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TeaCP: a Toolkit for Evaluation and Analysis of

Collection Protocols in Wireless Sensor Networks
Wei Si, Morteza Hashemi, Liangxiao Xin, David Starobinski, and Ari Trachtenberg

Abstract—We present TeaCP, a prototype toolkit for the
evaluation and analysis of collection protocols in both simulation
and experimental environments running on TinyOS. Our toolkit
consists of a testing system, which runs a collection protocol of
choice, and an optional SD card-based logging system, which
stores the logs generated by the testing system. The SD card dat-
alogger allows a wireless sensor network (WSN) to be deployed
flexibly in various environments, especially where wired transfer
of data is difficult. Using the saved logs, TeaCP evaluates a wide
range of performance metrics, such as reliability, throughput, and
delay. TeaCP further allows visualization of packet routes and the
topology evolution of the network, under both static and dynamic
conditions, even in the face of transient disconnections. Through
simulation of an intra-car WSN and real lab experiments, we
demonstrate the functionality of TeaCP for comparing the perfor-
mance of two prominent collection protocols, the Collection Tree
Protocol (CTP) and the Backpressure Collection Protocol (BCP).
We also present the usage of TeaCP as a high level diagnosis
tool, through which an inconsistency of the BCP implementation
for the CC2420 radio chips is identified and resolved.

Index Terms—Network and systems monitoring, wireless sen-
sor networks, collection protocol, performance evaluation and
visualization, opensource toolkit.

I. INTRODUCTION

Data collection is intrinsic to numerous applications in

wireless sensor networks (WSN), ranging from intra-car mon-

itoring [2] to environmental data gathering [3] and military

surveillance [4]. In a data collection network, sensor readings

of wireless motes are routed towards a root1 (sink). Though

WSN routing protocols can accomplish the goal of delivering

data to the root, collection protocols have emerged to support

the specific needs of data collection. Typical requirements

include:

• reliability: a high fraction (e.g., 90% or above) of the

packets generated by the sources should be delivered to

the root;

• quality of service: high throughput and low packet delay

should be achieved;

• robustness: high reliability and QoS should be maintained

even under stress conditions such as dynamic links.

Different applications may have different requirements. For

instance, home monitoring applications may emphasize robust-

ness to wireless interferences (WiFi, Bluetooth, etc.), while

military applications may also strive for low packet delay.
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1Though data collection can also be used in multi-root scenarios, we frame

our discussion for the single root case for sake of simplicity.

Thus, in order to select the most suitable collection protocol

for a given application, one should be able to evaluate the

performance of different collection protocols under the same

operating environment. In addition, the ability to visualize a

network, including its topology and routes used by packets, is

essential for understanding and troubleshooting the behavior

of collection protocols, especially under stress conditions.

Many collection protocols have been proposed in the liter-

ature [5–9] and several of them have also been implemented.

However, a common publicly available platform to visualize,

analyze and compare their performance is needed. Such a

toolkit should not only enable the evaluation of multiple

collection protocols, but also help to visualize the behavior

of the collection protocols.

Though there already exist several visualization tools for

WSN [10–13], most of them concentrate on controlling, mon-

itoring and displaying sensor data rather than on analyzing

the underlying network protocol. As explained in Section II,

some tools show packet loss statistics but these statistics are

collected through the underlying collection protocol itself, pos-

sibly perturbing the ongoing test. Some of the tools are tailored

for a specific collection protocol, in which case testers need

to understand the tool and possibly write a significant amount

of new code in order to test a different collection protocol.

Besides, as discussed in the sequel, existing evaluations of col-

lection protocols sometimes resort to approximate calculations

or only include partial aspects of the performance for sake

of practical implementation. Though evaluation and analysis

of collection protocols have been a common practice in this

research area, none of the analysis tools have been published

or made publicly available to the best of our knowledge.

It is within this context that we have designed and im-

plemented TeaCP, an open-source benchmarking toolkit for

the evaluation and analysis of collection protocols in wireless

sensor networks. TeaCP runs on TinyOS and TOSSIM, and as-

sumes that the PHY and MAC layers follow the IEEE 802.15.4

standard. TeaCP provides generic configurations for testing

protocols, including packet generation rate and transmission

power, and functions for post-test analysis. TeaCP can be used

for both experiments with real data and simulation in TOSSIM.

For experiments, TeaCP utilizes out-of-band communication

for logging data at all nodes, so that network events and packet

information are captured regardless of network conditions.

More specifically, TeaCP incorporates an optional SD card

datalogger, which provides data storage space. The SD card

datalogger also enables us to evaluate collection protocols

in environments where wired transfer of logs is difficult

(e.g., intra-car WSNs). For simulations, TeaCP provides the

convenience of testing the performance of collection protocols

over a wide range of conditions. The post-experiment analysis
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functionalities allow evaluation of standard metrics, including

reliability, throughput, and delay (which have been used for

evaluating protocols in most previous works). TeaCP also

permits visualization of the dynamics of the network topology

and packet routes, illustrating the network layer behavior of

collection protocols over time.

Since TeaCP is built at the application layer, a system

architect that has some protocol options at hand can utilize

this toolkit to test these protocols and select the one that is

most suitable. TeaCP is also potentially useful for protocol

developers to validate accurate protocol operations based on

the obtained testing statistics. We stress, however, that the

main benefit of TeaCP lies in its generality, as it enables

evaluation and comparison between various collection pro-

tocols based on high-level performance metrics. Instructions

for using and downloading the TeaCP toolkit can be found at

http://nislab.bu.edu/?page id=355.

In summary, the main features of TeaCP are the following:

• Generality: TeaCP is a general toolkit designed to plug

in various collection protocols and analyze their perfor-

mance through post-experiment analysis.

• Configurability: With TeaCP, one can easily configure

tests for evaluating a data collection protocol, run the tests

and analyze the underlying performance (e.g., reliability,

throughput, and delay) via both real experiments and

simulations.

• Visualization: TeaCP provides visualization of packet

routes, network topology and other statistics, that can

be used for understanding, analyzing and diagnosing the

behavior of collection protocols.

• Flexibility: The SD card datalogger provides the conve-

nience to test the collection protocol in various environ-

ments.

The rest of this paper is organized as follows. In Section

II we present the related work on visualization tools for

WSN and data collection protocols. Thereafter, in Section III,

we describe the design and implementation of TeaCP. We

also present our implementation of an SD card datalogger

on the TelosB mote, a widely used wireless sensor model

in the research community. In Section IV, we demonstrate

how TeaCP is used to analyze, compare, and troubleshoot

collection protocols. Finally, Section V discusses potential

areas for extension and Section VI concludes the paper.

II. RELATED WORK

A. Visualization for WSN

Many of the existing tools for sensor networks focus on

logging and visualizing sensor network readings, rather than

on analyzing the performance of the underlying network layer.

Tools such as SpyGlass [10] and Octopus [11] help to visualize

the topology of multi-hop networks, but typically limit their

link quality data to a binary good/bad flag depending on

the timestamp and frequency of the last packet received.

Compared with these tools, TeaCP provides a much more

detailed evaluation of the collection protocols’ performance. In

particular, Octopus only provides inter-arrival times of packets

at the root while TeaCP provides precise measurements of end-

to-end delays as well as delays on individual links. TeaCP can

also be used to evaluate the performance of a data collection

protocol on TOSSIM over a wide range of network conditions.

As a plugin to TOSSIM, TinyViz [14] can visualize sensor

network and display TOSSIM events. OMNeT++ [15] also

provides comprehensive visualization functions for evaluation

and analysis of network protocols in WSN. TeaCP differs from

TinyViz and OMNeT++ in that TeaCP incorporates evaluation

and analysis of high-level performance metrics for both real

experiments and simulation.

Other tools, such as Mote-View [13], have the capabilities

of monitoring the underlying network layer, such as providing

statistics on link quality. These tools are not designed for

benchmarking and analyzing the underlying network layer,

because they rely on that same network layer to reliably send

statistics to the root. Trying to send packet loss information

on the same network link that is experiencing packet loss can

create a feedback loop, thus causing more packet loss that

needs to be reported. Another scenario where these visualiza-

tion tools might fail is when a subnetwork gets disconnected

from the rest of the network. In this situation, visualization

tools relying on the underlying network might not be able

to provide information about the subnetwork because of their

inability to fetch link information.

Existing testbeds such as Tutornet [16], MoteLab [17] and

the Guildford Facility of the SmartSantander project [18] have

provided the ability to log information of sensor motes through

out-of-band communication. Leveraging the same idea, TeaCP

logs network events at each mote to storage through serial

communication, which does not rely on the tested collection

protocol. Isolating the logging system from the network layer

enables TeaCP to concentrate on accurately reporting network

layer performance. Besides, TeaCP enables one to deploy a

WSN testbed on his own targeting environment.

Packet sniffers [19] are an alternative platform that has

been widely used to analyze network performance. Sniffers

suffer from several limitations in our context, however. First,

a sniffer may not be able to extract packet information when

two or more nodes transmit packets simultaneously or when

the wireless channel experiences deep fading. Second, a packet

sniffer can only provide timing information related to events

occurring on the wireless channel, such as the start of a packet

transmission. However, it may not be able to measure events

occurring at higher levels, such as the time elapsing from

the generation of the packet by the application layer till its

transmission, which is necessary for computing end-to-end

delay. Third, in the scenario of large networks, several sniffers

are needed to cover all the sensors in the network.

TeaCP provides a reliable logging system by attaching

cheap and lightweight data storage to each sensor. It pro-

vides accurate delay analysis by recording the time of packet

generation and packet delivery at the application layer. We

emphasize, nevertheless, that sniffers can still serve as useful,

complementary platforms to record network events.
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B. Data collection protocols

The Collection Tree Protocol (CTP) [7, 8] is the de facto

standard for data aggregation and has been supported in

TinyOS 1.x and 2.x. Due to its prevalence, we use it to demon-

strate the usefulness of our proposed toolkit. Although the

TinyOS implementation of CTP itself has provided a logging

layer to report events such as packet reception, parent change,

etc., such a logging system is more specifically designed for

debugging the protocol. TeaCP differs from the CTP logging

implementation in that it can evaluate additional metrics, such

as reliability and delay performance.

The Backpressure Collection Protocol (BCP) [9] is another

data collection protocol that has recently gained interest, as

it is the first implementation of a backpressure-based routing

algorithm in the context of sensor networks. BCP has been

shown to outperform CTP in terms of robustness and through-

put, two important metrics for collection protocols, although it

has been observed that BCP suffers from higher packet delay

than CTP. We thus use BCP as another testing protocol to

verify the functionality and usefulness of our toolkit.

Several newer collection protocols are built upon CTP and

BCP. For instance, [5] proposes a new routing scheme based

on CTP, called Bursty Routing Extensions (BRE). Elsewhere,

Backpressure with Adaptive Redundancy (BWAR) [6] has

been proposed to improve the delay performance of BCP

through the injection of redundant packets into the network.

The IPv6 routing protocol for low power and lossy networks

(RPL) [20], whose design was informed by CTP, can also be

used for data collection by having the nodes in the Destination

Oriented Directed Acyclic Graph (DODAG) send packets to

the DODAG root.

The development of these data collection protocols moti-

vates us to design a general open-source toolkit to analyze

and compare their performance. Although many of the afore-

mentioned protocols have their own experiment evaluation

software, our toolkit TeaCP provides a more comprehensive set

of evaluation functions on delay and reliability performance.

For example, the BCP implementation calculates packet delay

by accumulating MAC delays and queuing delays. Queuing

delays are measured through local timers while the MAC delay

is approximated by a constant 10 ms. TeaCP, on the other hand,

calculates the packet delivery delay by recording generation

time and delivery time of each packet and does not resort to

approximations. Our toolkit also helps to visualize the route

of the packet in the network and the evolution of the network

topology. This feature helps to understand how a collection

protocol behaves in response to link and traffic variations.

We believe that TeaCP can not only be used for evaluating

different protocols but also through visualization and analysis

to provide insight for improving existing protocols.

A previous and abbreviated version of this work appears

in [1]. The current paper differs in several aspects. First, it

introduces the design and implementation of the SD card dat-

alogger and reports several new experimental results. Second,

the TeaCP toolkit is described in much greater detail. Finally,

the paper includes detailed discussion of related work and

implementation issues.

Fig. 1. General structure of an evaluation toolkit. Note that the logging system
does not use the collection protocol to send log messages to avoid perturbing
its behavior.

III. TEACP IMPLEMENTATION

In this section, we present the design and implementation

of our TeaCP toolkit. First, we define the requirements for

designing a toolkit for our purposes, i.e., to visually and

quantitatively analyze a collection protocol under various con-

ditions. Thereafter, the implementation of TeaCP is described

based on the goal of fulfilling these requirements. Meanwhile,

we also describe the implementation of the SD card datalogger

on the TelosB mote. Finally, we highlight the convenience of

using TeaCP to test different data collection protocols.

A. Design objective and requirements

The development of various collection protocols necessitates

a common toolkit that can visually analyze protocol behavior

and evaluate performance of these protocols including relia-

bility and delay. Due to needs of different applications, the

protocol evaluation and analysis should be carried out under

various network conditions such as light traffic and heavy

traffic. The general structure of such a toolkit is illustrated

in Fig. 1.

The toolkit mainly consists of the testing system, the

logging system and the analysis tools. The testing system

depends on an underlying collection protocol to deliver packets

from sensor nodes to a root, while generating log information

about what is happening in the network. The logging system

stores log outputs from the testing system for post-experiment

analysis, which is accomplished by the analysis tools.

In a typical test case, parameter configurations are first fed

to the testing system. Then sensor nodes in the testing system

start to generate packets and transfer them to the underlying

collection protocol, which is responsible for delivering the

packets to the root. At the same time, the testing system

outputs log to the logging system whenever an event happens

in the network. After the testing is done, the analysis tools

process the log files stored in the logging system and generate

network visualization and other statistics.

A key difference between this structure and existing visu-

alization tools is that no interface is required between the

logging system and the collection protocol, i.e., the logging

system does not use the collection protocol to send log

messages to the root for post-experiment analysis. Analysis

results of the latter might be inaccurate because injected

feedback information can perturb the ongoing test, especially

under stress conditions (e.g., close to link capacity).

Next, we define the requirements for the testing system

and logging systems of the toolkit to accomplish desired

functionalities.
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Fig. 2. Structure of TeaCP. TeaCP is built on the application layer, and consists of the test configuration component, the application layer component for
generating and handling packets, and the post-experiment analysis component. The test configuration component and the application layer component run on
sensor motes. The post-experiment analysis component runs on a PC.

Testing system requirements

We desire that any data collection protocol can be tested

on the platform with minimal code reading and modifica-

tions, though the interfaces between the testing system and

the collection protocol may differ among existing protocol

implementations. For example, the standard BCP implemen-

tation in TinyOS provides an interface BcpPacket for the

application layer to extract packet-related information such

as the packet delay and the number of transmissions the

packet has experienced. In contrast, CTP’s provided interface

CtpPacket does not give delay information or the number

of transmissions. Thus a toolkit fetching packet delay via

BcpPacket cannot be directly used with the CTP implemen-

tation. Therefore we choose to minimize the set of interactions

between the testing system and the collection protocol for

achieving the toolkit functionality.

Logging system requirements

The testing system communicates messages to the logging

system. Since sensor motes are limited in computation and

communication resources, it is desirable to avoid introducing

too much overhead to the testing system. Hence a key chal-

lenge in building such a toolkit is to design an efficient log

message format through which the desired statistics can be

analyzed.

A log message should be generated whenever a network

event occurs. We are specifically interested in the arrival

of a packet at a node (source node, destination node, and

intermediate node). When a packet arrival event happens, the

log message should contain the identification of the packet

(who), identification of the node (where) and time of this

event (when). With these event-related information, it should

be possible to uniquely identify and trace the route of a packet.

The toolkit should also be able to detect route branches of

duplicates when they arise in the network.

As for post-experiment analysis, it turns out that the records

of arrival events are sufficient for calculating statistics such as

delivery rate, throughput and packet delays; the details will be

provided later in this section.

B. TeaCP Structure

TeaCP is designed to meet the requirements previously

defined. The structure of TeaCP is shown in Fig. 2. TeaCP

operates at the application layer, and consists of the test

configuration component, the application layer component for

generating and handling packets, and the post-experiment

analysis component. The test configuration component and the

application layer component run on sensor motes. The post-

experiment analysis component runs on a PC.

The configurable test parameters include the packet genera-

tion interval, the radio power and the channel for the network.

The radio power and channel settings are applied to the radio

component of the hardware. The packet generation interval is

applied to a periodic timer. The firing signal of the timer (i)

increments the packet counter by one, (ii) invokes the packet

generator to generate a data message (encapsulated in a packet)

with packet ID equal to the packet counter, (iii) drives the log

generator to output a log message, and (iv) transfers the packet

to the network layer, which moves it towards the root using

a collection protocol. Since the collection protocol may use

multihop routing to accomplish the delivery, the packet may

be received by intermediate nodes and the root. No matter

whether the node is a relay or the root, the network layer will

notify the packet reception handler when it receives a packet

from other sensors. The packet reception handler prepares the

information needed by the log generator, which outputs log
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Fig. 3. Format of log message. A log message is generated whenever
a network event (i.e., packet generation and reception) happens. The
fields cur_node_id and time denote the location and the time of
the event, respectively.
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Fig. 4. Format of data message. Data messages are generated by the
packet generator and carried as payload of packets by the collection
protocols. Each data message is identified by the fields src_node_id
and packet_id.

message to storage through serial communication. Finally, as

described before, post-experiment analysis is done based on

the data saved in storage (e.g., the SD card datalogger).

As shown in Fig. 2, the only interactions between the

application layer component and the network layer are two

necessary processes: (i) the packet generator transfers the

packet to the network layer; (ii) when a packet is received,

the network layer notifies the packet reception handler in the

application layer component. The two processes correspond

to two types of network event: (i) packet arrival at the

source node; (ii) packet arrival at the destination node or

an intermediate node. Log messages related to these events

are sufficient for the computation of packet routes and other

statistics.

A TinyOS-based collection protocol can interact with TeaCP

as long as it provides the following three interfaces:

• A Send interface, that is, the collection protocol can

receive a packet from the application layer component;

• A Receive interface, that is, the collection protocol can

notify the application layer component when receiving a

packet if the current node is the root node;

• An Intercept interface, that is, the collection protocol

can notify the application layer component when receiv-

ing a packet if the current node is an intermediate node.

Any collection protocol should include Send and

Receive interfaces in order to interact with applications.

However, some collection protocols may not natively provide

an Intercept interface. As shown in Section III-F, adding

such an interface usually entails adding only a few lines of

code.

The configurable parameters in the test configuration com-

ponent are as follows:

• Packet generation rate – the number of packets a sensor

node generates per second. It is reciprocal of the packet

generation interval, which is used to set the firing period

of timer.

• Radio power – the transmission power when a node

transmits a packet or a beacon message. For the CC2420

chip, radio power ranges from -25 dBm to 0 dBm.

• 802.15.4 radio channel – the radio channel on which the

collection network operates. The 2.4GHz ISM band is

divided into 16 non-overlapping ZigBee channels, with

Step 1 Compile the code of the collection protocol and of
the TeaCP application layer component and install
them onto the nodes.

Step 2 Attach a datalogger to each node and deploy the
nodes in the testing environment.

Step 3 Compile and install the TeaCP test configuration
component onto the activator node.

Step 4 Press the user button on the activator node to send a
broadcast signal and start the experiment.

Step 5 When the experiment ends, collect the data from the
dataloggers.

Step 6 Use the TeaCP post-experiment analysis component
to analyze the collected logs and obtain results.

TABLE I
USING TEACP IN EXPERIMENTS.

Step 1 Compile the code of the TeaCP test configuration
and application layer components.

Step 2 Configure the network in TOSSIM, e.g., number of
nodes, link gains and noise traces.

Step 3 Run the TOSSIM simulation, which outputs the logs
into a log file.

Step 4 Use the TeaCP post-experiment analysis component
to analyze the log file and obtain results.

TABLE II
USING TEACP IN SIMULATIONS.

channel ID from 11 to 26.

The purpose of the packet generation rate is to allow for

testing collection protocols under different network traffic

scenarios. Tests of different radio power could compare per-

formance of a low power configuration with a high power

configuration. Since power consumption is a natural concern

in WSN, low power is always preferred if it could satisfy

application requirements. Flexibility in configuring the radio

channel permits us to move the network between a low-

interference channel and a channel with intensive WiFi signals

for interference tests.

Table I and II describe the steps to follow for using TeaCP

in experiments and simulations, respectively.

C. Message formats

This section describes the formats of the log message and

the data message. We will also detail how to determine the

fields of the messages.

A log message is generated whenever a network event hap-
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pens.2 Hence, for each event, there is an associated packet and

a recorded log message. As shown in Fig. 3, the log message

contains 7 fields: type, cur_node_id, src_node_id,

last_node_id, packet_id, time and hop_count.

The field type denotes whether this log message is generated

at packet generation or packet reception, and cur_node_id

is the ID of the current node that generates the log message.

The field src_node_id is the ID of source node that

generates the packet. The field last_node_id denotes the

node ID of the packet’s last hop. If the log message is

generated upon packet reception, last_node_id is the ID

of the node that sends the packet to the current node. If the

log message is upon packet generation, then last_node_id

is not meaningful and set to src_node_id. The field

packet_id equals the value of the packet counter at the

source node when it is generated. The field time records the

time when the event happened. The field hop_count denotes

the number of hops that the packet has experienced.

The fields src_node_id and packet_id are used to

identify the packet associated with the log message and the

event. The packet_id is different from the packet sequence

number in the network layer; it is obtained from the 32-bit

packet counter when the packet is generated. One reason that

we do not use the network layer sequence number is that a

16-bit sequence number may be insufficient in the scenario

of long-duration tests. Another reason is that some protocols

may not provide sequence number for packet identification.

The fields cur_node_id and time represent the lo-

cation and the time of the event. In addition to them,

last_node_id is also important in determining packet

routes. The following example shows that in the case of packet

duplicates, packet routes might not be identifiable based on

cur_node_id and time only. Suppose packet A has the

route 1 → 3 → 5. The arrival times at the three nodes are

time 0, 1, 2. Suppose node 1 also generates a duplicate A′.

The duplicate follows the route 1 → 2 → 4 and the arrival

times at node 2 and 4 are 0.5 and 1.5, respectively. Because

we are not able to detect duplicates based on the locations and

times, we can only get a single route 1 → 2 → 3 → 4 → 5,
which is incorrect. Given last_node_id we are able to

draw a directed edge for each event related to the packet on

the network graph. Then by collecting these directed edges,

TeaCP will be able to find out all the routes of duplicates.

The fields of the log message are determined as fol-

lows. The values of type, cur_node_id and time

are set directly by the node generating the log mes-

sage: type can be trivially determined because the node

knows whether this is packet generation or packet reception;

cur_node_id is set to the node’s TOS_NOD_ID, its unique

node ID in the network; time is obtained from the local

clock. Value of other fields (src_node_id, packet_id,

last_node_id, hop_count) need to be obtained from

data messages.

Data messages are generated by the source nodes and

2In the nesC code, packet arrival at source node, the root and
intermediate nodes correspond to command Send.send(), event

Receive.receive() and event Intercept.forward(), respec-
tively.

Fig. 5. TelosB with SD card datalogger: A. TelosB; B. SD card slot; C.
Arduino; D. Power adaptor (USB).

are carried as payload of packets by collection pro-

tocols. As shown in Fig. 4, the data message has

four fields: src_node_id, last_node_id, packet_id

and hop_count. Similar to the log message for-

mat, src_node_id denotes the ID of the source node,

last_node_id denotes the node ID of last hop on the path,

packet_id is the packet ID and hop_count records the

number of hops that the packet has experienced.

TeaCP manipulates data messages and generates log mes-

sages as follows:

• When a sensor node generates a packet, it sets the data

message’s src_node_id to its TOS_NODE_ID and

last_node_id is set to its ID as well. packet_id

is set to the node-unique packet counter. hop_count is

initialized to 0. Then all the fields of the data message

are copied to the corresponding fields of the generated

log message.

• When a sensor node receives a packet from another sensor

node, first the fields of the data message are copied

to the generated log message. Then the data message’s

last_node_id is updated to the current node ID and

the hop_count is incremented.

• When the root node receives a packet, it increments

the hop_count of the data message and outputs the

associated log message.

D. SD card datalogger

In TeaCP, the log messages can be saved by an SD card

datalogger. This section describes the implementation of the

SD card datalogger for the TelosB mote.

In embedded systems, the SD card is typically written and

read by the CPU through a Serial Peripheral Interface (SPI),

which is not included in the expansion port of the TelosB

board. There are several ways to enable the TelosB mote

to communicate with an SD card. One way is to emulate a

software SPI port using four I/O pins of the TelosB mote [21].

However, significant CPU resources may be consumed by the

SD card command interface, especially when there is a large

amount of data that needs to be stored by the SD card. An

alternative way is to resort to an Arduino board, which can

serve as an SPI adapter between the TelosB mote and the
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Fig. 6. Hardware schematic of the SD card datalogger. The log messages are
first sent by the TelosB mote to the Arduino board via the UART interface,
and then the Arduino board writes log messages into the SD card via the SPI.

SD card [22]. The log messages are first sent by the TelosB

mote to the Arduino board via a Universal Asynchronous

Receiver/Transmitter (UART) interface, and then the Arduino

board writes log messages into the SD card via the SPI. Our

SD card datalogger leverages the second idea.

In order to transfer the log messages from the TelosB

mote to an SD card, we use the Arduino Pro Mini board

(5V, ATmega328 CPU@15MHz) as an SPI adapter for the

TelosB mote. Arduino Pro Mini is only one third of the

size of TelosB and costs 10 dollars. Besides, the integrated

development environment (IDE) software of Arduino Pro Mini

includes a UART communication library and an SD card

command interface library that supports SD card initialization

and read/write modules.

The hardware architecture of the TelosB mote with the SD

card datalogger is shown in Fig. 5 and 6. When the TelosB

mote generates log messages, the messages are transmitted to

the Arduino board through UART and shifted into the buffer

of the Arduino UART receiver. Then Arduino moves the data

from the UART receiver buffer into the memory and send the

data to the SD card through SPI. The UART receiver buffer

can hold up to 64 bytes while the size of a log message is 25

bytes (including headers). Thus, the buffer can store at most

two log messages. If there are three log messages arriving

within a short period of time, it is possible that the UART

receiver buffer of Arduino will overflow. To avoid the overflow

issue, we use a binary feedback signal from the Arduino board

to indicate whether it is busy writing data to the SD card.

SD card is a block-addressable storage device with block

capacity of 512 bytes, where a block is the minimum quota

of write in an SD card [23]. The 25 bytes of log message are

converted into 50 hex digits which in turn are converted into

50 ASCII characters (e.g., the byte 0x4e is converted to two

ASCII characters “4” and “e”). An escape character byte is

appended to the message, and therefore the memory usage for

each message is 51 bytes. The Arduino board will write the

block of bytes into the SD card when ten log messages are

received.

Fig. 7 shows the software flow diagram of the SD card

datalogger. First, the Arduino board initializes the SD card

and opens the file in which the log messages will be written

into. Then the Arduino board waits for log messages from

the TelosB mote, with the feedback signal set to 0 (IDLE).

When the TelosB mote generates a log message, it first checks

whether the feedback signal is IDLE or not. If the feedback

signal is IDLE, the TelosB mote sends the log message to the

Arduino board. Otherwise, the TelosB mote will hold the data

Fig. 7. Software flow diagram of the SD card datalogger. Since SD card
is a block-addressable storage device with block capacity of 512 bytes, the
Arduino board needs to receive enough log messages to fill in a block and
then writes the block of bytes into the SD card.

until the next attempt. Once the Arduino board has received a

block of log messages, it sets the feedback signal to 1 (BUSY)

and starts to write these data into the SD card. After finishing

writing data to the SD card, the Arduino board resets the

feedback signal and returns to the WAIT state.

In TeaCP, the timestamps of network events (e.g., packet

arrivals at nodes) are recorded by the TelosB motes indepen-

dently of the SD card datalogger. Thus in terms of timing, the

SD card datalogger should not affect the accuracy of recorded

timestamps of network events.

E. Post-experiment analysis

Post-experiment analysis functions of TeaCP include visu-

alization of packet routes and network evolution over time.

TeaCP also evaluates reliability, throughput and delay per-

formance of the network. Here we provide details of these

functionalities.

1) Packet route and network evolution

For a packet with specific source node ID and packet ID,

TeaCP calculates the route of this packet based on collected

data. last_node_id and cur_node_id of an event re-

lated to the packet represents a directed edge on the packet

route. If the packet has only one copy in the network, then

TeaCP links these directed edges together and generates the

packet route. If the packet has duplicates that go through

different routes, TeaCP detects this scenario and generates all

the route branches.

To visualize the network topology, first all packets in the

network are divided into equal-size windows according to

their packet IDs. In a window, based on the routes of the

packets, TeaCP calculates the number of packets that traverse

along each edge and presents a directed graph representing

the network topology. The node locations in the figure are

specified by the user in the Python script. Fig. 8 shows an

example of such a network topology based on logs of packet

ID 210 to 220 from every source node. The label of each

edge is the number of packets that go through this link. For
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Fig. 8. Network topology visualization using TeaCP. The label of an edge
corresponds to the number of packets traversing the edge.

example, for the 10 packets generated by node 5, 8 packets

go to node 7 first and then go to the root (node 0). The other

2 packets are lost and the label of edge from node 5 to node

“lost” is 2.

For each window of packets, TeaCP generates a network

topology with edge labels. Then the generated time-windowed

topologies (saved as PNG files) are combined together and

converted into a movie (saved as a MP4 file) to show the

network topology evolution over time.

2) Reliability and throughput performance

By counting the number of packet generation events, TeaCP

obtains the total number of generated packets, which we

denote by M . By counting the number of packet reception

events at the root, TeaCP gets the total number of received

packets by the root denoted by N . After removing duplicate

packets from the N packets, the toolkit obtains the number of

uniquely delivered packets, Nu. TeaCP computes the delivery

rate for the whole network as follows:

Delivery rate =
Nu

M
× 100%. (1)

The number of lost packets becomes M − Nu and the

number of delivered duplicates will be N − Nu. TeaCP also

outputs the delivery rate of each source node.

Throughput is defined to be the number of packets received

by the root per second and goodput is the number of unique

packets delivered to the root per second. Given the total

experiment time T , throughput and goodput are computed as

follows:

Throughput=
N

T
, goodput =

Nu

T
. (2)

3) Delay performance

TeaCP utilizes an activator node to send an initial broadcast

signal that activates each node and establishes time synchro-

nization. When packet i is generated, the source node records

the generation time t
g
i in its clock. When packet i is delivered,

the root records its delivery time tdi in its clock. Then, the delay

of a delivered packet is computed as the difference between the

generation time and delivery time (i.e., tdi −t
g
i ). Further, TeaCP

generates histograms of packet delivery delays and calculates

average delay for each source node. Let D denote the set of

uniquely delivered packets. Then the network-wide average

delay is computed as follows:

Average delay =
1

Nu

∑

i∈D

(tdi − t
g
i ). (3)

The median delay is defined to be the delay quantity in

the middle of the delay distribution of the uniquely delivered

packets.

It is well known that the clock of a sensor drifts. However,

for relatively short experiments (e.g., 30 minutes to an hour)

and the same type of sensor nodes, the amount of clock drift

is negligible compared to packet delays (around 2 ms for a du-

ration of 30 mins [24, 25]). The issue of time synchronization

is further discussed in Section V.

F. TeaCP working with CTP and BCP

CTP and BCP are two main collection protocols imple-

mented in TinyOS. Here we explain how TeaCP works with

these two protocols. Some protocols are developed as variants

of CTP and BCP so they can be directly used with TeaCP.

Our only requirements for collection protocol implementa-

tions are: (i) the collection protocol should provide function for

the TeaCP to inject a packet into the network layer; (ii) the col-

lection protocol should notify TeaCP when the network layer

receives a packet. In the nesC code, TeaCP is implemented

as a module named TestBenchC, which uses the interfaces

Send, Receive and Intercept. Commands and events of

these interfaces (refer to [26] for nesC basics) are defined in

TinyOS. The interface Send is used for injecting packets into

the network layer. The interfaces Receive and Intercept

signal events to the interface user when a packet is received.

The difference between the two is that Receive is specified

for packet reception by the destination while Intercept

is for packet reception by intermediate nodes. Since TeaCP

uses Send, Receive and Intercept, collection protocol

implementations are required to provide these three interfaces

if they wish to interact with our toolkit.

The CTP implementation satisfies the requirements. When

used on CTP, TeaCP injects a packet into the network

layer by calling the command Send.send(&packet,

sizeof(DataMsg)) provided by CTP. If the mote is

a sensor node and receives a packet from other sen-

sor nodes, CTP will notify TeaCP by signaling the event

Intercept.forward(message_t *msg). If the mote

is the root and receives a packet, CTP signals the event

Receive.receive(message_t *msg).

The BCP implementation provides interfaces Send

and Receive but misses the interface Intercept.

Thus to use TeaCP with BCP, we add the interface

Intercept in some components and signaling of event

Intercept.forward(message_t *msg) in the for-

warding engine of BCP. Another difference of BCP implemen-
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Fig. 9. Performance evaluation of CTP and BCP in simulations by TeaCP.

tation from CTP is that BCP uses interface BcpDebugIF for

protocol debugging and then in TestBenchC we just provide

the interface BcpDebugIF and implement its commands with

empty functions.

After these changes, TeaCP can test, analyze and evaluate

BCP. In total, we modified about 15 lines of code in order to

adapt TeaCP to the BCP implementation (around 2500 lines

of code).

The IPv6 routing protocol for low power and lossy networks

(RPL) [20] has been implemented in TinyOS as TinyRPL.

In the IP stack, TinyRPL is the routing engine and the

TinyOS component IPFowardingEngineP is the forward-

ing engine. The forwarding engine provides the Send and

Receive interfaces. Similar to the modifications made to

BCP, if we add the Intercept interface to the forwarding

engine IPFowardingEngineP, TinyRPL can be used with

TeaCP to evaluate its performance.

IV. PERFORMANCE EVALUATION

This section illustrates functionalities of TeaCP, through

evaluation and analysis of CTP and BCP which serve as

representatives of two different categories of protocols. We

showcase the use of TeaCP in three scenarios: (i) TOSSIM

simulations; (ii) experiments with logging to the PC; (iii)

experiments with logging to the SD card datalogger. We also

show how to use TeaCP as a diagnosis tool. Indeed, we identify

an inconsistency in the implementation of BCP on the TelosB

motes (with radio chip CC2420). This tiny hole causes sensor

nodes to always choose the root as the next hop and thus the

topology ends up always being a single-hop. We present a

simple solution to this problem.

A. TeaCP evaluation of intra-car collection protocol on

TOSSIM

TeaCP can evaluate collection protocols through simula-

tions, which is convenient and fast. For the simulations on

TOSSIM, we used real RSSI (received signal strength indica-

tor) traces of an intra-car wireless sensor network. The RSSI

traces were measured in real intra-car experiments, recording

the RSSI (in dBm) between different motes at different time.

The network consists of 15 nodes, in which the root is on the

driver seat, three sensors are placed in the engine compartment,

four sensors are respectively attached to the four wheels, three

sensors are placed on passenger seats and the rest placed on the

chassis. In the simulation, these sensors periodically generate

packets and forward them towards the root. The sensor model
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used in the simulation is MICAz. After running on TOSSIM,

TeaCP outputs the network performance statistics such as

delivery rate, throughput/goodput, and delay.

Fig. 9 compares the delivery rate, average delay, median

delay, and throughput/goodput performance of CTP and BCP

(both FIFO and LIFO implementations) based on the real RSSI

traces. From these simulation results, we observe that CTP

outperforms BCP-FIFO in terms of delay, but BCP improves

the throughput/goodput and delivery rate, especially under

high load conditions. Furthermore, BCP-LIFO achieves much

better (lower) delay performance than BCP-FIFO. We also

note that the difference between throughput and goodput is

negligible for these protocols. The root receives a duplicate

packet when the root has already received the packet but the

sender has not successfully received the acknowledgement.

The difference between throughput and goodput is small

because duplicates are mostly removed due to the duplicate

suppression mechanism in the protocols and only duplicates

at the last hop are considered in the calculation of throughput.

The results are consistent with the observations made in

[9] in two key aspects: (i) BCP provides higher throughput

and delivery rate than CTP under high-load conditions, while

CTP achieves smaller average delay, and (ii) BCP-LIFO sig-

nificantly reduces delay of BCP-FIFO while achieving almost

the same delivery rate performance.

These results obtained by TeaCP depict a wholistic picture

for CTP and BCP, from which one can compare these two

protocols and analyze their advantages and disadvantages. For

TOSSIM simulation (running one out of 8 cores of Intel Core

i7-2600 CPU@3.40GHz) of one root and 39 sensor motes,

with each sensor mote generating 5000 packets at rate of 1

pkts/sec, the total simulation time is around 10 minutes and

the memory consumption is around 400 MB.

B. TeaCP performance in real experiments

TeaCP can evaluate collection protocols through experi-

ments. In addition to the reliability, throughput and delay

performance, TeaCP provides other analysis functions for

visualization of the topology evolution over time, per-node

statistics, and complete characterization of network edges and

packet routes. The outputs of this toolkit include detailed

statistics for each node showing delay histogram, packet loss

rate, and route branches due to packet duplicates. Besides,

time-sliced network topology and topology evolution over time

can be displayed.

In our experiments, we set up a network consisting of 9
sensor nodes periodically generating packets and forwarding

them to a single root (node 0). The sensor motes and the

root are TelosB. The transmission power is configured to −20
dBm for all experiments and the packet generation rate is set

to either 2 or 4 pkts/sec per node. Our devices are located in

a computer lab and the positions of the motes are shown in

Fig. 10. The motes are connected to PCs through a USB port

for the purposes of transferring log messages. In the testing

environment, there exists WiFi interference and some foot

traffic, which may change during a test. Each test is initialized

by a central activator node sending a broadcast message

containing test configurations. This broadcast signal is also

Fig. 10. Placement of the 9 sensor nodes, the root (node 0) and the activator
in the experiment.

used to activate each node and establish rudimentary time

synchronization. After the initialization step, each experiment

runs for 20 to 30 minutes. Our current experimental setup (e.g.,

small scale network compared with real-world applications)

can be viewed as a proof of concept of TeaCP functionality in

experimental domain for evaluation and diagnosis purposes.

1) Delay histograms

CTP and BCP(-LIFO) experimental delay performance are

shown in Fig. 11. The per-node histograms give detailed statis-

tics of delay of packets generated at each node. Overall, the

histograms of the two protocols look quite similar. The high

average packet delay performance of BCP can be explained

by the fact that a few packets are experiencing huge delays,

as high as 30 seconds. These results suggest that the average

packet delay of BCP could be significantly reduced if this

issue were resolved.

2) Network topology evolution

TeaCP provides time-sliced topologies and network evolu-

tion over time. Fig. 12 shows CTP topology evolution over

time with a window size of 10 packets per each caption. In

the first caption, with packet ID 160 to 170, node 5 transmits

packets directly to the root. In the second caption, node 5

starts to choose node 3 as a relay node. In the last caption,

node 5 transmits 5 packets to node 7 among the ten packets

it generates. The network topology transition indicates change

of quality of links, probably due to walking of testers during

the experiment. This showcases that TeaCP can be used to

investigate the behavior of collection protocols under dynamic

scenarios and their ability to adapt the routes according to

environmental conditions.

The topology information can also be potentially used for

the selection of the root node. For instance, in one of our tests

of CTP (not shown, due to space limitation), we observed that

one of the sensor nodes carries a large portion of the traffic. In

this scenario, it may be worth testing what would happen if this

node were to fail or go offline and perform power consumption
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Fig. 11. Delay histograms for CTP and BCP obtained by TeaCP in experiments. Though the delay distribution of BCP and CTP are similar, average delay
of BCP is much higher than CTP.

Fig. 12. Topology sample of CTP at 10 packets per image. The topologies are drawn based on packets with ID from 160 to 190 from every source node. The
network topology transition indicates change of quality of links. This showcases that TeaCP can be used to investigate the behavior of collection protocols
under dynamic scenarios and their ability to adapt the routes according to environmental conditions.

analysis to determine the battery lifespan of such a high-traffic

node. It might also be worth considering the possible pros and

cons of selecting such a node as the root.

3) System diagnosis

This set of experiments presents the usage of TeaCP as a

diagnosis tool. We set up a network consisting of TelosB motes

(with radio chip CC2420) running BCP. As we observed, the

packet generation rate 2 pkts/sec per node gives reasonable

performance results (i.e., BCP protocol collects data with a

multi-hop topology and delivery rate of the nodes is higher

than 98%). However, when the generation rate increases to

4 pkts/sec per node, TeaCP topology analysis shows that all

sensor nodes always choose the root as the next hop. The

resultant packet routes are shown in Fig. 13(a).
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(a) Single-hop topology of BCP (b) Multi-hop topology of BCP

Fig. 13. BCP network topology obtained by TeaCP. (a) shows the topology
(always single-hop) before fixing the inconsistency of BCP implementation
with CC2420 (b) shows the multi-hop topology of BCP after making CC2420
consistent with BCP.

The crux of this behavior lies in the following fact. In the

TinyOS-implemented BCP, sensor nodes obtain backpressure

information (queue length) from neighbors through snooping

neighbors’ packets when they are transmitting, since the proto-

col header includes such backpressure information. However,

this learning method is not consistent with the default con-

figurations of CC2420. Indeed, CC2420 implements address

recognition meaning that the chip filters out the packets that

are not destined to the mote and thus does not transfer them

to upper layers. Therefore, packet snooping does not work

by default for CC2420 chips. However, once we disable the

address recognition function of CC2420, BCP supports multi-

hop data collection as shown in Fig. 13(b). This example

indicates that through the visualization and analysis functions

provided by TeaCP, one can diagnose and detect abnormal

behaviors of collection protocols.

C. Experimental evaluation of SD card datalogger

1) Benchmarking statistics

We aim to obtain the following benchmarking statistics for

the SD card datalogger: (i) recording accuracy; (ii) maximum

packet generation rate with close-to-zero packet loss rate;

(iii) impact of feedback signal on the recording accuracy. We

use the log messages recorded by the PC as a reference for

evaluating the accuracy of the SD card datalogger. Thus the

recording accuracy is defined to be the ratio of number of log

messages recorded by the SD card datalogger to that by the

PC.

In this set of experiments, two TelosB motes are connected

to both SD card datalogger and PC, which record the log

messages simultaneously. Among the two motes, one is the

sensor and the other is the root, running CTP. We increase the

packet generation rate of the sensor from 10 pkts/sec to 50

pkts/sec. Each experiment runs for 30 minutes.

Packet

Run

#packets recorded
generation by the SD card Accuracy (%) Packet loss
rate datalogger (%)
(pkts/sec) Sender Receiver Sender Receiver

1 18000 18000 100 100
10 2 18000 18000 100 100 0

3 18000 18000 100 100

1 36000 36000 100 100
20 2 36000 36000 100 100 0

3 36000 36000 100 100

1 54000 54000 100 100

30 2 54000 54000 100 100 1.2× 10
−3

3 54000 53997 100 100

1 72000 71997 100 100

40 2 72000 71998 100 100 2.8× 10
−3

3 72000 71999 100 100

1 90000 89993 100 100

50 2 90000 89995 100 100 5.6× 10
−3

3 90000 89997 100 100

TABLE III
RECORDING ACCURACY OF THE SD CARD DATALOGGER
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Fig. 14. The performance of data logging with and without the feedback
signal.

The results are shown in Table III. The accuracy of the SD

card datalogger is 100% for all the packet generation rates,

which means that the data recorded by the SD card datalogger

is the same as those recorded by the PC. The maximum packet

generation rate of the sender is 50 pkts/sec per node. If the

packet generation rate of the sender exceeds 50 pkts/sec per

node, the system fails and the SD card does not record data.

To investigate the impact of the feedback signal on the data

logging performance, we compare the following two scenarios:

one is connecting the TelosB mote to the SD card datalogger;

the other one is disconnecting the UART interface of the

TelosB mote to the Arduino board. In the second scenario,

since no data is sent from the TelosB mote to the Arduino

board via UART, the feedback signal is always IDLE. Then

we compare the packet loss rates based on the log messages

recorded by the PC for the two scenarios. The results are

depicted in Fig. 14. It shows that the difference of packet

loss rates between with feedback signal and without feedback

signal is at most 0.004%. Therefore, the addition of the

feedback signal on the SD card datalogger does not have

obvious impact on the data logging performance.

2) Three-node WSN

Now we use TeaCP with the SD card datalogger on a three-

node WSN, whose topology is shown in Fig. 15. The three
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Fig. 16. Topology sample of CTP at 20 packets per image. The topologies are drawn based on packets with ID from 480 to 520 from every source node.

Fig. 15. Locations of sensors in the three-node WSN. Node 0 is the root node.
The three nodes are placed in a line with 0.6 m apart between neighboring
nodes.

Node statistics

NodeID AvgHops Delivery% AvgDelay Throughput Goodput
(ms) (pkts/sec) (pkts/sec)

1 1.00 97.85 9.71 9.85 9.82
2 1.96 95.38 37.99 9.59 9.55

Network statistics

AvgHops Delivery% AvgDelay Throughput Goodput
(ms) (pkts/sec) (pkts/sec)

1.46 96.66 22.90 19.44 19.37

TABLE IV
ANALYSIS STATISTICS OBTAINED BY TEACP

nodes are placed in a line with distance of 0.6 m between

neighboring nodes. The underlying collection protocol is CTP.

The packet generation rate is 10 pkts/sec and the test runs for

20 minutes.

Fig. 16 shows three captions with a window size of 20

packets for CTP. In the first caption, with packet ID 480 to

500, node 1 and node 2 transmits packets directly to the root.

In the second caption, with packet ID 500 to 520, 6 packets

are lost and node 2 starts to choose node 1 as relay node. In

the last caption, node 2 transmits all 20 packets it generates

to node 1. The network topology change is probably due to

channel contention of node 1 and node 2, which leads to

node 2 taking more transmissions to send a packet to the root

node. Based on shortest-path calculation of CTP, it takes fewer

transmissions for node 2 to use node 1 as the next hop. Other

evaluation statistics obtained by TeaCP is shown in Table IV.

TeaCP calculates the statistics for both each node and the

whole network, including average number of hops, delivery

rate, average delay, throughput and goodput.

V. DISCUSSION

Within this context, we next discuss several of our simpli-

fying assumptions in the current design that may benefit from

future extensions.

Time synchronization: In TeaCP, we utilize an activator node

to send an initial broadcast signal that activates each node

and establishes rudimentary time synchronization. This may

not be sufficiently accurate in some cases. For example, in

large-scale deployments, all nodes may not receive a central

activation signal or their reception times can be different.

Under such conditions, TeaCP can be paired with a low-rate

and possibly out-of-band time synchronization protocol. The

problem of time synchronization within a distributed wireless

sensor network has been extensively investigated in previous

works (see, for example, [27, 28]).

In real experiments, the clock of each sensor node has

localized drift and skew parameters. The authors in [29] have

shown that clock drift is different for each node and also the

amount of drift increases almost linearly with time. Therefore,

we conjecture that if the experiment duration gets long, clock

drift may become significant and the accuracy of the delay

analysis could be impacted. However, for relatively short

experiments (e.g., 30 minutes to an hour) and the same type

of sensor nodes, clock drift does not introduce considerable

errors compared with packet delays (around 2 ms for a

duration of 30 mins [24, 25]). To mitigate the issues with

clock drift, lightweight clock calibration methods could be

implemented [29]. Note that, in many cases, distributed time

synchronization protocols are implemented regardless (e.g.,

to support duty cycling) and therefore can be employed in

parallel with TeaCP to improve its accuracy.

Routing protocols: The current implementation of TeaCP is

designed for collection protocols, which route packets from

sensor nodes to the root node. Since TeaCP is built on the

application layer, it can be used, with some modifications,

to evaluate and analyze the performance of other routing

protocols such as one-to-many and any-to-any routing. These

modifications include change of the packet generation pat-

terns and the definitions of performance metrics in the post-

experiment analysis component.

Traffic pattern: In our current implementation and perfor-

mance evaluation, packet generation is timer driven with a

constant rate. In the general case, nodes may have different

sleep and wake-up cycles for power saving purposes, which

will cause different traffic patterns in the network. Our baseline
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fixed-rate model for the network traffic can be generalized to

any arbitrary distribution, e.g., Poisson, bursty, etc.

VI. CONCLUSION AND FUTURE WORK

We have developed TeaCP, a toolkit that focuses on vi-

sualization and analysis of network layer collection protocol

performance, with an optional SD card datalogger. We have

shown how our toolkit can be utilized to compare the per-

formance of two well-established protocols, CTP and BCP,

though our toolkit is also designed for simple evaluation and

analysis of new collection protocols that follow a general

mold. The visualization and analysis tools of TeaCP can also

provide diagnostic information for data collection systems, and

we have demonstrated this by identifying an inconsistency

between BCP and the CC2420 radio chip in its standard

configuration.

The current version of TeaCP runs on TinyOS and TOSSIM.

For future work, it would be useful to extend TeaCP to support

other WSN platforms such as Contiki OS [30], the Castalia

simulator [31] and the Shawn simulator [32]. In TeaCP, the

test configuration and the application layer components are

written in the NesC language. To extend TeaCP to other WSN

platforms, these two components may have to be rewritten

(e.g., using C in Contiki OS). The post-experiment analysis

component can be readily used for analyzing the log messages

output from other WSN platforms since it is implemented with

Python.
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