of at least 106 requests.

B. Results

We first present simulation results for the clique topology.
Figure 3 compares the performance of the BatchAll and
BatchLim algorithms. The file size distribution is exponen-
tial. The figure shows that BatchLim is less efficient than
BatchAll in terms of average delay, especially at low load.
This result is somewhat expected given that BatchLim uses
a less efficient batching process and its delay ratio is looser.
However, since BatchLim is throughput-optimal, its perfor-
mance approaches that of BatchAll at high load.

Figure 4 evaluates and compares the performance
of the BatchAll and BatchAllDisp algorithms. For
BatchAllDisp, results are presented for the cases where the
path dispersion bound is set to either one, three, or five paths
per connection. The file size distribution is exponential. The
figure shows also a fluid bound on capacity derived in [6].
Its value represents an upper bound on the maximum network
load for which the average delay of requests is still bounded.

The figure shows that BatchAll approaches the capacity
bound at a reasonable delay value and that a path dispersion
of at most five per connection (corresponding to α = 0.089) is
sufficient for BatchAllDisp to achieve performance close to
BatchAll. It is worth mentioning that, in this topology, there
exist 1957 possible paths between any two nodes. Thus, with
five paths, BatchAllDisp uses only 0.25% of the total paths
possible. The figure also demonstrates the importance of multi-
path routing: the performance achieved using a single path per
connections is far worse.
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Fig. 4. Performance evaluation of algorithms BatchAll and BatchAllDisp
with bounds 1, 3 or 5 paths per connection for the 8-node clique and
exponential file size distribution. A fluid bound on capacity is also depicted.
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Fig. 5. Performance evaluation of algorithms BatchAll and BatchAllDisp
for the LambdaRail topology and Pareto distributed file size. Algorithm
BatchAllDisp is plotted with bounds of 3, 2 and 1 on path dispersion.

Figure 5 depicts the performance of the various algorithms
and the fluid bound for the 11-node topology of figure 2(b).
The file size follows a Pareto distribution. In this case, we
observe that BatchAllDisp with as few as 3 paths per
connection (or α = 0.107) approximates BatchAll very
closely. Since this network is sparser than the previous one, it
is reasonable to obtain good performance with a smaller path
dispersion.

VI. CONCLUSION

Advance reservation of dedicated network resources is
emerging as one of the most important features of the
next-generation of network architectures. In this paper, we
made several advances in this area. Specifically, we proposed
two new on-line algorithms for advance reservation, called
BatchAll and BatchLim, that are guaranteed to achieve
optimal throughput performance. We observed that path dis-
persion is essential to achieve full network utilization. How-
ever, splitting a transmission into too many different paths

may render a flow-based approach inapplicable in many real-
world environments. Thus, we presented a rigorous, theoretical
approach to address the path dispersion problem and presented
a method for approximating the maximum multicommodity
flow using a limited number of paths. Specifically, while the
number of paths between two nodes in a network scales
exponentially with the number of edges, we showed that
throughput competitiveness up to any desired ratio factor can
be achieved with a number of paths scaling linearly with the
total number of edges. In practice, our simulations indicate that
three paths (in sparse graphs) to five paths (in dense graphs)
may be sufficient.

We conclude by noting that the algorithms proposed in this
paper can be either run in a centralized fashion (a reasonable
solution in small networks) or using link-state routing and
distributed signaling mechanism, such as enhanced versions
of GMPLS [4] or RSVP [12]. Distributed approximations of
the multicommodity flow have also been discussed in the
literature [13]. Part of our future work will be to investigate
these implementation issues into more detail.
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