
Understanding Similarities and
Differences between Software
Composition Analysis Tools

Pranet Sharma
Boston University

Zhenpeng Shi
Boston University

Şevval Şimşek
Boston University

David Starobinski
Boston University

David Sastre Medina
Red Hat

Abstract—
Software Composition Analysis (SCA) plays a key role in ensuring supply chain security, by
helping identify known security vulnerabilities in open source libraries. This work reviews
several popular SCA tools and compares their key functionalities based on a set of objective
criteria.

1. Introduction
Many companies embed third-party open

source code into their production software. This
code, if not thoroughly vetted, can potentially
introduce vulnerabilities and pose security risks.
According to the 2023 annual Open Source Se-
curity and Risk Analysis report by Synopsys1,
nearly 96% of 1,703 codebases used in key in-
dustries contained open source code, and over
84% of them contained at least one known open
source vulnerability. Comprehensively addressing
open-source vulnerabilities is therefore critical for
modern software development.

Software Composition Analysis (SCA) is a
security practice that automates the process of

1https://www.synopsys.com/software-
integrity/resources/analyst-reports/open-source-security-risk-
analysis.html

open source component management. In order to
assist the SCA process, many tools have been
designed and developed. SCA tools can detect
open source dependencies used by a software ap-
plication, as well as identify and assess the known
vulnerabilities introduced by the dependencies.

SCA tools provide a number of features such
as vulnerability detection, vulnerability mitiga-
tion, and license compliance. SCA tools typically
scan the code base of software applications in
order to find known vulnerabilities that potentially
exist in the application, such as vulnerabilities
listed in the Common Vulnerabilities and Expo-
sures (CVE)2. In order to assess and mitigate the
vulnerabilities, the tools often provide additional
relevant information about the detected vulnera-

2https://cve.mitre.org/

Published by the IEEE Computer Society © IEEE 1

bilities, such as their mapped weaknesses from
the Common Weakness Enumeration (CWE)3 and
their severity scores under the Common Vulner-
ability Scoring System (CVSS)4. Software de-
velopers and security practitioners can leverage
these tools to reduce the number of open source
vulnerabilities present in their code.

The behavior and outputs of SCA tools differ
in many subtle ways, which are currently not
obvious to software developers. The purpose of
this study is to shed light on key similarities and
differences between popular SCA tools. Toward
this end, we analyze their workflows and com-
pare their functionalities based on the following
objective criteria (further justification about these
criteria is provided in Section 5):

1) Software Development Life Cycle (SDLC)
Integration. Does the tool integrate with com-
monly used developer tools?

2) Vulnerability Library. What libraries are
used for vulnerability detection and assess-
ment?

3) Automatic Remediation. Does the tool au-
tomatically fix vulnerabilities? What kind of
vulnerabilities can the tool fix?

4) Security Report Format. What format does
the tool use to report the findings about the
vulnerabilities?

5) Availability. Is the tool an open source product
or not? Is the tool free to use?

6) Language Support. What programming lan-
guages can the tool detect vulnerabilities in?

7) Handling false positives. Does the tool at-
tempt to reduce the rate of false positives it
generates when reporting vulnerabilities?

Our work makes the following contributions
in this context:

• An overview of popular SCA tools. We
discuss the features as well as the workflows
of the tools, which can help software develop-
ers and security practitioners in selecting the
appropriate tool(s) for their use.

• Demonstration of the workflow analysis of
the SCA tools using several open source
project examples. We highlight the similar-
ities and differences between the SCA tools

3https://cwe.mitre.org/
4https://www.first.org/cvss/

based on the results of this workflow analysis.
We further summarize key takeaways (e.g., the
tools show discrepancies regarding the scope
of dependency packages to be analyzed).

• Proposal of a set of criteria for the qual-
itative evaluation of SCA tools. We use the
proposed criteria, adapted from [1], to evaluate
and compare the SCA tools. Suggestions on
choosing appropriate SCA tools are accord-
ingly given.

Note that our work specifically focuses on the
vulnerability detection and mitigation capabilities
of SCA tools. Although open source license com-
pliance is also a part of SCA, there exist separate
tools specifically designed for this purpose [2].
We stress that the purpose of this paper is not to
conduct an exhaustive review of all the SCA tools
available on the market, but rather contribute a
framework to help compare their functionalities.

The rest of the paper is organized as follows.
In Section 2, we discuss related work on SCA
tools and open source component management in
general. We introduce terminology and overview
common SCA tools in Section 3. We conduct the
workflow analysis of the tools, and summarize
key takeaways from the analysis in Section 4. In
Section 5, we evaluate the SCA tools based on
our proposed criteria and discuss tool selection.
We conclude the paper in Section 6.

2. Related Work
There exists a large body of research on

addressing security vulnerabilities introduced by
open source components in software applications.
This includes (but is not limited to) characteriza-
tion [3], [4], detection [5], assessment [6], [7],
and mitigation [8], [9] of open source vulnera-
bilities. In particular, the work in [4] conducts an
analysis of vulnerabilities in open-source libraries
across 450 projects. This work investigates the
types, distribution, severity, and persistence of the
vulnerabilities. This work also provides recom-
mendations, such as prioritizing the mitigation of
Denial-of-Service (DoS) attacks.

In practice, software developers and secu-
rity practitioners often use vulnerability scanning
tools (e.g., SCA tools) to assist in vulnerability
detection. As a result, it is valuable to understand
and compare the performance and limitation of

2

these tools. Through an empirical study, the work
in [10] investigates how different practices of soft-
ware development can impact the performance
of vulnerability scanners. It concludes that none
of the vulnerability scanners under study has the
ability to identify all four types of modifications
across a list of 7,024 Java projects. It focuses on
identifying the types of modifications to open-
source dependencies such as forking, patching,
and re-bundling that affect the performance of the
vulnerability scanning tools and thus is a quanti-
tative analysis of the performance of these tools.
In comparison, we focus on a general qualitative
comparison between the functionalities of SCA
tools, in order to understand their similarities and
differences.

Threat modeling starts from the early stages
of development and relies on a system model
to identify potentially vulnerable components in
the design. The work in [11] presents a taxon-
omy of popular threat modeling tools and con-
cludes with tool usage recommendations. Static
application security testing (SAST) analyzes the
source code of software applications and looks
for vulnerabilities, such as injections. In [12],
a novel differential benchmark is proposed for
automatically evaluating SAST tools. In our work,
we investigate and compare popular SCA tools.
Among other uses, SAST tools are also used to
help the security certification process for open
source software. In [13], a delta certification-
based tool, DeltAICert uses SAST tools as a
first step in data evaluation. In delta certification,
analysts leverage third-party tools to extract evi-
dence, which is then assessed against established
requirements. In comparison, SCA tools focus
on open source dependencies used by software
applications, and determine potentially vulnerable
dependencies using knowledge from vulnerability
databases.

Open source dependencies, such as packages
from Maven and NPM, contribute to a large
portion of vulnerabilities in software applications.
The work in [14] conducts an extensive qualita-
tive study about the decision-making of software
developers in managing dependencies. The study
shows possible trade-off between functionality
and security, and suggests using high-level met-
rics for selecting mature and secure dependencies.
In addition, it points out that SCA tools should

alert only on dependencies relevant to vulnera-
bilities, and be careful not to break a project
when suggesting vulnerability mitigation. This
brings the challenges of handling false positive
vulnerabilities, which we consider as a criterion
for evaluating the SCA tools.

The work in [15] compares the analysis re-
ports of nine industry-leading SCA tools on a
large web application, OpenMRS. The criteria
consist of the number of vulnerabilities reported,
runtime, and ability to track unique dependency,
package and vulnerabilities. Via a manual analysis
of the vulnerability reports, the authors conclude
that the accuracy of the vulnerability database is
the key difference between the SCA tools. While
the objectives of our study are broadly similar,
we offer and evaluate complementary criteria for
drawing comparisons between the different tools
(see Table 2, in particular).

3. Overview of Software Composition
Analysis

In this section, we introduce terminology and
provide an overview of common Software Com-
position Analysis (SCA) tools. These tools are
further analyzed and compared in subsequent
sections of the paper.

3.1. Common Terminology
• Dependency: A dependency refers to a re-

lationship between different software compo-
nents within a project, where one component
relies on the functionality or services provided
by another.

• Direct Dependency: A direct dependency
refers to a software component that is explicitly
declared and directly used within a project.

• Transitive Dependency: A transitive depen-
dency refers to a software component that is
indirectly introduced into a project as a result
of its reliance on other direct dependencies.
In other words, if component A is a direct
dependency of a project and component A, in
turn, relies on component B, then B becomes
a transitive dependency for the project.

• Vulnerability Database: A vulnerability
database is a centralized repository
systematically cataloging known software
vulnerabilities. It provides crucial details
for security professionals, developers, and

3

organizations, including the nature of
vulnerabilities, affected components, severity
ratings, and recommended remediation.
In Section 3.2, we detail the different
vulnerability databases utilized by each tool.

• CI/CD: CI/CD, or Continuous Integration/-
Continuous Deployment, is a software devel-
opment practice that emphasizes frequent and
automated integration of code changes into a
shared repository (Continuous Integration) and
the automated deployment of applications to
production environments (Continuous Deploy-
ment).

• Manifest File: A manifest file is a structured
document that contains metadata and essential
information about a project. It serves as a guide
for the system to understand the project’s struc-
ture, dependencies, configurations, and other
relevant details.

• Lock File: A lock file is a file within a
project that specifies the precise versions of
dependencies used in that project. While the
manifest file does list the direct dependencies
for the project, the lock file is generated to
list all direct and transitive dependencies, along
with the specific versions of each.

• SBOM: An SBOM, or Software Bill of Mate-
rials, is a comprehensive inventory that details
all the components, libraries, modules, and
dependencies involved in the development and
deployment of a software application. This
includes both open-source and proprietary el-
ements. An SBOM typically includes informa-
tion about the version, origin, and licensing of
each component, and may also highlight any
known vulnerabilities.

3.2. Software Composition Analysis Tools
We now overview some popular SCA tools.

We selected 5 prominent SCA tools which easily
integrate into software development, support the
Maven package manager and the Java program-
ming language, and are either open source or are
free versions of commercially available tools. The
Snyk Open-Source CLI5, GitHub Dependabot
Core6, OSV-Scanner7 and OWASP Dependency-

5https://github.com/snyk/cli
6https://github.com/dependabot/dependabot-core
7https://github.com/google/osv-scanner

Check8 Github repositories are popular with de-
velopers, featuring 4.8k stars, 4.4k stars, 5.9k
stars and 5.9k stars respectively. Finally, RedHat
CodeReady Dependency Analytics’ VS Code IDE
extension features nearly 2.2 million installs9.

1) Snyk Open Source10 is a tool developed by
Snyk. It utilizes the Snyk Intel Vulnerability
Database, a publicly accessible database that
contains entries analyzed and verified by the
Snyk security team. This team also engages
in proprietary research to discover new vul-
nerabilities. The tool scans the manifest file of
a project to create a hierarchical tree, which
includes both direct and indirect dependencies,
as well as points at which different packages
were introduced.

2) GitHub Dependencies Graph and Depend-
abot11 is a dependency analysis tool developed
by GitHub for maintaining supply chain secu-
rity. It utilizes the GitHub Advisory Database,
which is a publicly accessible database that
adds advisories from sources such as the NVD,
and NPM Security Advisories Database. It
automatically reads the dependencies explicitly
declared in the manifest and lockfiles to gen-
erate both direct and transitive dependencies.
The tool integrates with GitHub repositories
and utilizes Dependabot, a tool developed by
GitHub to monitor vulnerabilities in dependen-
cies used in projects and to keep dependencies
up to date by informing the user of any security
vulnerabilities.

3) OSV-Scanner12 is an open source vulner-
ability scanning tool developed by Google.
The scanner obtains vulnerability information
from the OSV database, a publicly accessible
database that aggregates vulnerability informa-
tion from a number of public databases includ-
ing GitHub Advisory Database, PyPI Advisory
Database, and Global Security Database. The
tool parses lock files, SBOMs, and git direc-
tories to determine open source dependencies
used by the software application.

4) Red Hat CodeReady Dependency Analyt-

8https://github.com/jeremylong/DependencyCheck
9https://marketplace.visualstudio.com/items?itemName=redhat.fabric8-

analytics
10https://docs.snyk.io/scan-application-code/snyk-open-source
11https://docs.github.com/en/code-security/dependabot/
12https://google.github.io/osv-scanner/

4

ics13 is a dependency analytics tool developed
by Red Hat. It is available as an IDE plugin for
Visual Studio Code (VS Code), Eclipse Che,
Red Hat CodeReady Workspaces, and IntelliJ-
based IDEs. The tool utilizes the Snyk Intel
Vulnerability Database in order to identify vul-
nerabilities. The tool works by automatically
scanning manifest files when they are opened
in the IDE.

5) OWASP Dependency Check14 is an SCA tool
that is developed by the OWASP foundation.
The tool aims to detect publicly disclosed vul-
nerabilities in the project that is being scanned,
using the NVD data feeds. The tool scans
the project for dependencies, linking these
dependencies to specific CPEs. These CPEs
are thenused to list associated CVEs. The tool
collects information about the vendor, product
and version utilizing Analyzers which scan the
files in the project. Dependency-check has a
command line interface, a Maven plugin, an
Ant task, and a Jenkins plugin.

4. Workflow Analysis of Software
Composition Analysis Tools

In this section, we analyze the workflow of
each tool and report results from that workflow
analysis. Based on these results, we provide sev-
eral takeaways regarding the functioning of the
tools.

4.1. Selection of Open Source Projects
The analysis is conducted on five open source

Java projects: Zerocode15, Superword16, Find-
Sec-Bugs17, Java Speech API18, and PiTest19.

All of the chosen projects utilize Maven to
manage dependencies and the projects are de-
veloped using Java programming language. We
have selected projects that show an adequate
level of popularity on GitHub, based on the
number of times the projects have been starred
or forked. Moreover, we omitted any project that
has no reported vulnerability among any of the

13https://developers.redhat.com/blog/2020/08/28/vulnerability-
analysis-with-red-hat-codeready-dependency-analytics-and-snyk

14https://owasp.org/www-project-dependency-check/
15https://github.com/authorjapps/zerocode
16https://github.com/ysc/superword
17https://github.com/find-sec-bugs/find-sec-bugs
18https://github.com/lkuza2/java-speech-api
19https://github.com/hcoles/pitest

tools. Two of the projects have higher number
of vulnerabilities reported, while other projects
are simpler projects that have smaller number of
vulnerabilities, but are useful to show discrepan-
cies between the selected tools (i.e. particular tool
reports vulnerabilities others cannot, or useful to
show similarities between tools).

4.2. Workflows
In this subsection, we detail the workflow for

each tool. We choose the free version of the SCA
tools for subsequent workflow analysis. All the
tools introduced in Section 3 can be used for free,
though Snyk Open Source has limitations on the
free tier.

1) Snyk Open Source. The GitHub integration is
utilized in order to conduct the analysis. After
logging into the Snyk account and connecting a
GitHub account with Snyk, Snyk Open Source
automatically scans projects it had been given
access to. The number of vulnerabilities in
each project is displayed on the dashboard with
the option to view a project in more detail.
The vulnerability report for the core project
of Zerocode is shown in Fig. 1. Snyk Open
Source categorizes the vulnerabilities for each
project based on their CVSS scores into four
major categories: critical, high, medium, and
low severity. Snyk Open Source specifies the
vulnerability type, the package it is introduced
in, the package it is fixed in, and exploit ma-
turity. It also offers a detailed overview of the
project’s dependencies and vulnerabilities, and
additional details about the path through which
the vulnerability was introduced. The CVSS
scores from multiple sources are shown, in-
cluding Snyk, NVD, and open source vendors
(e.g., Red Hat, SUSE), though the Snyk CVSS
scores are preferred when it determines the
severity of vulnerabilities. Snyk Open Source
also provides links to the corresponding CVE,
CWE, and Snyk Vulnerability Database en-
tries. Finally, the option to open a pull request
to fix the issue is present.

2) GitHub Dependencies Graph and Depend-
abot. GitHub Dependencies Graph and De-
pendabot are features that can only be en-
abled when using GitHub to host the appli-
cation repositories. After enabling these fea-

5

tures, GitHub Dependabot raises alerts under
the Security tab on the GitHub repository
webpage. Fig. 1 shows the Dependabot alerts
for Zerocode. The Dependabot alerts on vul-
nerabilities include the severity level of the
vulnerability, the vulnerable dependencies, the
package manager, and the manifest/lock file
containing the vulnerability. When a specific
vulnerability is selected, additional details can
be viewed, including its CVSS score, CWE,
CVE ID, GitHub Security Advisories Database
(GHSA) ID, as well as the affected and patched
versions of the affected dependency. It also
provides the option to open a Dependabot
security update which opens a pull request to
fix the issue.

3) OSV-Scanner. The command line version of
OSV-Scanner is utilized for the purpose of
testing. It allows for specifying a particular
manifest/lock file to scan or to recursively
search through the project to automatically
search for them and scan them. As shown in
Fig. 1, OSV-Scanner displays a link to the
OSV Database entry for each detected vul-
nerability, the ecosystem that it is a part of,
the vulnerable dependencies with their versions
being used, and the source of the dependency.
Following the links provided by the report to
the corresponding OSV Database entries, more
information can be found about the detected
vulnerabilities, including the source of the
vulnerability, the corresponding CVE ID, the
date the vulnerability was published, and the
modification dates. OSV-Scanner also supports
outputting the vulnerability information in the
JSON format.

4) Red Hat CodeReady Dependency Analytics.
The VS Code extension of Red Hat CodeReady
Dependency Analytics is used for the evalua-
tion. The results of the dependency analysis
show up in a separate window in the IDE.
The vulnerability report window for Zerocode
is shown in Fig. 1. It lists dependencies with
security issues by the severity of their re-
lated vulnerabilities. The tool prioritizes the
vulnerabilities by the Snyk CVSS scores and
displays it along with the number of direct and
transitive vulnerabilities. When a particular
dependency is selected, the tool will display

the type of vulnerability, whether an exploit
is available, the current package version, and
the recommended version. The report window
also has other tabs for detailed information on
dependency details, licenses, and add-ons.

5) OWASP Dependency Check The command
line interface for the OWASP Dependency
Check tool is used for the purpose of testing
the selected open source projects. The path
to scan can be provided as a command line
argument. The tool is able to output the results
in various file formats including HTML, JSON,
SARIF and XML. The HTML output format
was used for our purposes and is displayed in
Fig. 1. The tool displays the highest severity,
CVE count, Confidence and Evidence count
for each vulnerable dependency. Besides the
summary, the tool lists detailed information
about each vulnerable dependency including
a description of the dependency and a list
of all the associated published CVEs, CVSS
information and CWE information.

4.3. Results
We find that the SCA tools differ in several

key aspects. The results and takeaways from the
workflow analysis of SCA tools and the case study
are summarized in the following:

The SCA tools report different numbers
of vulnerabilities, for the same project. As
seen in Table 1, the tools differ in number of
vulnerabilties reported as well as how many of
those vulnerabilities are identical or unique.

The tools show discrepancies when it comes
to the vulnerabilities reported, even when the
same vulnerability database is utilized. For cer-
tain dependencies, the tools report different num-
bers of vulnerabilities. Moreover, even though
the same vulnerability database is used by Snyk
Open Source and Red Hat Dependency Analytics,
we see that Snyk Open Source reports 3 Snyk
exclusive vulnerabilities20 Red Hat CodeReady
Dependency Analytics reports only 2 Snyk ex-
clusive vulnerabilities, for the Zerocode project.

Tools utilizing the same vulnerability
database report relatively similar results. For
example, Snyk and Red Hat CodeReady De-
pendency Analytics show the most similarity as

20Vulnerabilities exclusive to the Snyk Vulnerability DB do not
have any corresponding CVE records.

6

(a) GitHub Dependabot (b) Red Hat CodeReady DA

 (c) Snyk Open Source (d) OWASP Dependency Check

 (e) OSV-Scanner

Figure 1: User interfaces for the SCA Tools analyzed in our case study.

depicted in the correlation matrix in Figure 2b.
Similarly, OSV Scanner and GitHub Dependabot
report similar number of vulnerabilities. However,
when analyze the number of common vulnerabil-
ities reported among the tools, we see that there
are major differences even when some tools rely
on the same database, as discussed above.

The tools possess distinct approaches in
defining the scope of packages being analyzed.
For instance, GitHub Dependencies Graph and
Dependabot and OSV-Scanner report vulnerabil-
ity CVE-2022-23221 in the H2 Database En-
gine (com.h2database:h2:1.4.19), which is only
a part of the testing scope. Red Hat CodeReady
Dependency Analytics and Snyk Open Source

do not report this vulnerability at all. GitHub
Dependencies Graph and Dependabot identifies
the vulnerability with the “Development” tag. An
ideal SCA tool would allow developers to modify
the scope of the analysis at runtime to determine
whether development-only dependencies should
be included or not.

All the tools fail to detect some transitive
vulnerabilities. For instance, according to the
Maven repository, the dependencies commons-
collections, org.apache.velocity:velocity and
org.jboss.resteasy:resteasy-jaxrs all transitively
introduce the vulnerability CVE-2022-23307
with a CVSS score of 8.8. However, none of
the tools are able to detect this vulnerability.

7

Table 1: Number of total vulnerabilities and number of unique vulnerabilities for each project as
reported by the tools analyzed in this case study.

Project Total OSV Scanner OWASP DC GitHub DB Snyk OS Red Hat DA

Total Unique Total Unique Total Unique Total Unique Total Unique

Zerocode 119 33 (27%) 0 96 (80%) 34 32 (26%) 0 74 (62%) 11 31 (25%) 0
Superword 102 24 (23%) 11 12 (11%) 0 24 (23%) 0 75 (73%) 27 63 (61%) 14
Find-sec-bugs 8 2 (25%) 0 4 (50%) 4 2 (25%) 0 2 (25%) 2 0 0
Java Speech API 2 2 (100%) 0 0 0 2 (100%) 0 2 (100%) 0 2 (100%) 0
PiTest 17 0 0 0 0 2 (11%) 0 15 (88%) 4 13 (76%) 0

(a) Jaccard Index Matrix for the common vulnerabilities
reported by each tool

(b) Pearson correlation matrix created using the number of
reported vulnerabilities by each tool

Figure 2: Similarity matrices for the SCA tools: OSV Scanner, OWASP Dependency Check, Github
Dependabot, Snyk Open Source and Red Hat Dependencies Graph

This is only one example of the vulnerabilities
which are stated to be transitive by the Maven
repository but do not appear in the results of any
of the tools.

For the same vulnerability, the different
tools may report different severity scores. For
instance, for the same dependency junit with vul-
nerability CVE-2020-15250, Snyk Open Source
and RedHat CodeReady Dependency Analytics
report a low severity with a Snyk CVSS score
of 2.9 whereas GitHub Dependabot reports a
medium severity with CVSS score of 4.4. GitHub
Dependencies Graph and Dependabot report the
severity based on the GithHub Advisory Database
CVSS score.

For the same dependencies, different SCA
tools may report different results on whether

the dependencies are vulnerable. For ex-
ample, GitHub Dependencies Graph, Depend-
abot and OSV-Scanner uniquely identify depen-
dency com.h2database:h2:1.4.19 as vulnerable.
In comparison, Snyk Open Source and Red Hat
CodeReady Dependency Analytics do not identify
this dependency as vulnerable.

Even though the same vulnerable packages
are detected by some of the tools, this does not
necessarily mean that the same vulnerabilities
are reported. As seen in Figure 2a, when the
Jaccard similarity coefficient is computed using a
binary vector representing the tools reporting or
not reporting a certain vulnerability, we see that
only OWASP Dependency Check and Github De-
pendabot report consistent results, whereas others
report many unique vulnerabilities others do not.

8

The results of the analysis were responsibly
disclosed with the maintainers of each project.

5. Comparison of Software
Composition Analysis Tools

In this section, we compare SCA tools based
on the criteria introduced in Section 1. We opt for
a qualitative approach in order to objectively com-
pare the capabilities offered by these tools instead
of their quantitative performance. We first justify
our evaluation criteria, then evaluate and compare
the five SCA tools introduced in Section 3 based
on each criterion.

5.1. Justification of Evaluation Criteria
In this subsection, we discuss the rationale

behind the evaluation criteria chosen. In [11],
a set of evaluation criteria is proposed in or-
der to evaluate commonly used threat modeling
tools. The Linux Foundation21 provides a guide to
the evaluation of Software Composition Analysis
tools [1]. We adapt metrics from the report and
highlight features that we believe are important
for the tools. The report provides a list of criteria
such as knowledge base, ease of use, integration
capabilities and reporting capabilities which we
adapt to highlight important features of the SCA
tools.

SDLC Integration. SCA tools are generally
used in conjunction with various other software
development tools. During typical software de-
velopment, SCA must be performed regularly
to ensure the security of the open-source soft-
ware supply chain. Thus, interoperability of SCA
tools with other tools proves essential. Integration
of SCA tools into the CI/CD pipeline, issue-
management systems and code version control
systems can make them more convenient.

Vulnerability Library. The size, sources, re-
liability and level of transparency of the vulnera-
bility library used by the tools can influence the
choice of a tool. Some of these tools utilize public
vulnerability databases and public dashboards to
collect vulnerability information whereas some of
the other tools contain proprietary vulnerabilities.
The differences between the vulnerability libraries
are thus important evaluation criteria.

21https://project.linuxfoundation.org/hubfs/Reports/An-
Open-Guide-To-Evaluating-Software-Composition-Analysis-
Tools V2.pdf?hsLang=en

Automatic Remediation. Automation of re-
mediation of certain vulnerabilities is a key fea-
ture advertised by some SCA tools (e.g., Snyk
Open Source). The extent to which this automatic
process proves useful to developers is essential to
evaluating these tools. Determining the scope of
automation as well as ensuring that the automatic
process does not end up breaking the dependen-
cies of the project is essential to determining how
much time these tools can potentially save during
the software development cycle.

Security Report Format. The different
modes through which the tool can output the list
of vulnerabilities and other critical information is
an important part of the evaluation as it allows
developers to pick the tools based on the scope
of their project. Tools that can output the projects
as JSON may be more useful for developers
who want to perform certain automations on the
information, whereas developers who are more
focused on individual use may desire easy-to-
read dashboards with all the information readily
available.

Availability. Developers need to consider
whether the tool is open-source or commercially
available, as well as the price of the tool, when
making the decision of which tool to choose.

Language Support. The extent of package
managers and languages supported by a tool
can make or break a software developer’s deci-
sion to use it. Projects with a very large scope
may use multiple types of languages or package
ecosystems and thus selecting a tool that meets
all requirements is essential. For the purpose of
our evaluation, we consider the top 10 program-
ming languages (excluding HTML/CSS, Power-
shell, Bash, and SQL) and the top 5 package
managers most used by developers according to
the Stack Overflow 2023 Developer Survey22.
Thus, we consider whether the Javascript, Python,
Typescript, Java, C#, C++, C, PHP, Go, and
Rust programming languages are supported and
whether the NPM, pip, Yarn, Nuget and Maven
package managers are supported. Only the lan-
guages explicitly listed as supported in the tools’
documentation are counted here. In practice, more
languages and package managers may be sup-
ported by the tools.

22https://survey.stackoverflow.co/2023/

9

False Positives. False positive reported vul-
nerabilities are known to waste valuable develop-
ment time. Due to the qualitative nature of this
survey, our discussion of false positives mainly
deals with the mitigation strategies utilized by the
tools.

5.2. Results
We next report the results of our comparative

evaluation.
SDLC Integration. Snyk Open Source pro-

vides repository integration with a multitude of
version control tools such as GitHub, BitBucket,
and GitLab. GitHub Dependencies Graph is avail-
able for GitHub hosted repositories. Snyk Open
Source also offers CI/CD tools integration. Snyk
Open Source and Red Hat CodeReady Depen-
dency Analytics provide IDE integration services
with most of the commonly used IDEs such as VS
Code, Eclipse, and IntelliJ based IDEs. OWASP
Dependency-Check is available as a Maven plu-
gin, Gradle plugin and a Jenkins plugin.

Vulnerability Library. Snyk Open Source
and Red Hat CodeReady Dependency Analyt-
ics utilize the Snyk Intel Vulnerability Database
which covers all CVE records. Snyk also states
that 40 percent of the database is proprietary and
contains vulnerabilities not included in the CVE.
OSV-Scanner aggregates vulnerability data from
a number of public vulnerability databases and
includes all CVEs. GitHub Dependencies Graph
utilizes the GitHub Advisory Database which
includes CVE records as well as advisories from
a number of public databases and user reports.
OWASP Dependency-Check utilizes vulnerability
information primarily from the NVD. Other third
party data sources such as the NPM Audit API,
the OSS Index, RetireJS, and Bundler Audit are
utilized for specific technologies.

Automatic Remediation. Snyk Open Source
and GitHub Dependencies Graph provide auto-
matic remediation by opening pull requests in
order to fix licensing issues or issues that can be
fixed by updates. If an upgrade is not available
to fix the issue, Snyk Open Source offers patches
in order to fix the issue. Red Hat CodeReady De-
pendency Analytics can advise users as to which
version of the package to use. OSV-Scanner and
OWASP Dependency-Check do not provide any
automatic remediation support.

Security Report Format. Snyk Open Source
allows the security report to be exported to JSON
or SARIF file formats. OSV-Scanner gives the
output in the form of a human-readable table
format or the JSON file format. GitHub Depen-
dencies Graph provides output on the GitHub
website. Red Hat CodeReady Dependency An-
alytics outputs the vulnerabilities in the IDE.
OWASP Dependency-Check provides output in
the HTML, XML, CSV, JSON, JUNIT, SARIF
and JENKINS.

Availability. Snyk Open Source is a com-
mercial product that offers a free version with a
limited number of monthly tests as well as paid
versions. OSV-Scanner and OWASP Dependency-
Check are open source tools that are free to use.
GitHub Dependencies Graph and Dependabot
alerts are commercial products that can be en-
abled for free. Red Hat CodeReady Dependency
Analytics is available for free as IDE extensions.
However, a Snyk account needs to be linked for
learning details of the vulnerabilities exclusive to
Snyk.

Language Support. Snyk Open Source states
that it provides support for 8 out of the 10 pro-
gramming languages most notably missing sup-
port for Typescript and Rust. It also provides sup-
port for all 5 package manager ecosystems. OSV
states that it supports the Python and Go program-
ming languages and it also supports the NPM,
Maven and NuGet package manager ecosystems.
GitHub Dependabot states that it supports 9 out
of the 10 considered languages, missing sup-
port for Rust. It states that it supports 4 out
of the 5 package managers with no support for
the NuGet package manager ecosystem. RedHat
CodeReady Dependency Analytics states that it
currently supports the Maven and NPM package
manager ecosystems. It also states that it supports
the Golang and Python programming languages.
OWASP Dependency-Check states that it provides
support for the Java, Python and Go programming
languages and support for 4 out of the 5 package
managers with no support for the Yarn package
manager.

False Positives. Snyk Open Source, Red
Hat CodeReady Dependency Analytics, OWASP
Dependency-Check and GitHub Dependencies
Graph do not state how they reduce false pos-
itive rates.OSV-Scanner reduces false positives

10

Table 2: Comparison of five SCA tools under different criteria.
Snyk Open
Source

GitHub
Dependen-
cies Graph
and De-
pendabot

OSV-
Scanner

Red Hat
CodeReady
Depen-
dency
Analytics

OWASP
Dependency-
Check

SDLC
integration

CLI /
Web app /
repository
integration
/ IDE
plugin

Web app CLI / API IDE plugin CLI

Vulnerability library Snyk Intel
Vulner-
ability
Database

GitHub
Advisory
Database

OSV
Database

Snyk Intel
Vulner-
ability
Database

National
Vulner-
ability
Database

Automatic
Remediation

✓ ✓ ✗ ✗ ✗

Availability
Cost Paid1 Free Free Free Free
open
source

✗ ✗ ✓ ✓ ✓

Language Support Languages2 8/10 9/10 2/10 2/10 3/10
Package
Managers3

5/5 4/5 3/5 2/5 4/5

False Positive Reduction Not Stated Not Stated Call graph
analysis

Not Stated Not Stated

1 Snyk Open Source also provides a free plan which limits the number of SCA tests each month.
2 Languages considered - Javascript, Python, Typescript, Java, C#, C++, C, PHP, Go, and Rust.
3 Package Managers considered - NPM, pip, Yarn, Nuget and Maven.

through the use of call graph analysis.

5.3. Discussion

The evaluation results of the SCA tools are
summarized in Table 2. The results indicate that
Snyk Open Source provides relatively more fea-
tures and cover most of the SCA use cases,
though it comes at the cost of higher pricing.
For mainstream software development workflows,
free tools often suffice for the need of SCA
and offer unique advantages. For example, OSV-
Scanner provides an intuitive and lightweight CLI
option, GitHub Dependencies Graph integrates
seamlessly with GitHub, and Red Hat CodeReady
Dependency Analytics provides comprehensive
reports.

Moreover, we note that an important factor in
choosing an SCA tool is its vulnerability library.
Each tool tends to leverage its own vulnerability
database, which varies subtly in terms of vulner-
ability assessment due to the data sources. It is
arguable which vulnerability database is the best.
The capability of automatic remediation for the
detected vulnerabilities is also worth considering.

5.4. Limitations & Threats to Validity
Among the selected tools, Snyk Open Source

scans through the project that is being tested,
and finds each pom.xml file that exists in the
sub-projects. Other tools only detect the pom.xml
file on the main project, therefore they only scan
for the vulnerabilities according to this pom.xml
file. Therefore, Snyk Open Source is able to find
vulnerabilities for each pom.xml file. We only
report the vulnerabilities detected for the main
project, and those vulnerabilities are used for
quantitative analysis in the paper.

Moreover, for the similarity computations
among the tools, we omit the vulnerabilities
that only exist in the Snyk Vulnerability DB,
since other tools cannot possibly report these
vulnerabilities, except for the Red Hat CodeReady
Dependency Analytics tool.

6. Conclusion
In this work, we compared popular Software

Composition Analysis (SCA) tools through work-
flow analysis and a qualitative evaluation. We
proposed a set of evaluation criteria based on the
features provided by the most popular SCA tools.
From the workflow analysis, we highlighted key
insights into the functioning of these tools, es-

11

pecially the distinct approaches they take toward
vulnerability detection. We further distinguished
these tools based on our proposed criteria.

Our analysis revealed critical distinctions be-
tween the SCA tools in terms of vulnerability
detection, severity reporting, and package scope.
Software developers may want to adopt more than
one tool. We also found that SCA tools form
clusters in the sense that tools relying on the same
vulnerability database(s) tend to provide similar
results. Hence, it appears unnecessary to adopt
several tools belonging to the same cluster. How-
ever, despite leveraging similar databases these
tools do not provide exact one to one matches
in their results which suggests that the tools’ dis-
tinct approaches to resolving dependencies play
a major role in detecting certain vulnerabilities.
These insights should provide a useful reference
point for developers in selecting the most suit-
able SCA tool(s) based on their preferences and
requirements.

A direction for future work is to quantitatively
benchmark the claims made by the SCA tools
regarding false positive rates. Developing a stan-
dardized framework for quantitative evaluation of
false positive rates of SCA would allow for a
better overall analysis of the SCA tools available.

Acknowledgements
This work was supported in part by the Boston

University Red Hat Collaboratory (award num-
bers 2023-01-RH17 and 2024-01-RH03).

REFERENCES
1. I. Haddad, “An open guide to evaluating software com-

position analysis tools,” Linux Foundation, November

2020.

2. P. Ombredanne, “Free and open source software li-

cense compliance: tools for software composition anal-

ysis,” Computer, vol. 53, no. 10, pp. 105–109, 2020.

3. E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and

F. Palomba, “The secret life of software vulnerabilities:

A large-scale empirical study,” IEEE Transactions on

Software Engineering, vol. 49, no. 1, pp. 44–63, 2022.

4. G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo,

A. E. Santosa, A. Sharma, and D. Lo, “Out of sight,

out of mind? how vulnerable dependencies affect

open-source projects,” Empirical Software Engineering,

vol. 26, pp. 1–34, 2021.

5. Y. Zhou and A. Sharma, “Automated identification of

security issues from commit messages and bug re-

ports,” in Proceedings of the 2017 11th joint meeting

on foundations of software engineering, 2017, pp. 914–

919.

6. H. Plate, S. E. Ponta, and A. Sabetta, “Impact as-

sessment for vulnerabilities in open-source software

libraries,” in 2015 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE,

2015, pp. 411–420.

7. I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and

F. Massacci, “Vulnerable open source dependencies:

Counting those that matter,” in Proceedings of the 12th

ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement, 2018, pp. 1–10.

8. V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of

security vulnerabilities in open source projects: A case

study of apache http server and apache tomcat,” in 2019

12th IEEE Conference on software testing, validation

and verification (ICST). IEEE, 2019, pp. 68–78.

9. G. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: au-

tomated collection of vulnerabilities and their fixes from

open-source software,” in Proceedings of the 17th In-

ternational Conference on Predictive Models and Data

Analytics in Software Engineering, 2021, pp. 30–39.

10. A. Dann, H. Plate, B. Hermann, S. E. Ponta, and

E. Bodden, “Identifying challenges for OSS vulnerability

scanners - a study & test suite,” IEEE Transactions on

Software Engineering, vol. 48, no. 9, pp. 3613–3625,

2022.

11. Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin,

“Threat modeling tools: A taxonomy,” IEEE Security &

Privacy, vol. 20, no. 04, pp. 29–39, 2022.

12. I. Pashchenko, S. Dashevskyi, and F. Massacci, “Delta-

bench: Differential benchmark for static analysis se-

curity testing tools,” in 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and

Measurement (ESEM). IEEE, 2017, pp. 163–168.

13. A. Milankovich and K. Tuma, “Delta security certification

for software supply chains,” IEEE Security & Privacy,

vol. 21, no. 06, pp. 24–33, nov 2023.

14. I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative

study of dependency management and its security im-

plications,” in Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Secu-

rity, 2020, pp. 1513–1531.

15. N. Imtiaz, S. Thorn, and L. Williams, “A comparative

study of vulnerability reporting by software composition

analysis tools,” in Proceedings of the 15th ACM /

IEEE International Symposium on Empirical Software

12

Engineering and Measurement (ESEM), ser. ESEM

’21. New York, NY, USA: Association for Computing

Machinery, 2021. [Online]. Available: https://doi.org/10.

1145/3475716.3475769

13

https://doi.org/10.1145/3475716.3475769
https://doi.org/10.1145/3475716.3475769

	Introduction
	Related Work
	Overview of Software Composition Analysis
	Common Terminology
	Software Composition Analysis Tools

	Workflow Analysis of Software Composition Analysis Tools
	Selection of Open Source Projects
	Workflows
	Results

	Comparison of Software Composition Analysis Tools
	Justification of Evaluation Criteria
	Results
	Discussion
	Limitations & Threats to Validity

	Conclusion
	REFERENCES

