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Understanding and Tackling the Root Causes of
Instability in Wireless Mesh Networks

Adel Aziz, David Starobinski, and Patrick Thiran

Abstract—We investigate, both theoretically and experimen-
tally, the stability of CSMA-based wireless mesh networks, where
a network is said to be stable if and only if the queue of each relay
node remains (almost surely) finite. We identify two key factors
that impact stability: the network size and the so-called “stealing
effect”, a consequence of the hidden node problem and non-zero
transmission delays. We consider the case of a greedy source and
prove, by using Foster’s theorem, that 3-hop networks are stable,
but only if the stealing effect is accounted for. We also prove
that 4-hop networks are, on the contrary, always unstable (even
with the stealing effect) and show by simulations that instability
extends to more complex linear and non-linear topologies. To
tackle this instability problem, we propose and evaluate a novel,
distributed flow-control mechanism, called EZ-flow. EZ-flow is
fully compatible with the IEEE 802.11 standard (i.e., it does not
modify headers in packets), can be implemented using off-the-
shelf hardware, and does not entail any communication overhead.
EZ-flow operates by adapting the minimum congestion window
parameter at each relay node, based on an estimation of the
buffer occupancy at its successor node in the mesh. We show
how such an estimation can be conducted passively by taking
advantage of the broadcast nature of the wireless channel. Real
experiments, run on a 9-node testbed deployed over 4 different
buildings, show that EZ-flow effectively smoothes traffic and
improves delay, throughput, and fairness performance.

I. INTRODUCTION

W IRELESS mesh networks (WMNs) promise to revolu-
tionize Internet services by providing customers with

ubiquitous high-speed access at low cost. Thus, several cities
and communities have already deployed, or are about to deploy
WMNs [1, 2, 5]. Nevertheless, several technical obstacles must
be surmounted to allow for the widespread adoption of this
technology. In particular, a key challenge is to ensure a smooth
and efficient traffic flow over the backhaul, i.e., the multi-hop
wireless links connecting the end-users to the Internet.

The Medium Access Control (MAC) protocol, used to
manage contention and avoid packet collisions on the shared
channel, plays a key role in determining the performance of
the backhaul of a WMN. Most WMNs use the IEEE 802.11
standard [8] as their MAC protocol for the following reasons:
(i) It is based on Carrier-Sense Multiple Access (CSMA), a
mechanism that naturally lends itself to a distributed imple-
mentation; (ii) it has low control overhead; (iii) it is ubiquitous
and (iv) it is inexpensive to deploy.

The IEEE 802.11 protocol, however, was initially designed
to support single-hop, but not multi-hop, communication
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Fig. 1. Experimental results for the queue evolution of each relay node in 3-
and 4-hop topologies. A 3-hop network is stable, whereas a 4-hop is unstable
with the queue of its first relaying node (node 1) building up until it reaches
the buffer hardware limit of 50 packets and starts overflowing.

where multiple nodes must cooperate to efficiently transport
one or multiple flows. In this paper, we show how and
why 802.11-based wireless mesh networks are susceptible to
turbulence that takes the form of the following: (i) buffer
build up and overflow at relaying nodes; (ii) major end-to-end
delay fluctuations; and (iii) reduced throughput. In Figure 1
we depict the consequence of this unstable behavior by using
data collected from measurements on a real network with
a greedy access point. The figure shows the instantaneous
buffer occupancy at the relaying nodes for a (stable) 3-hop
network and an (unstable) 4-hop network. In this scenario,
the end-to-end throughput in the 4-hop case is about half that
in the 3-hop case. The intrinsic instability of IEEE 802.11
mesh networks that are longer than 3 hops may explain why
current implementations use only a few hops [3]. It is therefore
critical to rigorously characterize the behavior of CSMA-
like protocols in multihop scenarios and propose possible
improvements when appropriate.

We prove that the network is stable or unstable, depending
on its size and a phenomenon referred to as a stealing effect
that results from the hidden node problem and non-zero
transmission delays. The likelihood of this phenomenon is
captured by the stealing effect probability 0 ≤ p ≤ 1, a
parameter explained in detail in Section III.C.

After detailing the problem and reviewing related work in
Section II, we introduce a discrete Markov chain model that
captures the stealing effect phenomenon in Section III. We
demonstrate in Section IV that in the case of a 3-hop network,
the system is stable if and only if the stealing effect is present
(p > 0). However, for larger linear K-hop topologies (K > 3)
the network is always unstable, as proven in Section V for
K = 4, and presumably so for larger K with a formal proof
for the case p = 0. Even though 802.11 multihop networks are
known to suffer from unfairness and starvation (see [16, 21,
36, 39]), to the best of our knowledge, to date the (in)stability
of 802.11 multihop networks has not been demonstrated either
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experimentally or analytically.
After elucidating the sources of instability, we focus on the

problem of devising distributed channel access mechanisms
to ensure stability in multi-hop networks. This issue has
received much attention since the seminal work of Tassiulas
and Ephremides [41]. Most of the solid, analytical work on this
problem [14, 22, 40, 44, 46] follow a “top-down” approach, i.e.,
they start from a theoretical algorithm that provably achieves
stability and then try to derive a distributed version. The
drawback of this approach is the difficulty of testing the
proposed solution in practice by using existing wireless cards.
Indeed, despite all the previous theoretical work, few solutions
have been implemented and tested to date [11, 43]. To bridge
this gap, we instead resort to a bottom-up approach, i.e., we
start from the existing IEEE 802.11 protocol, identify the main
causes of turbulence and instability, and then we derive a
practical and decentralized mechanism to solve this problem.

In Section VIII, we propose and analyze a new, distributed
flow-control mechanism, called EZ-flow, that solves the tur-
bulent behavior of IEEE 802.11 WMNs. EZ-flow requires
no modifications to the IEEE 802.11 protocol and is readily
implementable with off-the-shelf hardware. EZ-flow runs as
an independent program at each relaying node. By passively
monitoring buffer occupancy at successor nodes, it adapts a
parameter of IEEE 802.11, the minimum contention window
CWmin (CWmin is inversely proportional to the channel
access probability). The standard way to obtain the buffer
occupancy information is via message passing. Message pass-
ing, however, may further exacerbate congestion and reduce
resources available for sending useful data [44]. To avoid this
drawback, EZ-flow takes advantage of the broadcast nature of
the wireless medium to infer buffer occupancy at successor
nodes. Obtaining this information without message exchanges
is one of the major advantages of EZ-flow as it enables the net-
work to achieve stability without any communication overhead
and without requiring the knowledge of the capacity (which
is time varying and hard to obtain in real implementations).

We end the paper by validating the stabilizing properties of
EZ-flow experimentally in Section IX and summarizing our
findings in Section X.

II. BACKGROUND

A. Problem Statement

We consider the case of a wireless multi-hop topology such
as the one in the backhaul of a mesh network. The backhaul
is composed of three types of nodes: (i) a Wired Access Point
(WAP) that plays the role of gateway and is connected to the
Internet, (ii) Access Points (APs) that ensure the access part
of the WMN by having the end-users connected to them (note
that usually the backhaul and access part of a WMN run on
independent channels to avoid interferences) and (iii) Transit
Access Points (TAPs) that transport the data packets through
multiple hops from the WAP to the AP and back.

We then focus on the stability of these multi-hop networks
by analyzing the queue evolution at the relay nodes (TAPs),
both analytically and experimentally.

B. Related Work

Much effort has been put into understanding how IEEE
802.11 behaves in a multi-hop environment. Previous works
show the inefficiency of the protocol in providing optimal
performance, as far as delay, throughput and fairness are
concerned [19]. In [33], Nandiraju et al. propose a queue
management mechanism to improve fairness. However, as
they mention in their conclusion, a solution to the inherent
unfairness of the IEEE 802.11 MAC layer is needed for their
mechanism to work properly. In [26], Jindal and Psounis claim
that the performance of IEEE 802.11 in multi-hop settings is
not as bad as it could be expected. For instance, they show
an example through simulation where IEEE 802.11 achieves
a max-min allocation that is at least 64% of the max-min
allocation obtained with a perfect scheduler. Our experiments,
in Section IX, show that the performance may actually be
much worse. We believe that the cause of the discrepancy is
that [26] assumes that flows are rate-controlled at the source,
whereas we do not make such an assumption. To tackle the
inefficiency of IEEE 802.11, different approaches have been
proposed and we regroup them into five categories.

1) Throughput-Optimal Scheduling with Message Passing:
A first analytical solution to the stability problem in multi-hop
networks is discussed in the seminal work of Tassiulas and
Ephremides [41], which introduces a back-pressure algorithm.
Their methodology uses a centralized scheduler that selects
for transmission the link with the greatest queue difference,
i.e. the greatest difference in buffer occupancy between the
MAC destination node and the MAC source node. Such a
solution works well for a wired network, but is not adapted to
a multi-hop wireless network where decentralized schedulers
are needed due to the synchronization problem. Toward this
goal, Modiano et al. introduced the first distributed scheduling
framework that uses control messages to achieve throughput
optimal performances [32]. Further extensions to distributed
scheduling strategies have been discussed in works such
as [14], where Chapokar et al. propose a scheduler that attains
a guaranteed ratio of the maximal throughput. Another effort
to reduce the complexity of back-pressure is presented in [46],
where Ying et al. propose to enhance scalability by reducing
the number of queues that need to be maintained at each node.
The interaction between an end-to-end congestion controller
and a local queue-length-based scheduler is discussed by
Eryilmaz and Srikant in [17]. The tradeoff that exists in each
scheduling strategy between complexity, utility and delay is
discussed in depth in [44] by Yi et al. One of the drawbacks of
these previous methods is that they require queue information
from other nodes. The usual solution is to use message passing,
which produces costly overhead even if it is limited to the
direct neighbors.

2) Throughput-Optimal Scheduling with CSMA and without
Message Passing: Some recent works propose schedulers that
do not require queue information from other nodes. In [22],
Gupta et al. propose an algorithm that uses the maximal
node degree in the network. Proutière et al. [34] propose
another algorithm, where each node makes the scheduling
decision based solely on its own queue. Similarly, Marbach
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and Eryilmaz propose a throughput-optimal approach that
uses a backlogged-based CSMA mechanism for scheduling
and a congestion signal marking mechanism for source-rate
control [31]. Shin et al. [40] have recently proposed an
algorithm that achieves stability and where each node makes
scheduling decisions on the basis of a logarithmic function
of its own buffer occupancy. Nevertheless, even though their
algorithm is throughput-optimal for the case of a perfect
CSMA, it requires a very large buffer size (i.e., in the order
of thousands of packets). Such a requirement presents two
drawbacks: First, large buffers imply a large end-to-end delay;
second, the requirement of such large buffers does not match
with current hardware that usually have a standard MAC
buffer of only 50 packets. A different approach was followed
by Jiang and Walrand who introduced an adaptive CSMA
algorithm that adjusts the transmission aggressiveness based
on a differential between the arrival and service rate [24].
To sum up, significant theoretical progress has been recently
made on algorithms that are based on variations of or around
the MaxWeight algorithm, in order to provide queue stability
and maximum throughput for a wide range of scenarios.
Nevertheless, van de Ven et al. proved that this stability
guarantee relies on the fundamental premise that the system
consists in a fixed set of nodes with a fixed traffic demand.
However, in case variability is accounted for in the system,
MaxWeight policies may fail to provide stability [42]. There
is therefore still a need to develop mechanisms that can cope
with the network variability, as it is an inherent characteristic
of a practical wireless network.

3) Practical Approaches at the MAC Layer: Despite this
significant body of analytical work, almost all the existing
solutions are still far from being compatible with the current
IEEE 802.11 protocol, and require in general knowing the
feasible capacity region. One possible solution is to estimate
it before running the MAC algorithm and to then use an
optimization-based rate control at the network layer [37]. Our
approach differs from the previous works in the sense that we
propose a practical solution that does not require estimating
the capacity region. Our solution is implemented on off-the-
shelf hardware and takes advantage of the broadcast nature
of the wireless medium to derive the queue information of
neighboring nodes. Another practical scheme, developed in
parallel with our work, is the hop-by-hop congestion con-
trol mechanism DiffQ in [43], which implements a form
of backpressure (i.e., prioritizing links with large backlog
differential). To achieve this implementation, DiffQ lets each
node inform its neighbors of its queue size by piggybacking
this information on the data packet (i.e., modifying the packet
structure by adding an additional header) and then it schedules
the packets in one of the four MAC queues (each one with a
different CWmin value) depending on the backlog difference.
Our approach differs in two ways: (i) We use the next-
hop queue information instead of the differential backlog,
which results in an implicit congestion signal being pushed
back more rapidly to the source; (ii) as opposed to DiffQ,
we do not modify the packet structure in any way as we
passively derive the next-hop buffer occupancy without any
form of message passing. To the best of our knowledge, EZ-

flow is the first implementation that solves the turbulence
and instability problem in real 802.11-based multi-hop testbed
without modifying the packets and without any form of
message passing. We also point out that the novel passive
queue derivation methodology of our BOE (Buffer Occupancy
Estimation) module, detailed in Section VIII-C, is potentially
compatible with new algorithms such as DiffQ; it could allow
them to eliminate the need to piggyback the queue information
(resulting in unmodified packet structure).

4) Practical Approaches at Upper Layers: Another line of
research, parallel to ours, tackles congestion at the transport
layer rather than the MAC (link) layer. In [35], Radunović et
al. introduce a new practical system architecture called Hori-
zon. Horizon uses back-pressure to perform load-balancing
and multi-path routing in mesh networks using TCP. In [36],
Rangwala et al. present limitations of TCP in mesh networks
and propose a new rate-control protocol named WCP that
achieves performances that are both more fair and efficient.
Similarly, Shi et al. focus on the starvation that occurs in TCP
when a one-hop flow competes with a two-hop flow and they
propose a counter-starvation policy that solves the problem
for this scenario [39]. Garetto et al. also tackle the starvation
problem at an upper layer [21]. They propose a rate-limiting
solution and evaluate it by simulation. Their main reason for
not using the MAC-based approach is to ensure compatibility
with 802.11-based mesh network currently deployed. EZ-flow
is also fully compatible with the existing protocol because it
only varies the contention window CWmin, a modification
allowed by the standard. Our approach differs from previous
work in the sense that we tackle the problem at the MAC
layer without using any form of message passing. The work
of Yi and Shakkottai showing that a hop-by-hop congestion
control outperforms an end-to-end version further supports our
approach [45].

5) Practical Approaches Exploiting Broadcast: Finally, an-
other kind of work, which is similar to ours in the idea of
exploiting the broadcast nature of the wireless medium, is
found in cooperative diversity and network coding. In [27],
Katti et al. propose that relay nodes listen to packets that are
not necessarily targeted for them in order to code the packets
together later on (i.e. XOR them together) and thus increase
the channel capacity. In [12], Biswas and Morris present a
routing mechanism named ExOR that takes advantage of the
broadcast nature to achieve cooperative diversity and thus
increase the achievable throughput. Note that EZ-flow can
potentially work with routing solutions such as ExOR. Indeed,
the fact that the forwarded packets are not all sent to the same
successor node implies that the forwarding process may not be
FIFO (First-In, First-Out) anymore and thus the information
derived by the BOE becomes more noisy. Nevertheless, by
using a larger averaging period to smoothen the noise, this
information could still be useful for congestion control. More-
over, to perform congestion control, a node does not always
need to know precisely which successor (i.e., which next-hop
relay) gets its packets: It just needs to keep to a low value the
total number of packets that are waiting at all of its successors
to be forwarded. This could be done using a methodology
similar to the one presented in this paper for the unicast
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case. A similar extension of a congestion-control scheme
from unicast to multicast is discussed by Scheuermann et al.
in [38]. Finally, in [23] Heusse et al. also use the broadcast
nature of IEEE 802.11 to improve the throughput and fairness
of single-hop WLANs by replacing the exponential backoff
with a mechanism that adapts itself according to the number
of slots that are sensed idle. Our work follows the same
philosophy of taking advantage of the “free” information given
by the broadcast nature. Apart from this, our approach is
different, because we do not use cooperation and network
coding techniques at relay nodes. Instead, in a competitive
context, we derive and use the next-hop buffer occupancy
information to tackle the traffic congestion occurring in multi-
hop scenarios.

III. MODELING THE SOURCES OF INSTABILITY

Figure 1 shows that a particular 3-hop network is stable,
but not a 4-hop one. In order to understand these experimental
results showing a drastic behavioral transition, we introduce
an analytical model inspired from the behavior of CSMA/CA
protocols (e.g., 802.11-like protocols) with some necessary
simplifications for the sake of tractability. We emphasize that,
given the mathematical assumptions, our analysis is exact.

A. MAC Layer Description
The first common assumption [14, 17, 30, 41, 46] is that of

a slotted discrete time axis, in other words, each transmission
takes one time slot and all the transmissions occurring during
a given slot start and finish at the same time. We consider a
greedy source model, i.e., the WAP (gateway) always has new
packets ready for transmission. Assuming a K-hop system, the
packets flow from the WAP to TAPK , via TAP1, TAP2, . . .,
TAPK−1. TAPs do not generate packets of their own. Each
TAP is equipped with an infinite buffer.

We assume that the system evolves according to a two-
phase mechanism: a link competition phase and a transmission
phase. The link competition phase, whose length is assumed
to be negligible, occurs at the beginning of each slot. During
this phase, all the nodes with a non-empty buffer compete
for the channel and a pattern of successful transmissions
emerges, referred to as transmission pattern in this paper.
Given the current state of buffers, the link competition process
is assumed to be independent of competitions that happened
in previous slots. This assumption is similar to the commonly
used assumption of exponentially (memoryless) distributed
backoffs. During this phase, non-empty nodes are sequentially
chosen at random and added to the transmission pattern
if and only if they do not interfere with already selected
communications (with the notable exception of the stealing
effect described below). The final pattern is obtained when no
more nodes can be added without interfering with the others.

The second phase of the model is fairly straightforward
as it consists in applying the transmission pattern from the
previous phase in order to update the buffer status of the
system. This buffer status information is of utmost importance
for our analysis because it is the parameter that indicates
whether the network remains stable (no buffer explodes) or
suffers congestion (one or more buffers build up).

B. Discrete Markov Chain Model

We now formalize the model previously described math-
ematically. All packets are generated by the WAP (node 0),
and are forwarded to the last TAP (node K) by successive
transmissions via the intermediate nodes (TAPs) 1 to K − 1.
A time step n ∈ N corresponds to the successful transmission
of a packet from some node i to its neighbor i + 1, or if
K is large enough, of a set of packets from different non-
interfering nodes i, j, . . . to nodes i + 1, j + 1, . . ., provided
these transmissions overlap in time (the transmitters and
receivers must therefore not interfere with each other). We
assume that node 0 always has packets to transmit (infinite
queue), and that node K consumes immediately the packets,
as it is the exit point of the backbone (its queue is always
0). We are interested in the evolution of the queue sizes bi of
relaying nodes 1 ≤ i ≤ K − 1 over time, and therefore we
adopt as a state variable of the system at time n the vector

~b(n) = [b1(n) b2(n) . . . bK−1(n)]
T ,

with T denoting transposition. We also introduce a set of K
auxiliary binary variables zi, 0 ≤ i ≤ K − 1, representing
the ith link activity at time slot n: zi(n) = 1 if a packet
was successfully transmitted from node i to node i+1 during
the nth time slot, and zi(n) = 0 otherwise. Observing that
bi(n+1) = bi(n)+zi−1(n)−zi(n), we can recast the dynamics
of the system as

~b(n+ 1) = ~b(n) +A ∗ ~z(n) (1)

where

~z(n) = [z0(n) z1(n) z2(n) . . . zK−1(n)]
T

A =













1 −1 0 . . . 0

0 1 −1 0
...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1













.

Finally, the activity of a link zi depends on the queue sizes of
all the nodes, which we cast as zi = gi(~b) for some random
function gi(·) of the queue size vector, or in vector form as

~z(n) = g(~b(n)). (2)

The specification of g = [g0, . . . , gK−1]T is the less straight-
forward part of the model, as it requires entering in some
additional details of the CSMA/CA protocols, which we defer
to the next sections. We will first expose it in Section IV for
a K = 3 hops network, and then move to the larger networks
with K = 4 and K ≥ 5 in the subsequent section, as the
specification of g comes with some level of complexity as
K gets larger. Nevertheless, we can already mention here two
simple constraints that g must verify: (i) node i cannot transmit
if its buffer is empty, and therefore zi = gi(~b) = 0 if bi = 0;
(ii) nodes that successfully transmit in the same time slot must
be at least 2 hops apart, as otherwise the packet from node i
would collide at node i+ 1 with the packet from node i+ 2.
Hence

zizi+k = 0 for k ∈ {−2,−1, 1, 2}. (3)
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Collision

competition phase

transmission phase

zi zi+2

Fig. 2. Stealing effect scenario.

We observe that (1) and (2) make the model a discrete-time,
irreducible Markov chain. The (in)stability of the network
coincides with its (non-)ergodicity.

C. Stealing Effect Phenomenon

The stealing effect phenomenon is a result of the
well-known hidden node problem that occurs in multihop
topologies. Indeed, the existence of directional multi-hop
flows in the backbone of mesh networks, from node 0 to
node K may induce unfairness in a way that does not arise
in single-hop scenarios. Figure 2 illustrates an example
where the stealing effect occurs. When node i first enters the
link competition phase, node i + 2 may be unaware of this
transmission attempt. Because it senses the medium to be
idle, node i+2 may therefore start a concurrent transmission
to node i + 3 even though it lost the competition phase
(i.e. node i + 2 selected a larger backoff than node i). As a
collision occurs at node i+ 1 (due to the broadcast nature of
the wireless medium), node i will experience an unsuccessful
transmission, whereas the transmission from node i + 2 will
succeed. We refer to this unfairness artifact as the stealing
effect, which differs from the classical capture effect. The
latter pertains to packets transmitted to the same destination.

Definition 1 (Stealing Effect): The stealing effect occurs
when a node i+ 2 successfully captures the channel from an
upstream node i, even though it accesses the medium later.
We define p to be the probability of the occurrence of the
stealing effect.

In IEEE 802.11, the stealing effect corresponds to the event
where node i + 2 captures the channel, even though it has
a larger backoff value than node i. The probability of this
event depends on the specific protocol implementation. If the
optional RTS/CTS handshake is disabled, then p → 1. If
RTS/CTS is enabled, then p is typically much smaller, but
still non-zero because RTS messages may collide [39]. Indeed,
the transmission time of a control message (e.g., the RTS
transmission time at the 1Mb/s basic rate is 352µs) is non-
negligible compared to the duration of a backoff slot (20µs).

In our model, the stealing effect is captured by having the
function g(·) in (2) depend on p. As revealed by our analysis,
a positive and somewhat counterintuitive consequence of the
stealing effect is the promotion of a laminar packet flow,
namely, a smooth propagation of packets. Indeed, by favoring

B

C
D

A b1

b2

1/2 1/21

(1− p)/2

(1 + p)/2

1/3

(1− p)/3

(1 + p)/3

Fig. 3. Random walk in N2 modeling the 3-hop network. where the 4 regions
are: (A) {0; 0}, (B) {b1 > 0; 0}, (C) {0; b2 > 0} and (D) {b1 > 0; b2 > 0}.

downstream links over upstream ones, it creates a form of
virtual back-pressure that prevents packets from being pushed
too quickly into the network.

D. Stability Definition

A buffer is stable when its occupancy does not tend to
increase indefinitely. More formally, we adopt the usual
definitions of stability (see e.g. Section 2.2 of [13]).

Definition 2 (Stability): A queue is stable when its evolu-
tion is ergodic (it goes back to zero almost surely in finite
time). A network is stable when the queues of all forwarding
nodes (i.e., all TAPs) are stable.

IV. 3-HOP NETWORKS STABILITY

Let us first analyze the 3-hop topology, which remains
relatively simple because only one link can be active at a
given time slot. Indeed, the only three possible transmission
patterns ~z are [1 0 0]T , [0 1 0]T and [0 0 1]T . We can now
complete the description of the function g(·), before analyzing
the ergodicity of the Markov chain.

A. System Evolution

The role of the stochastic function g(·) is to map a buffer
status ~b to a transmission pattern ~z with a certain probability.

First, in the case of an idealized CSMA/CA model without
the stealing effect (p = 0), all non-empty nodes have exactly
the same probability of being scheduled. That is, if only node
0 and node 1 (or, respectively, node 2) have a packet to send,
both patterns [1 0 0]T and [0 1 0]T (resp., [0 0 1]T ) happen
with a probability of 1/2. Similarly, when all three nodes
have a packet to send, each of the three possible transmission
patterns happens with a probability of 1/3.

More generally, when we include the stealing effect, we
capture the bias towards downstream links that are two hops
away. When only node 0 and node 1 compete for the channel,
nothing is changed and the probability of success remains 1/2
as they are only separated by one single hop. However, when
node 0 and node 2 compete together, there is a probability p
that node 2 steals the channel.

This leads us to define function g(·) differently for each
region of Z2 as shown in Figure 3. First, in region A =
{b1(n) = 0, b2(n) = 0}, g([b1(n) b2(n)]

T ) = [1 0 0]T .
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Fig. 4. Queue evolution for 3-hop with different p values.

In region B = {b1(n) > 0, b2(n) = 0} we have that

g([b1(n) b2(n)]
T ) =

{

[1 0 0]T with probability 1/2
[0 1 0]T with probability 1/2.

In region C = {b1(n) = 0, b2(n) > 0},

g([b1(n) b2(n)]
T ) =

{

[1 0 0]T with probability (1 − p)/2
[0 0 1]T with probability (1 + p)/2.

Finally, in region D = {b1(n) > 0, b2(n) > 0}, all three
nodes compete, and node 2 can still steal the channel from
node 0, hence

g([b1(n) b2(n)]
T ) =











[1 0 0]T with probability (1 − p)/3
[0 1 0]T with probability 1/3
[0 0 1]T with probability (1 + p)/3.

B. Stability Analysis

The queue evolution from (1) is a random walk in N2,
as depicted in Figure 3. Theorem 1 shows the stabilizing
influence of the stealing effect.

Theorem 1: A 3-hop network is unstable for the case p = 0
and it is stable for all 0 < p ≤ 1.

Proof: The instability of the case p = 0 is readily proved
with the Non-ergodicity theorem ( [18], p. 30) using the
Lyapunov function

h(b1, b2) = b1, (4)

and setting the constants c = d = 1 in that theorem.
Next we prove the stability of the cases 0 < p ≤ 1 by using

Foster’s theorem (see Appendix) with the Lyapunov function

h(b1, b2) = b21 + b22 − b1b2,

the finite set F = {0 ≤ b1, b2 < 5/p}, the function k = 1 and
the notations

µb1,b2(n) = E
[

h(~b(n+ 1)) | h(~b(n)) = h(b1, b2)
]

εb1,b2(n) = µb1,b2(n)− h(b1, b2),

Step 0

Step 1

Step 2

(2)(1) (8)(7)(6)

(3)

(4)

(5)

(2)

(1)

(8)

(7)

(6)(3)
(4)

(5)

(0)
(0)

(0) (0) (0)

(1-p
S1
2

S1
2+S1

3
) (1-S1

3 )

(1-p
S1
2

S1
2+S1

3
) S1

3

p
S1
2

S1
2+S1

3

1-pS1
3

pS1
3 1

S1
0

S1
0+S1

1

1-
S1
0

S1
0+S1

1

δi(n)∑
k δk(n)

{z0=1} {z1=1} {z2=1} {z3=1}

{ }

[1 0 0 0]T [0 1 0 0]T [0 0 1 0]T [0 0 0 1]T

[1 0 0 1]T

Fig. 5. Decision tree to obtain ~z = g(~b) for the 4-hop model.

where εb1,b2(n) can be interpreted as the drift of the random
walk at time n. Then we verify Foster’s theorem for all the
three regions of N2\F . After some computations, we find that
for Region B \ F , εb1,0(n) = 2− b1(n)/2 < 0. Likewise, for
region C \ F , we get ε0,b2(n) = 1 − (3 + p)b2(n)/2 < 0.
Finally, for region D \ F , we have εb1,b2(n) = 5/3 −
p(b1(n) + b2(n))/3 < 0. Consequently, the two conditions
of the theorem are satisfied and stability is proved.

Finally, in Figure 4 we present the effect of p on the queue
evolution through a simulation of our model. We also mention,
that our theoretical results give insight into monitoring the
queue of node 1 in order to assess the stability of the system
(the function of (4) only considers b1 to prove instability).

V. 4-HOP NETWORKS INSTABILITY

The 4-hop system is relatively similar to the 3-hop, except
that the function g(·) becomes more complex to derive. Indeed
the five possible patterns ~z are now [1 0 0 0]T , [0 1 0 0]T ,
[0 0 1 0]T , [0 0 0 1]T and [1 0 0 1]T

A. System Evolution

The drastic difference when moving to 4-hop topologies is
that nodes that can transmit concurrently will reinforce each
other and will increase their transmission probability [15, 16].

This interdependence makes the determination of g(·) less
straightforward than in the 3-hop case. We capture this com-
plexity by a decision tree, depicted in Figure 5, which maps
all the sequential events that can occur for the selection of the
transmission pattern (one of the states in bold in Figure 5).

Before describing the exact mechanisms behind our decision
tree, we introduce some necessary notations. First, we define
the iteration step m that represents the step between two
sequential events (an event corresponds to either the inclusion
of a node in the transmission pattern or the removal of a node
from the competition). As shown in Figure 5, the decision-tree
process ends in two iterations (m ∈ {0, 1, 2}) and this is due
to the fact that at most two links can be active concurrently
in the transmission pattern of a 4-hop network.
Secondly, we introduce the two indicator vectors ~δ(n) and ~Sm.
The four entries δi(n) = 1{bi(n)>0} indicate which buffers
are occupied (δi(n) = 1) or empty (δi(n) = 0). The vector
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Fig. 6. Random walk in N3 for a 4-hop network.

~Sm = [Sm
0 . . . Sm

3 ]T , which is obtained through an iterative
process, indicates the set of nodes that are still in competition
for the channel at iteration step m. Initially, all the nodes with
a non-empty buffer compete for the channel at step 0 and
therefore ~S0 = ~δ(n). Then the indicator vector at step m, ~Sm,
is obtained by removing from ~Sm−1 the node that was selected
at iteration step m and its direct neighbors. For example, if
we start from the fully-occupied case ~S0 = ~1 and follow the
path where node 1 is selected (z1 is set to 1), the nodes 0, 1
and 2 are removed from the competition and the new indicator
vector becomes ~S1 = [0 0 0 1]T for this path.

The exact probabilities of each link of the decision tree are
denoted in Figure 5. The intuition behind these probabilities
is that at step m all nodes i that are still competing for the
channel (i.e., Sm

i = 1) have an equal probability of being
selected for transmission. Furthermore, if zi−2 is already set
to 1 at step m, the selected node i has a probability p of
successfully stealing the channel, in which case zi−2 is set to
0 and zi is set to 1 instead. Otherwise, zi is set to 0.

The computation of the different transmission pattern proba-
bilities (i.e., the determination of the function g(·)) is obtained
by summing up the path probability of each of the paths
leading to one of the five possible transmission patterns (state
circled in bold in Figure 5). In other words, the probability
of the pattern [1 0 0 0]T (resp., [0 1 0 0]T ) is the probability
of having z0 (resp. z1) set to 1 at step 0, multiplied by the
probability of keeping this selection at step 1 (i.e., no addi-
tional active link or stealing effect). Similarly, the probability
of the pattern [0 0 1 0]T (resp., [0 0 0 1]T ) is obtained by
adding: (i) the probability of having z2 (resp. z3) set to 1 at
step 0, multiplied by the probability of having this selection
maintained at step 1 and (ii) the probability of having z0 (resp.
z1) set to 1 at step 0, multiplied by the probability of having the
stealing effect at step 1. Finally, the probability of the pattern
[1 0 0 1]T is obtained by adding: (i) the probability of having
z0 set to 1 at step 0 multiplied by the probability of having z3
set to 1 at step 1 and (ii) the probability of having z3 set to 1
at step 0 multiplied by the probability of having z0 set to 1 at
step 1. As in Figure 3, Figure 6 summarizes the transmission
patterns probability (i.e., g(·)) for each of the 8 regions of Z3:
A = {0, 0, 0}, . . . , H = {b1(n) > 0, b2(n) > 0, b3(n) > 0}.

B. Stability Analysis

Similarly to the 3-hop network, we model the queue
evolution by the random walk in N3 depicted in Figure 6.
However, contrary to the 3-hop case, the 4-hop case presents
a structural factor that makes the system unstable either with
or without the stealing effect as stated in Theorem 2.

Theorem 2: A 4-hop network is unstable for all 0 ≤ p ≤ 1.

Proof: Starting with p 6= 1, we introduce the function

h(b1, b2, b3) = b1 +
p

1 + p
b3, (5)

the constants c = 3, d = 1, ε = (1− p)/36 and

k(i) =







3 if i ∈ region B
2 if i ∈ region D
1 otherwise

, (6)

Furthermore we introduce the notation

µk,b1,b2,b3(n) = E[h(~b(n+ k))|h(~b(n) = h(b1, b2, b3))]
εk,b1,b2,b3(n) = µk,b1,b2,b3(n)− h(b1, b2, b3),

where εk,b1,b2,b3(n) is the drift of the k-step random walk, and
verifies condition 2 of the Transience theorem (see Appendix)
in Table I.

Region ε-value
A ∩ Sc ε1,0,0,0 = 1 ≥ ε
B ∩ Sc ε3,b1,0,0 = 1−p

36 ≥ ε
C ∩ Sc ε1,0,b2,0 = 1−p

2 + 1+p
2

p
1+p = 1

2 ≥ ε.

D ∩ Sc ε2,b1,b2,0 = 1−p
24 + p2

12 ≥ ε for b2 > 1
ε2,b1,1,0 = 1−p

18 ≥ ε
E ∩ Sc ε1,0,0,b3 = 1

1+p ≥ ε
F ∩ Sc ε1,b1,0,b3 = 1−p

6(1+p) ≥ ε

G ∩ Sc ε1,0,b2,b3 = 4+p+p2

6(1+p) ≥ ε

H ∩ Sc ε1,b1,b2,b3 = p2+1
8(1+p) ≥ ε

TABLE I
PROOF OF CONDITION 2 OF THE TRANSIENCE THEOREM FOR p 6= 1.

Consequently, as conditions 1 and 3 are trivially satisfied,
the system is unstable for p 6= 1.

In the case p = 1, we prove the instability of the network
by using the non-ergodicity theorem ( [18], p. 30) with the
Lyapunov function

h(b1, b2, b3) = 2b1 + b3, (7)

and setting the constants c = d = 2 in that theorem. Indeed,
by computing the drift ε(~b(n)) = ε1,b1,b2,b3(n), we obtain

ε(~b(n)) =











0 if ~b(n) ∈ region B,D, F
1 if ~b(n) ∈ region C,E,G
2/8 if ~b(n) ∈ region H .

(8)

Therefore, as we have non-negative values for all the regions
of the space such that h(~b(n)) > c and as the drift is upper-
bounded by d, we end our proof for p = 1 by applying the
non-ergodicity theorem.
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Fig. 7. Validation of the experimental results from Figure 1 on a different
setup running at various data rate.

These results are fundamental for real networks as they
reveal the tendency of CSMA to naturally produce instability
for 4-hop topologies.

C. Extension to Larger K-hop Topologies

In the case without the stealing effect (p = 0), we can
easily prove the network instability for K = 2, as we did
in the previous sections for K = 3, 4. When p = 0, the
instability of a K-hop topology for any K > 4 follows then
from the following lemma.

Lemma 1 (K-hop Instability): If p = 0, a sufficient condi-
tion for a linear K-hop network to satisfy the conditions of
the non-ergodicity theorem and thus to be unstable is that both
the (K − 1) and (K − 3) hop networks satisfy the conditions
of the non-ergodicity theorem.

Proof: Let us denote the next step expectation of a K-
hop network by µK(n) = E[h(~b(n+ 1)) | h(~b(n))].
Here h(~b) = b1 and therefore we can write

µK(n) = αµK
0 (n) + (1− α)µK

1 (n) (9)

where α = P(zK−1(n) = 0) and

µK
0 (n) = E [b1(n+ 1) | b1(n) = b1, zK−1(n) = 0]

= µK−1(n)
µK
1 (n) = E [b1(n+ 1) | b1(n) = b1, zK−1(n) = 1]

= E [b1(n+ 1) | b1(n) = b1, zK−3(n) = zK−2(n) = 0]
= µK−3(n)

where we have used (3) and the independence of bi(n +
1) − bi(n), 1 ≤ i ≤ K − 3, from bK−2(n) and bK−1(n),
conditionally to zK−3(n) = zK−2(n) = 0. Therefore (9)
becomes

µK(n) = αµK−1(n) + (1− α)µK−3(n),

which implies that µK(n) verifies the inequalities of the non-
ergodicity theorem if µK−1(n) and µK−3(n) do.
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Fig. 8. Validation of the experimental results from Figure 1 on a different
setup running at various data rate.

VI. INSTABILITY AT HIGHER RATES

The analytical model of Section III allows us to explain why
a stable 3-hop network becomes unstable when a 4th hop is
added (see Figure 1). Nevertheless, the results from Figure 1
are obtained with a fixed data rate of 1 Mb/s, a buffer size
limit of 50 packets, and a small-scale testbed where the routers
are used without their external antennas (better control on the
experimental environment). In order to validate our results on
a different setting, we modify the MadWifi driver to unlock
the buffer size limit and to allow the modification of its value
at run time through a simple command. We then set the buffer
limit to 100 packets and repeat the experiment from Figure 1
on the real-scale deployment of Figure 9, with different data
rate settings.

Figure 7 and 8 depict the queue evolution of a 3-hop
network (from node 0 to node 3 in Figure 9) and a 4-hop
network (from node 0 to node 4 in Figure 9) at data rates of:
1 Mb/s, 2 Mb/s, 11 Mb/s and auto-rate. Additionally, Table II
presents the link throughputs and the end-to-end throughputs
achieved at the different data rates.

Our results show that even though l2 is the bottleneck link
for all the data rates (i.e., the link with the smallest capacity
when transmitting alone), the 3-hop network does not become
unstable and this is because of the stealing effect described
in Section III.C. Moreover, the simple addition of a 4th hop
turns the network from stable to unstable (i.e., the queue
remains close to the buffer limit). We note that the queue
size variations are larger than in Figure 1. This is because the

throughput\rate 1 Mb 2 Mb 11 Mb auto-rate
l0 894 kb/s 1.67 Mb/s 6.71 Mb/s 5.79 Mb/s
l1 858 kb/s 1.52 Mb/s 5.82 Mb/s 2.03 Mb/s
l2 754 kb/s 1.28 Mb/s 4.23 Mb/s 1.95 Mb/s
l3 813 kb/s 1.6 Mb/s 5.98 Mb/s 5.49 Mb/s

3-hop 241 kb/s 493 kb/s 1.05 Mb/s 373 kb/s
4-hop 194 kb/s 354 kb/s 791 kb/s 260 kb/s

TABLE II
MEASUREMENTS OF THE LINKS THROUGHPUT AND THE END-TO-END
THROUGHPUT OF A 3- AND 4-HOP LINEAR TOPOLOGY FOR DIFFERENT

DATA RATES.
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Fig. 9. Illustration of the deployment used in Section VI.

real-scale deployment is a less controlled environment more
prone to changing channel conditions. Nevertheless, we stress
that, despite these variations, the change in stability between
a 3-hop and 4-hop network is seen for all the different data
rates that we tested, as predicted by our analytical model.

Our experimental results at higher rates also provide an
interesting finding that is worth mentioning. Indeed, when
observing the 3-hop results, we see that the queue variation
of node 1 increases at higher rates.
To understand this finding, we need to recall that the trans-
mission duration decreases at higher rates. This means that
the period of vulnerability to the stealing effect decreases at
higher rates and, therefore the probability of stealing effect p
decreases as a function of the data transmission rate.
Finally, once we understand the relation between the data rate
and the probability p, we note that our experimental results at
higher rates confirm the simulation results of our analytical
model presented in Figure 4. In other words, we see that
the higher the rate (i.e., the smaller p), the closer the queue
evolution gets to a null recurrent system.

VII. SIMULATIONS ON MULTI-FLOWS TOPOLOGIES

Up to this point in the paper, we have focused on single
flow linear topologies as they are the building block of more
general mesh topologies. However, to show that the stability
problem also arises in more complex topologies, we present in
this section the simulation results obtained with the ns-2 sim-
ulator. Moreover, we evaluate the static stabilization strategy
proposed in [9] that uses a throttling factor q that reduces the
channel access probability of the source, compared to the other
nodes. This factor is defined as the ratio q = cwsrc/cwrelay ,
where cwsrc (cwrelay) is the CWmin contention window at
the source (relay). We note that this strategy ensures that the
first link becomes the bottleneck of the flow and Gao et al.
show that in this situation offered load congestion control is
not needed as it does not improve performance [20].

We analyze the multi-flow topology depicted in Figure 10,
where two concurrent flows compete for the medium. We set
the simulator to use the standard parameters of 802.11 ad-
hoc networks (RTS/CTS disabled, Tx range: 250 m, Cs range:
550 m) and let the simulations run for 100, 000 s.

The two performance metrics we focus on are: (i) the end-
to-end delay (low delays means that the network is stable,
whereas high delay is a symptom of saturated buffers) and
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Fig. 10. Illustration of the evolution of the median of the delay and the
averaged throughput (with confidence interval) depending on the throttling
factor q. We note that the static value q = 1/128 stabilizes the network (i.e.
low delay), while achieving a good throughput performance. As the optimal
parameter q is topology dependent, we design a dynamical protocol, EZ-flow,
that approaches the static performance.

(ii) the throughput. Figure 10 shows the average performance
achieved by the network as a function of the throttling factor q
for the static stabilization strategy. We compute the throughput
and the delay by measuring the average on disjoint 50 seconds
intervals. Then we plot the median value with the 95%-
confidence intervals. We note that standard 802.11 (i.e. q = 1)
performs poorly as expected, with lower throughput and high
end-to-end delays. Furthermore, using an appropriate throttling
factor larger than for the single-flow case [9] (here q = 1/128),
performance are significantly improved by achieving both
negligible delay and higher global throughput due to a lower
packet loss rate (as no buffer overflows in stable regime).

Nevertheless, the optimal throttling factor is hard to guess
beforehand as it is topology dependent. Moreover, discover-
ing it at run-time requires network-wide message passing in
general topologies as the congestion might occur at any node
of the network while only the source throttles itself. In order
to avoid message passing, we designed EZ-flow, a dynamic
hop-by-hop congestion control mechanism described in the
next section; it automatically approaches the performance of
the static stabilization strategy as depicted in Figure 10. EZ-
flow does not require message passing, because all the nodes
adapt their contention window, thus implicitly pushing back
the congestion information to the source.

VIII. EZ-FLOW

A. System Requirements

In the design of our mechanism we focus on developing a
practical, stabilizing solution that is compatible with current
equipments and protocols used in IEEE 802.11 wireless mesh
networks. Toward this goal, we set four main requirements:

• Network stabilization: EZ-flow is designed mainly to
ensure network stability, where we define a network to be
stable if all the relay nodes have their queue finite when
equipped with infinite buffers. In practice, when buffers
are finite, this means that no queue builds up. Further-
more, as the environment changes in real networks, we
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require EZ-flow to automatically adapt itself to changes
in the traffic matrix.

• End-to-end delay reduction: The first implication of
network stability is a reduced end-to-end delay that
should be maintained low with EZ-flow, compared with
IEEE 802.11 alone. Such a requirement of low delays is
of utmost importance in cases where a mesh network
supports real-time, multimedia services such as VoIP,
video-on-demand or online-gaming.

• Unmodified MAC layer: We require that the IEEE
802.11 MAC layer remains unmodified in order to ensure
the compatibility of our solution with the mesh networks
already deployed. To meet this objective, we propose to
implement EZ-flow as a separate program that interacts
with the MAC layer solely through the contention win-
dow CWmin parameter of IEEE 802.11.

• Backward compatibility: We ensure the backward com-
patibility of EZ-flow by having each node derive the
needed information without message passing. This ap-
proach allows for the possibility of an incremental de-
ployment of EZ-flow in an already existing mesh.

B. EZ-Flow Description

First, we introduce the notion of flow, where a flow is a
directed communication between a source and a destination.
In the multi-hop case, the intermediate nodes act as relays to
transport the packets to the final destination. A node i+ 1
is the successor node of node i along a given flow if it
is the next-hop relay in the multi-hop flow. We denote the
buffer occupancy of node i by bi and its minimal contention
window (CWmin) by cwi. In order, not to starve forwarded
traffic, each node that acts both as a source and relay should
maintain 2 independent queues: one for its own traffic and
the other for the forwarded traffic. Furthermore, a node that
has multiple successors should maintain 1 queue per successor
(2 if it acts as source and relay). Indeed, different successors
may encounter different congestion levels and thus EZ-flow
performs best if it can adapt the channel access probability
per successor. Note that, this requirement is scalable as EZ-
flow does not need queuing per destination, but per successors
and the number of successors is typically limited to a single
digit in the case of a WMN.

Second, we describe the two modules forming EZ-flow: (i)
a Buffer Occupancy Estimator (BOE) that derives the buffer
status of the successor node along a flow and (ii) a Channel
Access Adaptation (CAA) that uses the information from the
BOE to adapt the channel access probability through cwi.

C. Buffer Occupancy Estimation

One of the major novelties of EZ-flow lies in the BOE
that passively derives the buffer occupancy at the successor
node bi+1 without requiring any type of message passing.
We emphasize that our BOE works differently than estimation
approaches, such as [25], that sends probe packets to estimate
the total queue size. Instead, in our approach each node i
passively computes how many of its own packets are queued
at node i + 1. Using this information, instead of the total

queue size, EZ-flow aims to keep the number of packets at
a successor’s queue small. This design choice prevents a node
from starving itself due to non-cooperative neighbors (not
performing congestion control).

To perform its task, the BOE keeps in memory a list L of
the identifiers of the last 1000 packets it sent to a successor
node. In our deployment we use the 16-bit checksum of the
TCP or UDP packet as an identifier so as not to incur any
computational overhead due to processing the packet. We note
that this identifier, present in the packet header, could be
used by any mesh network based on TCP/UDP and IP, and
this is clearly the standard in currently deployed networks.
Nevertheless, we stress that this design choice is used without
any loss of generality. Even if, in the future, the standard
would be to run IPsec or to use non-TCP/UDP packets, our
mechanism would simply need to use a lightweight hash of
the packet payload as an identifier instead.

The second information needed is the identifier of the packet
that is actually forwarded by the successor node. This piece
of information can be obtained by taking advantage of the
broadcast nature of the wireless medium. Indeed, node i is
on the range of i+ 1 and is thus able to hear most of the
packets that are sent by node i+ 1 to i+ 2. In the usual
settings, the MAC layer at each node transmits to the upper
layer only the messages that are targeted to it and ignores the
messages targeted to other nodes. However, by setting a node
in the monitoring mode, it is possible to sniff packets that
are targeted to other nodes through a raw socket (as tcpdump
does [7]). Using such a methodology, it is then possible for
a node to track which packets are being forwarded by its
successor node without it requiring any message passing.

Finally, as the standard buffering policy is ”First In, First
Out” (FIFO), node i can accurately compute the number of its
packets stored at node i+ 1 each time it hears a packet from
node i+ 1. Indeed, it only needs to compare the identifier of
the packet it hears with the identifiers of the sent packets it has
in the list L. The number of packets between the corresponding
match (the packet that node i+ 1 forwards) and the last packet
that node i sent (the last entry in the list L) corresponds to
bi+1. It is important to note that the BOE module does not need
to overhear all the packets forwarded by node i+ 1 in order to
work. Instead, it is enough for it to be able to overhear some
packets. Each time node i overhears a forwarded packet from
node i+ 1 (which happens most of the time, experimentally),
it can precisely derive the buffer occupancy and transmit it
to the CAA that will react accordingly. Obviously, the more
forwarded packets node i can overhear, the faster it can detect
and react to congestion. Nevertheless, even in the hypothetical
case where node i is unable to hear most of the forwarded
packets, it will still adapt to the congestion and eventually set
its contention window to the right value.

D. Channel Access Adaptation

The second module of EZ-flow is the CAA that adapts the
channel access probability according to bi+1, which is the 50-
sample average of the bi+1 derived by the BOE. The intuition
behind EZ-flow is that in the case a successor node has already
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Algorithm 1 EZ-flow mechanism at node i
BOE module:
if transmission of packet p to node i+ 1 then

Store checksum of p in PktSent[] (overwrite oldest
entry if needed)
LastPktSent = checksum of p

else if sniffing of packet p from i+ 1 to i+ 2 then
if checksum of p ∈ PktSent[] then
bi+1 = number of packets in PktSent[] between p and
LastPktSent
return bi+1 to CAA module

end if
end if

CAA module:
Require: Reception of 50 bi+1 samples from BOE
bi+1 = Average of 50 bi+1 samples
if (bi+1 > bmax) then
countdown ← 0; countup ← countup + 1
if (countup >= log(cwi)) then
cwi ← cwi · 2; countup ← 0

end if
else if (bi+1 < bmin) then
countup ← 0; countdown ← countdown + 1
if (countdown >= 15− log(cwi)) then
cwi ← cwi/2; countdown ← 0

end if
else
countup ← 0; countdown ← 0

end if

many packets to forward, it is useless to send it more packets.
Even worse, sending more packets degrades the performances.
Indeed, every time node i sends a new packet to be forwarded,
node i+ 1 looses a chance to transmit.

Following this result, we propose a simple policy for the
CAA that uses solely two thresholds: (i) bmin and (ii) bmax.
Then it adapts the channel access of each node by changing
its value of the contention window cwi. Indeed, every time
node i needs to send a packet when the channel is not idle,
it randomly chooses a backoff value that is inside the interval
[0, cwi−1] and it waits for this amount of time before retrying
to transmit (see [8] for more details on how the backoff exactly
works in IEEE 802.11). Therefore, we note that the higher the
cwi is, the lower the channel access probability is.

Our policy makes the decision based on a time average of
the buffer occupancy at the successor node (bi+1). We set the
time average parameter to be 50 samples and then one of three
cases may occur:

• bi+1 < bmin: the average queue at node i+ 1 is below
the lower threshold. This shows that the buffer is under-
utilized. Thus node i should increase its channel access
probability by dividing cwi by a factor of two.

• bi+1 > bmax: the average queue at node i+ 1 is above
the upper threshold. This shows that the buffer is overuti-
lized (or even overflows). Thus node i should decrease
its channel access probability, which it does by doubling

cwi.
• bmin < bi+1 < bmax: it is the desired situation as the

buffer is correctly utilized by being neither empty most
of the time nor saturated. In this case, node i concludes
that it has a correct channel access probability and thus
keeps cwi unchanged.

Other policies than multiplicative-increase, multiplicative-
decrease could be used to update cwi in order to have a higher
range of possible values. Yet, we chose this policy due to the
hardware constraint that requires setting cwi at powers of 2.

Furthermore, we provide a better inter-flow fairness in EZ-
flow by using two parameters:

• countup counts the number of successive times the con-
dition (bi+1 > bmax) happens (overutilization).

• countdown counts the number of successive times the
condition (bi+1 < bmin) happens (underutilization).

These two pieces of information are then used to update the
contention window parameter according to the current cwi
value, where nodes with a high cwi react both quicker to
underutilization signals and slower to overutilization signals
than nodes with a low cwi react.

Finally, the selection of the parameters bmin and bmax can
affect the reactivity and the speed of convergence of EZ-
flow, depending on the topology. Indeed, the smaller the gap
between these two values, the higher the reactivity of EZ-flow
to slight variations, whether due to variations of the traffic load
or not. These parameters can thus be fine tuned depending on
the desired behavior, but fortunately the general values of bmin
and bmax already significantly improve the situation compared
to standard IEEE 802.11. Indeed, the most important parameter
to set is bmin, which has to be very small (i.e., ∼ 10−1) in
order to avoid that the nodes too often become too aggressive
and reach unsupportable rates. The parameter bmax can then
be set with more flexibility depending on the desired reactivity.

E. EZ-Flow Dynamical Model

Using the same notation as in Section III, the dynamics of a
network using EZ-flow are captured by the recursive equations

cwi(n+ 1) = f(cwi(n), bi+1(n)) (10)
bi(n+ 1) = bi(n) + zi−1(n)− zi(n), (11)

where f(·, ·) is defined by

f(cwi(n), bi+1(n)) =






min(cwi(n) · 2,maxcw) if (bi+1(n) > bmax)
max(cwi(n)/2,mincw) if (bi+1(n) < bmin)
cwi(n) otherwise,

with bmax and bmin being, respectively, the maximal and
minimal threshold values for the buffer and mincw = 2m

and maxcw = 2M being the bounds between which the
contention windows can evolve. Practical values are m = 4
and M = 15, thus we always take M > m+1. This discrete-
time model is a Markov chain with the tuple {~b(n), ~cw(n)}
as state, where ~b(n) ∈ NK+1 and where ~cw(n) satisfies both
cwi(n) ∈ {2m, 2m+1, · · · , 2M} and

cwi(n) ≥ 2m+min(l,M−m) when bi+1(n) > bmax + l, (12)
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Region ~z P(~z)
A [1, 0, 0, 0] 1
B [1, 0, 0, 0] cw1/(cw0 + cw1)

[0, 1, 0, 0] cw0/(cw0 + cw1)
C [0, 0, 1, 0] 1
D [0, 1, 0, 0] cw0cw2∑

i=0,1,2
∏

j 6=i cwj

[0, 0, 1, 0] 1− cw0cw2∑
i=0,1,2

∏
j 6=i cwj

E [1, 0, 0, 1] 1
F [0, 0, 0, 1] cw0/(cw0 + cw1)

[1, 0, 0, 1] cw1/(cw0 + cw1)
G [0, 0, 1, 0] cw3/(cw2 + cw3)

[1, 0, 0, 1] cw2/(cw2 + cw3)
H [0, 0, 1, 0] cw0cw1cw3∑

i=0,1,2,3
∏

j 6=i cwj

+ cw1cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

cw3
cw2+cw3

[0, 0, 0, 1] cw0cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

+ cw0cw1cw2∑
i=0,1,2,3

∏
j 6=i cwj

cw0
cw0+cw1

[1, 0, 0, 1] cw1cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

cw2
cw2+cw3

+ cw0cw1cw2∑
i=0,1,2,3

∏
j 6=i cwj

cw1
cw0+cw1

TABLE III
PROBABILITY OF OCCURRENCE OF THE TRANSMISSION PATTERN ~z FOR

THE DIFFERENT REGION OF THE SPACE N3 .

where l > 0. The lower-bound condition (12) comes from
the recursive application of (10) for the last l time slots
(bi+1(k) > bmax for n− l < k ≤ n implies that cwi(k+1) =
min(cwi(k) · 2, 2M )). The state space is divided in 2K−1

regions, which differ by the entries of ~b that are zero and
non-zero (i.e., the queues that are empty or not). Figure 6
illustrates these 8 regions for a 4-hop network (denoted A-H).
In each region, one can compute first the possible outcomes
of the back-off timers that depend on the contention values
~cw(n), and next the resulting transmission patterns that depend

also on the possible collisions due to hidden terminals. The
enumeration of all the possible outcomes is not included here
for lack of space, but it follows the same reasoning as in
Section V. It is summarized in Table III for the 4-hop network
with a stealing effect p = 1 (i.e. no RTS/CTS).

F. Proof of Stability

Equipped with the model described above, we now formally
prove the efficiency of EZ-flow in stabilizing the network. We
give a proof, which holds when

bmin > M −m+ 1. (13)

This condition further reduces the state space of our model as,
following a similar recursive argument than for (12), it implies
that

cwi(n) = 2m when bi+1(n) = 0. (14)

When bmin ≤ M −m+ 1, the proof uses computer-assisted
computations, and is given in [11].

Theorem 3: EZ-flow stabilizes a 4-hop network by main-
taining almost surely finite the queues of all the relaying nodes.

Proof: We apply Foster’s theorem (see Appendix) with
the Lyapunov function

h(b1, b2, b3, cw0, cw1, cw2, cw3) = b1 + b2 + b3,

and the finite set S = {cw0, cw1, cw2, cw3 ≤ 2M ; 0 ≤
b1, b2, b3 ≤ bmax + M − m + 3}. We need to verify that
both conditions (15) and (16) of this theorem are verified for
all points {~b(n), ~cw(n)} within the state space.

We note first that (15) is satisfied by the definition of h and
the non-zero transition probabilities of the random walk.

It takes some more work to verify (16). One needs to
compute

εk,~b(n) = E
[

h(~b(n+ k(~b(n))))|~b(n)
]

− h(~b(n))

for all possible ~cw and with ~b(n) in each of the 7 regions
B-H outside S, similarly to the proof of Theorem 2.

First, we note that the transition probabilities from Table III
imply that:

ε1,~b(n) > 0 for ~b(n) ∈ B,

ε1,~b(n) < 0 for ~b(n) ∈ F ∪H,

ε1,~b(n) = 0 otherwise.

Then, we find that after some computations that for all ~cw,
(16) is verified. In regions F and H , we directly have from
Table III that

k(~b(n)) = 1 when ~b(n) ∈ F ∪H.

In regions D and E, we note that there is a strictly positive
probability of having ~b(n+1) ∈ F ∪H and a zero probability
of having ~b(n+ 1) ∈ B. Therefore, we derive that

k(~b(n)) = 2 when ~b(n) ∈ D ∪ E.

In region G, we see that there is a strictly positive probability
of having ~b(n+1) ∈ D ∪H and a zero probability of having
~b(n+ 1) ∈ B. Thus, this gives us that

k(~b(n)) = 3 when ~b(n) ∈ G.

In region C, there is a probability 1 of having ~b(n+ 1) ∈ G.
Hence, we conclude that

k(~b(n)) = 4 when ~b(n) ∈ C.

For region B, the demonstration is a little more complex. First,
we use that for ~b(n) ∈ B \ S, we have

b1(n) > bmax +M −m+ 3

and

b2(n) = b3(n) = 0.

Thus, it follows from (12) and (14) that

~cw(n) = [2M , 2m, 2m, 2m] for ~b(n) ∈ B \ S.

Next, we obtain ε3,~b(n) by defining Ex(~b(n)) as the event
that

h(~b(n+ 3))− h(~b(n)) = x.
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[...]

[...]

E+3

E+2

E+1

E0

E−1

[b1, 0, 0]
[b1, 1, 0]

[b1 + 1, 1, 0][b1 + 1, 0, 0]

[b1 + 2, 0, 0]

[b1 + 3, 0, 0]

[b1 − 1, 0, 0]

[b1 − 1, 1, 0]

[b1 − 1, 0, 1]

[b1 − 2, 2, 0]

Fig. 11. Tree representing all possible transitions at steps n+1, n+2 and
n + 3 starting from b(n) ∈ B \ S. The five possible resulting events are
are E+3, E+2, E+1, E0, E−1; where Ex = Ex(~b(n)) is the event that
h(~b(n+ 3)) − h(~b(n)) = x.

Then, we compute the probabilities for the five possible
events E+3(~b(n)), E+2(~b(n)), E+1(~b(n)), E0(~b(n)), and
E−1(~b(n)) (see Figure 11). We obtain that

P(E+3) = 1/(1 + 2M−m)3

P(E+2) = 1/(1 + 2M−m)2 − 1/(1 + 2M−m)3

P(E+1) = 1/(1 + 2M−m)− 1/(1 + 2M−m)2

P(E−1) = 2M−m/(1 + 2M−m) ·
(1− 2M−m/(2 · 2M−m + 1)) ·
2M−m/(1 + 2M−m).

Then, we find that ε3,~b(n) = 3 · P(E+3(~b(n))) + 2 ·
P(E+2(~b(n)))+P(E+1(~b(n)))−P(E−1(~b(n))), and because
M −m > 1, we have that

ε3,~b(n) < 0.

Thus

k(~b(n)) = 3 satisfies (16) for ~b(n) ∈ B \ S.

Finally, as Region A ⊆ S, the conditions of Foster’s theorem
are satisfied in all {~b(n), ~cw(n)} within the state space, and
it proves that EZ-flow stabilizes the network.

IX. EXPERIMENTAL VALIDATION

A. Hardware and Software Description

The testbed is composed of 4 laptops running Linux, which
act as source and sink of the traffic, and 9 wireless nodes
equipped with an omni-directional antenna that represent the
multi-hop backhaul of a mesh network. The wireless routers
are Asus WL-500gP, in which we change the mini-PCI WiFi
card to an NMP-8602 Atheros card. Each router runs the
OpenWRT firmware [6] with the MadWifi driver [4] modified
to perform both buffer monitoring and the modification of the
contention window. The wireless cards operate in 802.11b at
a fixed transmission rate of 1 Mb/s and with the RTS/CTS
mechanism disabled. Finally, we set the routing to be static.

We implement the two modules of EZ-flow, the BOE and
CAA, in C code as described in Section VIII. Two practical
constraints need to be accounted for. Both of them are not
required in other implementations with different hardware.

1) Sniffer constraint: We initially intended to deploy both
the BOE and CAA module within the same wireless
card (i.e., the same router), but we had to reconsider
our design. Indeed, the BOE acts mostly as a sniffer
that collects the packets sent either by a node itself
or its direct forwarder. The problem is that a WiFi
card cannot transmit and receive at the same time and
therefore is unable to really sniff its own packet on
the air. Instead the best a sniffer can do is to capture
the packet before it is sent to the MAC layer to be
actually transmitted in the air. However, the drawback
of this technique is that packets can be sniffed as sent
by a node, even though they are dropped by the MAC
layer (for example a buffer overflow), and thus are
never really physically transmitted. To overcome this
limitation, we use two WiFi interfaces per wireless node
(i.e., two routers connected through an Ethernet cable).
One interface is responsible for sending the traffic and
running the CAA. The other interface does not transmit
any packet and acts only as a sniffer that implements
the BOE. We use this approach to simplify the practical
deployment. EZ-flow does not require the use of two
interfaces. Indeed, another approach could be to use
only one interface and to directly implement EZ-flow
at the kernel level of the wireless driver (and not the
application level) in order for the BOE to capture only
the packets that are truly sent at the physical layer.

2) MadWifi constraint: The second practical constraint
comes from the iwconfig command of the Madwifi driver
to increase the contention window CWmin. Indeed, it
has no effect above 210 (even though the driver allows
the command to execute up to 215). We noticed this
flaw in the implementation of the MadWifi command
by checking a single-link capacity for different CWmin
values and observing that it significantly varies up to
210, but it remains unchanged between 210 and 215.

B. Topology Description

We deploy our testbed over 4 buildings of the university
campus where at most 2 flows are concurrently active. Fig-
ure 12 presents the exact map of our mesh network deploy-
ment. On the one hand, the flow F1 is a 7-hop flow for which
the bottleneck link is l2 as shown in Table IV. On the other
hand, the flow F2 is a shorter flow of 4 hops that shares
the same path than F1 and produces a typical parking-lot
scenario. For the sake of comparability, we avoid the effect of
interference from other networks by running our experiments
on channel 12 during the night (1 am - 5 am), but we stress
that the instability problem remains also during daytime as
shown in our demo1. Finally, we use the values from Table IV
to obtain the theoretical optima from Table V that assume a

1Demo available at: http://icawww1.epfl.ch/NetController/ (Video 2)
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0 19 38 57 76 95 m
l0

l5
l4

l3
l2l1

F2 l6

N0 N1 N2 N4

N3

N0 N6N5'

Fig. 12. Illustration of the testbed topology. The hardware used are Asus
WL-500gP routers with an Atheros-based wireless card.

k-hop interference effect between the links with k = 2 and
k = 3 (the experimental setup is somewhere between this two
ranges). To do so, we compute the capacity of all paths of
interfering links Cj+k

j = 1/(
∑j+k

i=j
1
Ci

) for 0 ≤ j ≤ 6−k, and
where Ci is the capacity of link li. The theoretical optimum is
then obtained by taking the capacity Cj′+k

j′ of the bottleneck
path of interfering links within a flow.

C. Measurement Results

The first scenario we consider is when F1 is alone in the
network. Figure 13 shows the buffer evolution with standard
IEEE 802.11 and with EZ-flow turned on. We note that for
IEEE 802.11 both nodes N1 and N2 saturate and overflow,
due to the bottleneck link l2 (between N2 and N3), whereas all
the other nodes have their buffer occupancy negligibly small,
similarly to N3. This results in an end-to-end throughput of
119 kb/s as shown in Table V (note that a similar throughput
degradation for the backlogged case has been observed through
simulation in [29]). In contrast, EZ-flows detects and reacts to
the bottleneck at link l2 by increasing cw1 up to 28. This
action stabilizes the buffer of N2 by reducing the channel
access of link l1. Similarly, EZ-flow detects that the buffer
of N1 builds up and makes N0 increase cw0 until it reaches
our hardware limit of 210 (see Section 4.1). This hardware
limitation prevents EZ-flow from reducing the buffer occu-
pancy of N1 to a value as low as N2. However, we stress
that despite this hardware limitation, EZ-flow still significantly
improves the performance by reducing the turbulence of the
flow and increasing the throughput to 148 kb/s (close to the 3-
hop interference range theoretical optimum and mapping to a
41% reduction in the gap to the 2-hop optimum). Furthermore,
we show through simulation in [11] that EZ-flow completely
stabilizes the network once this limitation is removed.

In the second scenario, we consider F2 alone. Similarly

Mean throughput Standard deviation
l0 845 kb/s 23 kb/s
l1 672 kb/s 49 kb/s
l2 408 kb/s 67 kb/s
l3 748 kb/s 42 kb/s
l4 746 kb/s 28 kb/s
l5 805 kb/s 27 kb/s
l6 648 kb/s 43 kb/s

TABLE IV
ILLUSTRATION OF THE CAPACITY OF EACH LINK OF FLOW F1 . THE

MEANS ARE OBTAINED THROUGH MEASUREMENTS OVER 1200 S.
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Fig. 13. Experimental results for the queue evolution of the relay nodes when
flow F1 or F2 are active. The average number of buffered packets are: (i)
without EZ-flow 41.6 (N1), 43.1 (N2) and 43.7 (N4) and (ii) with EZ-flow
29.5 (N1), 5.2 (N2) and 5.3 (N4). The remaining queues are very small.

to our mathematical analysis of Section V, we note that for
IEEE 802.11 the buffer of the first relay node of F2 (i.e., N4)
builds up and overflows, resulting in a throughput of 157 kb/s.
However, EZ-flow completely stabilizes the network for all the
relay nodes (no queue builds up) by making the source node
N

′

0 increase cw
′

0 up to 28. Thus EZ-flow works even better in
this scenario where it is not blocked by the hardware limitation
and it achieves a throughput of 185 kb/s.

Finally the last scenario is a parking-lot scenario where both
F1 and F2 are simultaneously active. Similarly to what is also
reported in [39] between a 1- and 2-hop flow, Table V shows
that IEEE 802.11 performs very poorly: the long flow F1 is
completely starved in favor of the short flow F2, because N

′

0
is too aggressive (even for its own flow) and thus prevents
the packets from the longer flow F1 from being relayed by
the intermediate nodes N1, N2, N3. However, by its nature,
EZ-flow solves the problem by making the two source nodes,
N

′

0 and N0, become less aggressive in order to stabilize their
own flow. This approach thus solves the starvation problem
and significantly increases both the aggregate throughput of
F1 and F2 and Jain’s fairness index.

Due to space limitation, we point to [10] for additional
experimental and simulation results for dynamic flows with
more complex topologies (e.g., bi-directional traffic).

Mean throughput Theoretical optima Jain’s Fairness
k = 3 k = 2

F1 119 kb/s 151 kb/s 190 kb/s
F2 157 kb/s 183 kb/s 242 kb/s
F1 7 kb/s 0.55
F2 143 kb/s

FEZ
1 148 kb/s 151 kb/s 190 kb/s

FEZ
2 185 kb/s 183 kb/s 242 kb/s

FEZ
1 71 kb/s 0.96

FEZ
2 110 kb/s

TABLE V
MEASUREMENTS OVER 1800 S WITH AND WITHOUT EZ-FLOW. THE

SUB-DIVISION IN THE TABLE SHOWS THE RESULTS FOR: (I) ONE SINGLE
FLOW, AND (II) TWO SIMULTANEOUS FLOWS.
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X. CONCLUSION

We addressed the problem of network stability in CSMA-
based linear wireless mesh network and provided three main
contributions. First, we identified two key factors impact-
ing the stability: the network size and an artifact that we
called stealing effect. Second, we proved analytically and
showed experimentally that 3-hop networks are stable when
we account for the stealing effect, but 4-hop networks (and
presumably larger topologies) are not. Third, we proposed
and designed EZ-flow, a new flow control mechanism for
IEEE 802.11 WMNs. EZ-flow is fully backward compatible
with the IEEE 802.11 standard and works without any form
of message passing. EZ-flow is implemented in a distributed
fashion as a simple program running at each relay node. It
takes advantage of the broadcast nature of the wireless medium
to passively estimate the buffer occupancy at a successor node.
The minimum congestion window parameter is adapted at each
relay node based on this estimation to ensure a smooth flow,
specifically, each relay node adapts its contention window to
avoid buffer build-up at its successor node.

We demonstrated by experiments the attendant benefits of
EZ-flow on a testbed composed of 9 standard wireless mesh
routers deployed over 4 different buildings. Our measurement
results show that EZ-flow simultaneously improves throughput
and fairness performance. To our knowledge, it is the first
implementation of an algorithm addressing instability in a real
multi-hop network. Moreover, we derived a Lyapunov function
with which we analytically prove the stability of an 802.11-
based linear K-hop topology implementing EZ-flow.

We conclude by noting that the methodology followed
by EZ-flow is not limited to line topologies. One possible
approach to dealing with more general topologies is to take
advantage of IEEE 802.11e, which uses four different MAC-
layer queues. This protocol was originally designed to support
Quality of Service (QoS) by categorizing the traffic into four
types of service: (i) Background (BK), (ii) Best Effort (BE),
(iii) Voice (VO) and (iv) Video (VI). Yet to date, this service
differentiation is not commonly used and almost all traffic is
classified as BE and queued accordingly. Thus, the three other
queues are mostly left idle. A node forwarding traffic to up
to four successors could take advantage of the availability of
these MAC-layer queues in order to use one different queue
(thus one different CWmin value) per successor. This approach
suits well the backhaul scenario this paper focuses on, as it
usually follows a tree-based topology with a limited number
of neighbors. In cases where EZ-flow needs to be deployed in
networks with a higher neighbor density, a similar mechanism
could be used with a slight modification. Here, multiple queues
could be implemented at the routing layer (e.g. by using
Click [28]). The BOE would remain unchanged; and the CAA
would control the scheduling rate at which packets belonging
to different routing queues are delivered to the MAC layer,
instead of directly modifying the MAC contention window.

APPENDIX

Theorem 4 (Foster [18], p. 30): Let the transition proba-
bility matrix P on the state space NK (with K > 0) be

irreducible and suppose that there exists a positive function
h : NK → R such that for some finite set S, some ε > 0
and some positive integer-valued function k : NK → R where
sup~b∈NK k(~b(n)) <∞ the following conditions hold

E
[

h(~b(n+ 1)) | ~b(n) =~i
]

=
∑

~k∈N2

p~i~kh(~k) <∞ (15)

for all ~i ∈ S and

E
[

h(~b(n+ k(~b(n)))|~b(n) =~i
]

≤ h(~i)− εk(~b(n)) (16)

for all ~i /∈ S. Then the corresponding Homogeneous Markov
Chain (HMC) is ergodic.

Theorem 5 (Transience [18], p. 31): For an irreducible
Homogeneous Markov Chain (HMC) to be transient, it suffices
that there exist a positive function h(~i),~i ∈ Z3, a bounded
integer-valued positive function k(~i),~i ∈ Z3, and numbers
ε, c, d > 0, such that, setting Sc = {~i : h(~i) > c} 6= 0, the
following conditions hold:

1) sup~i∈Z3 k(~i) = k <∞;
2) E[h(~bn+k(~i))|h(~bn) = h(~i)] − h(~i) ≥ ε, ∀n, for all ~i ∈

Sc;
3) for some d > 0, the inequality |h(~i)−h(~j)| > d implies

p~i~j = 0.
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