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ABSTRACT

Location spoofing is a proven and powerful attack against Vehicle-
to-everything (V2X) communication systems that can cause traffic
congestion and other safety hazards. Recent work also demonstrates
practical spoofing attacks that can circumvent application layer
sanity checks. In this paper, we propose three novel physical layer
plausibility checks that leverage the received signal strength indica-
tor (RSSI) of basic safety messages (BSMs). These plausibility checks
have multi-step mechanisms to improve not only the detection rate,
but also to decrease false positives. These checks can be run in-
dependently by each vehicle and do not rely on the assumption
that the majority of vehicles is honest. We comprehensively evalu-
ate the performance of these plausibility checks using the VeReMi
dataset (which we enhance along the way) for several types of at-
tacks. We show that the best performing physical layer plausibility
check among the three considered achieves an overall detection
rate of 83.73% and a precision of 95.91%, far outperforming recently
proposed machine learning-based misbehavior detection methods
operating at the application layer.
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1 INTRODUCTION

Vehicle-to-everything (V2X) aims to improve traffic safety and
efficiency through timely over-the-air exchange of information be-
tween vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I).
V2X effectively increases the operator’s and vehicle’s line-of-sight,
creating a safer environment. In V2X, vehicles communicate using
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Basic Safety Messages (BSMs) that are defined in the SAFE J2735 stan-
dard. A BSM contains situation data, such as the vehicle’s location,
speed, acceleration, heading, and brake status.

Yet, concurrently to enhancing safety, V2X also raises security
risks. Specifically, attackers may exploit this system of communica-
tion to broadcast bogus BSMs containing fake vehicle location or
speed in order to create ghost vehicles or imaginary traffic jams.

Data authenticity in V2X is ensured by authentication protocols
that are defined in IEEE 1609.2 [9]. The problem is that even if the
data is authentic, its correctness is not guaranteed. Indeed, attacks
have already been simulated and practically demonstrated against
current connected vehicle applications, such as Intelligent Traffic
Signal Systems (I-SIG) [1, 5].

There exists, therefore, also a need to ensure the correctness
of the data (i.e., data-centric trust [20]), which can be achieved
through plausibility checks. This approach resembles that of intru-
sion detection systems used in computer networks, where detection
algorithms monitor the network for unusual or suspicious activity.
Likewise, a detection system for V2X should be capable of locally
detecting misbehavior and ensuring revocation of credentials in a
timely manner [13].

A possible approach for implementing misbehavior detection is
to run plausibility checks at the application layer (namely, by check-
ing the plausibility of the contents of the BSMs). Recent work [14]
proposes machine learning algorithms to this effect, and the perfor-
mance of the algorithms are verified against the VeReMi dataset [18].
This dataset, simulated and built on top of the VEINS simulator [15],
contains labeled data consisting of well-behaved vehicles along with
five different type of position forging attacks (cf. Section 2.2). The
work in [14] shows that, overall, a K-Nearest Neighbors (KNN)
algorithm yields a detection rate of 61% while a Support Vector Ma-
chines (SVM) algorithm achieves a detection rate 65%. In particular,
it turns out that these algorithms fail in effectively detecting certain
position forging attacks that mimic the movements of a real vehicle.
The work of [5] exploits this weakness to mount a practical attack
against a real Intelligent Traffic Signal System (I-SIG) for connected
vehicles.

These limitations of application layers plausibility checks call
for the design of additional, complementary approaches. In this
work, we propose, design, and evaluate new plausibility checks that
operate at the physical layer. While there already exist misbehavior
detection algorithms based on physical layer properties such as
Angle-of-Arrival (AoA), Direction-of-Arrival (DoA), Doppler-Shift,
Time-Difference-of-Arrival (TDoA), and Received Signal Strength
Indicator (RSSI) [6, 21, 23], most of these approaches attempt to
defend against a specific type of attacks (e.g., a Sybil attack). In
contrast, our aim is to design algorithms whose robustness are
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tested against a range of possible attacks, including the attack used
in [5].

Our approach is based on collecting the RSSI value obtained from
each individual BSM and on using this data to determine whether
a received BSM is malicious. We propose three plausibility checks
to classify the transmitting vehicle as either malicious or normal.
These plausibility checks are evaluated against the VeReMi dataset.

The contributions of this paper are five-fold:

(1) We augment the VeReMi dataset with new information (i.e.,
the location of the receiving vehicles for each BSM), which
is necessary for performing physical layer analysis.

(2) We qualitatively validate the RSSI data produced by VeReMi
by performing a comparison with actual RSSI data obtained
under real-world conditions.

(3) We statistically characterize the RSSI behavior of five differ-
ent position-forging attacks.

(4) We introduce a physical layer misbehavior detection system
in the form of three plausibility checks First-BSM (FBSM),
Majority-BSM (MBSM), and Weighted-BSM (WBSM) that
are used to detect misbehavior.

(5) We perform an in-depth evaluation of the performance of
these three plausibility checks and compare their perfor-
mance with the application layer plausibility checks of [14].
We show that, overall, FBSM and WBSM achieve much
higher detection rates (recall) and precision.

The paper is organized as follows. Section 2 covers the related
work of misbehavior detection in V2X and datasets. Section 3 de-
scribes the experimental setup. Section 4 introduces our RSSI-based
plausibility checks. Section 5 explains our experiments before Sec-
tion 6 presents our results. Section 7 discusses current limitations
of our system. Section 8 concludes the paper.

2 RELATED WORK
2.1 V2X and Misbehavior Detection

A complete V2X system must implement a security mechanism
to ensure that the data broadcast is trustworthy. Data-centric mis-
behavior detection is an important component of such a security
mechanism that evaluates the correctness of data contained in BSMs.
Several prior papers on data-centric misbehavior detection either
require consensus [10] or a central authority [2]. In particular, [2]
proposes a scalable central misbehavior evaluation system for On-
Board Units (OBUs) and roadside units (RSUs) to detect attackers
from within the network. The approach requires that every node
within the network forward incident reports to a central authority,
which takes the final decision [2]. A major constraint of this method
lies in the assumption that the majority of nodes are honest. The
plausibility checks discussed in our paper can be run independently
by each vehicle and do not rely on the above assumption.

The recent work of [14] proposes and evaluates application layer
plausibility checks that relax the assumption that the majority of
nodes must be honest. The outputs of the plausibility checks are
used in the feature vectors of machine learning algorithms such as
K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) to
perform misbehavior detection. Nevertheless, the methods of [14]
perform poorly in detecting position forging attacks that mimic the
movements of a real vehicle. These attacks are indeed difficult to
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detect at the application layer since an attacking vehicle may be
behaving normally based on the BSM contents. In this paper, we
show that these types of attacks are more easily detectable using
physical layer properties.

The work of [5] exploits the aforementioned vulnerability of
application layer plausibility checks to launch a traffic congestion
attack against a real Intelligent Traffic Signal System (I-SIG). An
I-SIG uses BSMs broadcast by connected vehicles to actuate traffic
signals at an intersection and reduce congestion. The work of [5]
shows how to spoof the BSM payload in order to imitate a legitimate
vehicle, meaning that BSM fields such as acceleration, velocity, and
position are all cross-validated and appear to be valid. The attack
can impact traffic control signals at intersections, costing drivers
several order of magnitude higher travel time than normal.

In [17], a physical layer method is proposed to detect misbe-
having vehicles, using Doppler speed and angle-of-arrivals. The
method relies on a trust scoring mechanism which is implemented
by surveying other vehicles in the network. The system applies
Kalman filtering and chi-squared tests to the Doppler speed and
the angle-of-arrival data to determine the most trustworthy vehicle
within a vehicle’s perimeter. The system then uses that vehicle as a
reference to test the trustworthiness of other vehicles. This method
has not been tested against various position forging attacks, such as
the ones later discussed in VeReMi. Another issue is that this system
does not perform well under high density traffic conditions where
vehicles move slowly, since the Doppler speed of different vehicles
is difficult to distinguish. The RSSI metric has the advantage of not
depending on the vehicle’s speed.

To the best of our knowledge, [22] is the only work that uses
the RSSI of BSMs for misbehavior detection, and this for detecting
Sybil attacks. A Sybil attacker generates several fake identities with
false messages, severely impairing the functions of safety-related
protocols. The method of [22] exploits statistical properties of the
RSSI of surrounding vehicles to detect Sybil attacks. Vehicles are
classified as part of a Sybil attack if their RSSI values are sufficiently
similar to those of other vehicles, implying that the BSMs are being
emitted from the same source. The limitation of this method is
that it does not take into account a malicious vehicle that does not
transmit its own location but generates a singular ghost vehicle at
a different location. Hence, this method can be exploited by other
position forging attacks, such as those contained in VeReMi.

2.2 Data Sets

There exist several datasets that measure RSSI behavior in vehicular
environments. For instance, [8] conducts a field testing campaign
as part of the iTETRIS European research project, assessing the
impact of urban environments and different RSU deployment con-
ditions, to test the quality of IEEE 802.11p Vehicle to Infrastructure
(V2I) communications [8]. In this dataset, 22 different RSUs broad-
cast messages to a vehicle moving in an urban environment. The
locations of the RSUs cover different scenarios such as trees and
vegetation, bridges and elevation, and Non-Line-of-Sight (NLOS)
conditions. The dataset contains the RSSI of the received BSMs
for different positions of the vehicle. However, this dataset only
includes normal behavior, and does not include attacker data. There
exist other current real-time datasets, but they also do not appear
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Table 1: VeReMi Attack Types Description

ID:Attack Detail Parameters
1: Constant Attacker transmits X = 5560,
' a fixed location y = 5820
9: Constant Attacker transmits Ax = 250,
a fixed, offset added
Offset .\ Ay =-150
to the real position
Attacker sends a random .
e uniformly random
4: Random position inside the .
. . in playground
simulation area
Ax,A
Attacker sends a random X2y
8: Random e are uniformly
position in a rectangle
Offset around the vehicle random from
[-300,300]
Attacker beh 11 -
acker behaves normally Stop probability
for some time and then )
16: Eventual attacks by transmittin increases by
Stop Y tng 0.025 each
the same position s
position update
repeatedly

ideal for evaluating the performance of a misbehavior detection
system due to the absence of attackers, the inconsistency in BSMs
broadcast rate [12], and the presence of a single vehicle [4].

The VeReMi dataset does contain several different types of at-
tacker data with consistent BSM broadcast rate [18]. This open
source dataset is attempting to become the dataset of reference for
the evaluation and comparison of misbehavior detection algorithms.
VeReMi comprises 5 different position forging attacks, 3 vehicle
densities (low, medium and high), 3 attacker densities (10%, 20%
and 30%), and at every combination of those 3 parameters the simu-
lation is repeated 5 times for randomization. This dataset is built to
test misbehavior detection mechanisms in diverse scenarios. The 5
different types of attacks are shown in Table 1. The dataset contains
the message logs of the attacking and legitimate (non-malicious)
vehicles. This includes reception time stamp, claimed transmission
time, claimed sender, unique message ID, GPS position (x, y, z),
RSSI value, position noise and speed noise vector for each receiving
vehicle in every scenario. A ground truth file stores the true values
of the BSM attributes of both attacking and legitimate vehicles. The
attacker type attribute in the ground truth file keeps the label of
the attack ID as described in Table 1. This was all parsed by [14].
However, the parsed dataset lacks information about the location
of receiving vehicles at the time they receive BSMs. This makes
it very difficult, if not impossible, to determine the true distance
between receiving and transmitting vehicles at the time that a BSM
is received.

To reliably trust any results from VEINS, we need to validate that
RSSI values correspond to real world measurements. While there
exists some prior work on checking the accuracy of the noise and in-
terference models of the VEINS simulator in real world settings [3],
we nevertheless conduct our independent study of comparing RSSI
behavior in simulation versus real world data.
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Figure 1: Simulated RSSI behavior according to distance be-
tween receiver and transmitter.

3 EXPERIMENTAL SETUP

The first step is to recreate simulations in VeReMi. We change the
code in VeReMi to properly record the receiver’s location at the
time of a received BSMs arrival. Next, we create a script that parses
the data and converts the file format from JSON to CSV. The JSON
file output of VeReMi’s current framework indeed has many objects
inside one file formatted in an unorthodox manner. Columns in the
CSV file contain information about the vehicle including the label
of the vehicle in the last column.

We have published the new generated dataset to facilitate future
work on physical layer analysis at [16].

3.1 RSSI Behavior: Simulation vs. Real Data

We first qualitatively validate the RSSI data produced by the simula-
tor. Specifically, we run simulations for high traffic density vehicles
and a 30% attacker density. Figure 1 shows the raw simulation BSM
data produced using VeReMi. The yellow points represent each
individual BSM sent, and the trend line represents the mean value
at each distance apart away from the receiving and transmitting
vehicle.

We generate Figure 2 from the iTETRIS dataset previously men-
tioned. We consider 4 different scenarios: (1) direct line-of-sight
(LOS) (traces T1 and T2); (2) non-line-of-sight (NLOS) (traces T3
and T4); (3) bridges and elevation (trace T7); and (4) trees and veg-
etation (traces T8 and T9). Note that we focus on the qualitative
behavior of the data, rather than the precise numerical values. As
stated above, RSSI values depend on the environment, hence it is
important to find out whether the behavior appears consistent for
all environments.

From the figures, we observe that (1) the RSSI behavior for real-
data does stay consistent across different environments; (2) the
RSSI behavior for the simulation data closely resembles the real-
world data. These observations justify the use of VeReMi to test the
performance of plausibility checks.

3.2 Misbehavior vs. Normal Behavior

To create a misbehavior detection system using RSSI, it is important
to understand the RSSI behavior caused by different attacks. In this
case, by observing attacks of type 1, 2, 4, 8, and 16 described in
Section 2.2, we next show that these attacks exhibit distinct RSSI
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Figure 2: Real RSSI behavior according to distance between
receiver and transmitter. Note that traces Ty and T, corre-
spond to line-of-sight, while traces T3 and T; correspond to
non-line-of-sight (NLOS).

vs. distance behavior. Note that for normal behavior, the distance
represents the real distance, while for misbehavior, the distance is
erroneous due to the spoofed positions advertised by attackers.

In Figures 3 through 7, we compare the RSSI behavior under
normal conditions and under attacks. When the results overlap, we
only show the maximum and minimum values observed for the
normal behavior. Notice the different scales of the x-axis on the
different figures. The maximum communication range of vehicles
is 800m, hence the normal RSSI behavior does not extend beyond
that distance.

Attack Type 1: Constant Position. The first case is when attackers ad-
vertise a constant position, while they are actually moving. Figure 3
shows spikes. These spikes are primarily due to stationary receiver
vehicles receiving constant position BSMs from attackers. Hence,
these stationary receivers receive many messages corresponding to
the same (fake) distance. Since the attackers are moving and the real
distance is changing, the range of RSSI corresponding to the (fake)
fixed distance varies significantly behind normal. Another impor-
tant observation is that the real communication range for normal
vehicles is at most 800m, but many fake distances induced by the
BSMs of constant position attackers far exceed that communication
range.

Attack Type 2: Constant Offset. The RSSI vs. distance curve is shown
in Figure 4. We note that this curve is symmetrical. The right half
of the attacker RSSI vs. distance curve seems to have shifted in
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Figure 3: RSSI behavior according to distance between re-
ceiver and transmitter for Attack Type 1.
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Figure 4: RSSI behavior according to distance between re-
ceiver and transmitter for Attack Type 2

distance in comparison to the normal curve, and this is because
the constant offset makes a misbehaving vehicle appear farther
away than its true location. The left half of the attacker RSSI vs.
distance curve corresponds to cases where the constant offset makes
a misbehaving vehicle appear closer to the receiving vehicle.

Attack Type 4: Random Position. Attack type 4’s behavior is shown
in Figure 5. Since attack type 4 is a random position attack, we can
see that the RSSI vs. distance curve is random, similar to a uniform
distribution.

Attack Type 8: Random Offset. This attack has the behavior most
similar to normal. Attack type 8 is a random offset attack, which
means that sometimes the offset can be very small. Therefore, some
of the RSSI data will behave normally. Nevertheless. similar to
the constant offset (attack type 2), there is still a pattern which
resembles a shifted normal RSSI vs. distance curve.

Attack Type 16: Eventual Stop. The behavior of attack type 16 is
shown in Figure 7. Not surprisingly, this sudden stop attack closely
resembles the constant position attack (Attack type 1) since the
sudden stop attack turns into a constant position attack.
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Figure 5: RSSI behavior according to distance between re-
ceiver and transmitter for Attack Type 4
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Figure 6: RSSI behavior according to distance between re-
ceiver and transmitter for Attack Type 8
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Figure 7: RSSI behavior according to distance between re-
ceiver and transmitter for Attack Type 16

4 PLAUSIBILITY CHECKS
4.1 Identifying Anomalous BSMs

The framework for the vehicular misbehavior detection system is
shown in Figure 8. When a vehicle enters a new area it must know
the RSSI versus distance distribution, either by downloading it from
a trustworthy source such as a roadside-unit (RSU) (see Section 7
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Figure 8: Block diagram of detection misbehavior detection
framework

for further discussion) or predefined. This distribution will be used
to classify individual BSMs.

At every reception, the RSSI is computed by the receiver. Using
the RSSI distribution and the RSSI computed by the vehicle, the
BSM will be classified as normal or as anomalous. The class of
the BSM will be used as an input to the three different plausibility
checks described in this Section. The output of these plausibility
checks classify the sender as normal or misbehaving.

In order to check if a vehicle is misbehaving, the RSSI and loca-
tion of each BSM must be cross-validated. Our approach, shown
in Figure 9, is to generate confidence intervals for normal RSSI
values based on the BSM dataset for normal behavior. For each
BSM, we record the GPS coordinates from the transmitting vehi-
cle and the receiving vehicle to measure the difference in distance
between the two vehicles. Then, we group together BSMs with
similar distances between transmitting and receiving vehicles, and
we compute the confidence interval for each group based on the
mean and the variance. The resolution of the grouping is 1 meter,
meaning that each group contains BSMs whose distances between
the transmitting and receiving vehicles differ by at most 1 meter.
Using the confidence intervals as thresholds, every individual BSM
is checked for potential malicious activity. If the RSSI of the BSM
at a given distance from the receiver is outside of the confidence
interval, then we mark the BSM as anomalous. The thresholds are
illustrated in Figure 9.
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Figure 9: Thresholds on RSSI value per meter

4.2 Misbehavior Detection Algorithms

We propose three vehicular plausibility checks based on the BSM
check. The first plausibility check is the “safety first” approach. In
this plausibility check, once a BSM is outside of the confidence
interval, the transmitting vehicle is immediately classified as a
misbehaving vehicle. We refer to this plausibility check as the
First-BSM or the FBSM approach.

The second plausibility check uses a majority rule. If the ma-
jority of the BSMs are classified as malicious, then the vehicle is
classified as malicious. This plausibility check will be referred to as
the Majority-BSM approach or the MBSM approach. There should
be a difference in performance between FBSM and MBSM. FBSM
should yield more false positives as it is more sensitive, whereas
MBSM should have a higher miss-rate.

The third plausibility check is referred to as the Weighted-BSM
or WBSM plausibility check. This plausibility check assigns a score
to each vehicle, and updates this score for every new BSM the vehi-
cle receives from the transmitting vehicle according to a weighted
moving average. If the vehicle reaches a score that is below a thresh-
old, which is outside the 99.7% of normal vehicle scores, then the
vehicle is classified as an attacker. The formula for calculating the
plausibility score using the WBSM test is

Plausibility Score = [(1 — a) * Scorepren] + (a * BSMscore)s

where
e o € [0;1] is the weight given to new information;
® Scoreprey is the most recent plausibility score of the vehicle;
® BSM;score is a Boolean variable equal to 0 if the BSM is clas-
sified as malicious and equal to 1 if classified as normal.

5 EXPERIMENTS

We conduct experiments using Matlab. We evaluate the perfor-
mance of the plausibility checks in terms of correct-classification
rate (CCR), precision and recall, and compare the performance
to the application layer plausibility checks of [14]. The correct-
classification rate is defined as the fraction of the correct classifica-
tions to the total number of classifications. The precision is defined
as %; a true positive (TP) is an attacker that is detected as an
attacker, and a false positive (FP) is a normal vehicle detected as
an attacker. The recall is defined as %, where a false negative
(FN) corresponds to an attacker not being detected as an attacker.
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Table 2: BSM detection results for different attack type and
confidence intervals. The best performing method is high-
lighted in bold.

Detection Method CCR  Precision Recall
Constant Position
95% 0.9331 0.9043 0.8857
99.7% 0.9583 0.9935 0.8761
Constant Offset
95% 0.8144 0.8465 0.5166
99.7% 0.8279 0.9880 0.4709
Random Position
95% 0.9710 0.9254 0.9987
99.7% 0.9999 0.9954 0.9987
Random Offset
95% 0.8293 0.7764 0.4605
99.7& 0.8489 0.9826 0.4122
Eventual Stop
95% 0.8397 0.8357 0.5587
99.7% 0.8616 0.9886 0.5304

Our first experiment aims to identify which confidence interval,
95% or 99.7%, yields the best thresholds for determining malicious
BSMs. Note that 99.7% or 3 standard deviations is commonly used a
confidence interval to identify outliers/anomalies [7], hence those
are the thresholds chosen to be tested. Toward this end, the data
from each individual position forging attack, constant position, con-
stant offset, random position, random offset, and eventual stop, are
grouped and tested. Then, an overall test is conducted in which all
of the different attack types are merged together. For each test, the
confidence interval used for the BSM plausibility check is obtained
to ensure optimal results as the mean and variance of each dataset
may slightly vary. We compare the precision, recall, and correct-
classification rate (CCR) to determine the best confidence interval
to use for the plausibility checks. Once the experiment for choosing
the most suitable threshold is completed, we test the FBSM and
MBSM plausibility checks. For each type of attack, the FBSM and
MBSM plausibility checks are implemented and evaluated. Next, we
perform tests for the WBSM plausibility check. For this plausibility
check, we consider values for a ranging from 0.05 to 0.95, with a
step size of 0.05. We ultimately select the value of « that yields the
maximum CCR, along with the corresponding precision and recall.

Note that initially, for each attack type, we use a different dataset
to evaluate the performance of the plausibility checks. For each
different attack type, we collect over 4+ 10> BSMs over a span of 360
seconds in the VEINs simulation. Then, in Section 6.7, we merge
these datasets into a single dataset and test the performance of the
plausibility checks over the 5 different types of attacks.
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Table 3: Detection results of physical layer vs. machine

learning-based application layer plausibility checks of [14].

The best performing method is highlighted in bold.

Detection Method CCR  Precision Recall
Constant Position
KNN [14] 0.9452 0.9521 0.8328
SVM [14] 0.9564 1.000 0.8290
FBSM 0.9572 0.9344 0.9300
MBSM 0.9641 0.9997 0.8868
WBSM 0.9634 0.9545 0.9286
Constant Offset
KNN [14] 0.7508 0.5613 0.1937
SVM [14] 0.7543 0.5729 0.1788
FBSM 0.8943 0.9180 0.7311
MBSM 0.8150 0.9993 0.4154
WBSM 0.8988 0.9424 0.7244
Random Position
KNN [14] 0.9463 0.9506 0.8363
SVM [14] 0.9116 0.8149 0.8860
FBSM 0.9832 0.9537 1.000
MBSM 0.9999 0.9997 1.000
WBSM 0.9886 0.9681 1.000
Random Offset
KNN [14] 0.9471 0.9627 0.8253
SVM [14] 0.9177 0.8035 0.8755
FBSM 0.9307 0.9126 0.8068
MBSM 0.8143 0.9986 0.2762
WBSM 0.9368 0.9402 0.8049
Eventual Stop
KNN [14] 0.8173 0.7143 0.4254
SVM [14] 0.8403 0.8162 0.4636
FBSM 0.8949 0.9129 0.7120
MBSM 0.8366 0.9998 0.4471
WBSM 0.9005 0.9404 0.7081
6 RESULTS

6.1 Confidence Intervals

Table 2 shows results for 95% and 99.7% confidence intervals, where
the best results are highlighted. From Table 2, we note that the
precision for the 99.7% confidence interval is much higher than
the precision for the 95% confidence interval. Yet, the difference

between the recall between the two confidence interval is marginal.

Therefore, for the plausibility checks, a 99.7% confidence threshold
appears more suitable.
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6.2 Attack Type 1: Constant Position

The results for the constant position attacks are shown in Table 3,
and the best results are highlighted. The table shows that CCR and
recall for FBSM, MBSM, and WBSM are higher than for the SVM
and KNN application layer plausibility checks of [14]. While the
precision of SVM is perfect and the precision for KNN is higher
than FBSM, it is important to note that [14] uses a plausibility
check specifically targeting a constant position attack. This same
reasoning strengthens the need for the proposed physical layer
plausibility checks. Indeed, the recall for the three physical layer
checks ends up being higher because a receiving vehicle sometimes
receives only one BSM from a transmitter. The application layer
has no way of determining if the first BSM carries any inconsistent
information. On the other hand, the physical layer checks can
readily check if the RSSI is plausible based on the location advertised
in that BSM.

We also observe that the detection rates for the FBSM approach
are better than the detection rates for MBSM. However, in terms of
precision and CCR, the results for the MBSM approach are better.
Indeed, for attack type 1, it may be possible that an attacker vehicle
is within a plausible distance away from the receiver vehicle the
majority of the time, hence causing a lower detection rate compared
to the FBSM method. The precision of the FBSM method is lower
because of its high sensitivity. Indeed, it only takes 1 bad BSM,
which can be due to unusually high interference, to classify the
entire vehicle as an attacker.

The WBSM method performs better than the FBSM, but worse
than the MBSM in terms of precision, and better than MBSM and
worse than FBSM in terms of recall. However, the recall of the
WBSM method is within 1% to the recall of the FBSM method, but
outperforms the FBSM method by over 2% in terms of precision.
In this case, the WBSM method seems to strike the best balance
between recall and precision.

6.3 Attack Type 2: Constant Offset

Table 3 shows the drastic performance performance improvement
of physical layer plausibility checks over machine learning based
application layer plausibility checks for constant offset attacks.
MBSM beats both KNN and SVM by over 20% and FBSM and WBSM
beats KNN and SVM by over 50% in terms of recall. The reason
for this significant difference is that the constant offset attack on
the application layer behaves like a normal vehicle. The position,
velocity, and acceleration all behave normally, hence it is virtually
undetectable.

Table 3 also shows a significant difference in recall between
FBSM and MBSM. The recall of the FBSM method beats the MBSM
method by over 30%. MBSM’s advantage in precision is 8%, which is
marginal compared to the recall advantage of the FBSM plausibility
check. The overall CCR of the FBSM method is about 8% higher than
the MBSM method, which implies that the FBSM method is better
than the MBSM method in detecting attack type 2. The WBSM
method performs similar to the FBSM method, with a slightly lower
recall but about 3% higher precision than the FBSM method. Hence,
the WBSM method again can be viewed as the best performing
method.
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6.4 Attack Type 4: Random Position

The results for attack type 4 show that all of the plausibility checks
perform perfectly in terms of recall as seen in Table 3. This shows
that once again the three physical layer plausibility checks outper-
form application layer-based machine learning. The main difference
is that the physical layer checks need only one BSM to reach a con-
clusion whether a vehicle is malicious or not. Other the other hand,
tn the application layer, a receiving vehicle needs at least two BSMs
to reach a conclusion.

The main difference between FBSM, MBSM, and WBSM is the
precision performance. The MBSM method is the best choice for
detecting attack type 4 since it has the highest precision value.

6.5 Attack Type 8: Random Offset

Interestingly, random offset is the only attack in this dataset, where
the physical layer methods do not outperform SVM and KNN. This
is most likely because random offset is seen as noise, from the
perspective of the physical layer. However, SVM and KNN are only
marginally better than FBSM and WBSM.

Similar to the results for type 2, there is a significant advantage
for using FBSM over MBSM in terms of recall. As seen in Table 3,
FBSM'’s recall is over 50% better than MBSM’s recall, making the
8% difference in precision negligible. The reason for this significant
difference in performance is that, since the offset is randomly placed,
the majority of the malicious BSMs might are within the threshold,
hence causing the MBSM plausibility check to incorrectly classify
the vehicle. The performance of the WBSM method is much closer
to the FBSM method, and similarly to all the results, WBSM has a
higher precision with only a slightly lower recall.

6.6 Attack Type 16: Eventual Stop

For this attack type, FBSM and WBSM outperforms SVM and KNN
by 25% in detection rate, and over 10% in precision. The detection
rate of MSBM is similar to that of SVM and KNN, however the
precision is over 17% better.

We also note a significant performance gap between FBSM and
MBSM. FBSM performs 26% better than MBSM in terms of recall. In
terms of precision MBSM performs better by 8%. The reason for the
drastic difference in recall is that in some cases the labeled attacker
vehicle does not misbehave until the end of the communication
transaction. This means that for more than 50% of the transactions,
the attacking vehicle is communicating with the receiver normally;
hence the MBSM check fails. The WBSM plausibility check shows
an improvement in precision and a slight decrease in recall, indi-
cating that WBSM is the best method here.

6.7 Overall Detection

The overall detection results from the combined dataset using all
5 attacks for the three physical layer plausibility checks and two
application layer plausibility checks are shown in Table 4. With
the exception of MBSM, FBSM and WBSM perform close to 20%
better in terms of detection rate than SVM and KNN; in addition to
the significant improvement in detection rate, the precision for all
three physical layer plausibility checks are much better than SVM
and KNN. This shows overall that even without machine learning,
detection of position spoofing at the physical layer is more effective
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Table 4: Overall detection results. Best performing method
is highlighted in bold.

Detection Method CCR  Precision Recall
KNN [14] 0.8788 0.8879 0.6166
SVM [14] 0.8838 0.8716 0.6515

FBSM 0.9312 0.9294 0.8421
MBSM 0.8860 0.9996 0.6280
WBSM 0.9376 0.9591 0.8373

than at the application layer (although the two approaches could
certainly be used in conjunction, as discussed in the sequel).

We observe that overall the MBSM approach yields the highest
precision (i.e., the lowest false-positive rate). However, the FBSM
and WBSM approaches outperform the MBSM approach by 20% in
terms of detection rate, and have over a 5% higher overall classifi-
cation rate. This shows that the FBSM and WBSM tests are more
suitable approaches to support a misbehavior detection system. The
WBSM test can be viewed as more robust, since the detection rate
is consistently at most 1% lower than with the extremely sensitive
FBSM method, while the precision is higher by 3%.

7 DISCUSSION

7.1 Real-time Detection: Access to Local RSSI
Distribution

In a real-time detection system, concerns may arise on how vehicles
will be able to get the data in order to produce the thresholds. One
solution could reside in using road-side units (RSU). Since RSSI con-
fidence intervals are sensitive to the environment, the RSUs can be
used to store data and produce the thresholds for their surrounding
environments. The RSUs can then relay this information to the ve-
hicles entering the communication range of the RSU, using WAVE
Service Advertisement (WSA) messages for example. However, the
robustness and reliability of these plausibility checks rely on the
trustworthiness and accuracy of the source that provides the RSSI
distribution (the RSUs in the case described earlier). If that source
is compromised, then the vehicle will not be able to rely on this
detection method alone. A fail-safe could be implemented where a
vehicle can survey and build the RSSI distribution on its own or in
collaboration with neighboring vehicles.

7.2 Stronger Attacker Model

A more advanced attacker model could include an attacker that ad-
justs the transmission power in order to fool receiver(s). However,
with our detection system, this attack can only fool one vehicle.
Since the other vehicles will be in a different relative location from
the attack, those vehicles will still be able to detect an attack and re-
port the vehicle. To fool multiple spaced receivers, a even stronger
attacker is required, e.g. one that could perform multi-antenna
beamforming. Beam forming allows an attacker to only communi-
cate with one vehicle without being detected by the others [11, 19].
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Figure 10: Precision-Recall curves of WBSM for each attack
type. These curves are obtained by varying « from 0.05 to
0.95, with step increments of 0.05.

7.3 Assumption on Majority of Honest
Neighbors

The plausibility checks proposed do not rely on other vehicles’ data
in order to detect misbehaviors, since the vehicle will determine the
RSSI locally within its system. The only prior information vehicles
need is the distribution of RSSI vs. distance, which can be provided
by a trustworthy source such as an RSU. In doing so, this relaxes
the constraint that the majority of the vehicles in an area must be
honest to detect misbehavior.

7.4 Precision vs Recall

The precision vs. recall trade-off is frequently mentioned in this
paper. From a safety point of view, a high recall is most desirable,
which implies that FBSM would be the best approach. However,
due to the very marginal loss in recall, versus the large increase
in precision, we believe that WBSM is the best among the three
methods. In practice, the claim of which plausibility check is the
best should be based upon the priorities of the operator. However,
we note that these plausibility checks could be used together as well.
FBSM could be used as the initial detection method, and MBSM
and WBSM can later be used to further investigate the vehicle to
confirm the claim that the vehicle is misbehaving.

7.5 Detection Latency

Another important factor to take into consideration is the latency
of detection. The FBSM approach may have the highest false pos-
itive rate, but it also has the lowest latency in term of detection.
The MBSM approach has the highest precision but also the highest
latency. This is true for an attack such as the sudden stop attack.
Since the vehicle builds trust inside the system by behaving nor-
mally, it will need to misbehave for a long period of time in order to
be classified as a misbehavior, explaining why WBSM is the more
balanced solution. This method assigns more weights to recent
BSMs, thus, decreasing the latency of MBSM, yet keeping a higher
precision than FBSM. Results for different settings of the weighting
parameter « are shown in Figure 10. The choice of @ can heavily
influence latency; if « is close to 0 then it will simply behave like
MBSM, and if the value of « is close to 1 then it will behave similar
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to FBSM. Hence, @ must be tuned in such a way that it is reasonable
for the operator to precisely, accurately, and quickly detect misbe-
having vehicles in the system. However, the problem of balancing
trust versus latency, and precision versus recall will always result
in a trade-off between the proposed methods.

7.6 Complementing Application Layer
Misbehavior Detection

One should note that attack type 2, i.e. the constant offset attack,
is a very difficult attack to detect on the application layer. This is
because the ghost vehicle generated by an attacker is a shadow
of a real vehicle. All of the contents inside the BSM cross-validate
each other, leading to no inconsistencies between any of the fields.
Using physical layer properties such as RSSI, we showed that this
attack can be detected. However, we believe that these plausibility
checks should be used as a subset of a larger misbehavior detection
system that includes application layer plausibility checks in order
to increase the overall detection performance.

8 CONCLUSION

In this paper, we propose three different plausibility checks to
build a physical layer misbehavior detection framework. Using
VeReMi, we evaluate plausibility checks for five different types of
attacks, before evaluating their overall performance in aggregate.
We find that overall WBSM achieves the best performance, yielding
a 83.73% recall with a 95.91% precision rate. Comparing the results
to application layer plausibility checks [14], we find that WBSM
and FBSM perform much better in every performance metric, by
around 5% in CCR, 5% in precision, and 20% in recall.

Our paper makes other important contributions, including (i) gen-
erating and publishing an enhanced VeReMi dataset [16] that should
facilitate the evaluation of physical layer misbehavior algorithms,
and

(ii) validating the RSSI data produced by VeReMi with actual
RSSI data traces. Our work also characterizes the RSSI signature of
the five forging position attacks simulated in VeReMi.

We conclude by observing that physical layer detection is an
effective way of detecting position spoofing attacks, including pow-
erful traffic congestion attacks. As future work, it would be inter-
esting to evaluate our approach against other attacks, such as Sybil
attacks. One could also investigate stronger attackers that try to
obfuscate their physical layer properties. Finally, one could leverage
other physical layer properties, such as channel state information
(CSI), to improve the detection and robustness of the system.
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