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Abstract—Block relay protocols play a key role in the perfor-
mance and security of public blockchains. As a result, several
such protocols have been deployed in the context of Bitcoin and
its variants (e.g., legacy, compact block relay and Graphene) in
an attempt to reduce bandwidth utilization. However, the relative
performance of these protocols in realistic networking conditions
(e.g., with nodes churning - joining and leaving the network)
is still not known. This paper aims to fill this key knowledge
gap using an experimental testbed of twelve full nodes connected
to the Bitcoin Cash blockchain. With the aid of novel logging
tools, we contrast the performance of these three protocols, in
realistic scenarios, with respect to communication, delay, and
block decoding success. Our main findings are that Graphene
generally performs the best when nodes remain connected,
boasting an average propagation delay of 190 ms (i.e., 29% lower
than compact block and 80% lower than the legacy protocol).
However, when nodes churn at a high rate, compact blocks may
perform better. Through a careful temporal analysis, we identify
some root causes of the protocol inefficiencies, together with
potential mitigation. We have made our measurement framework
and experimental logs publicly available to the broader research
community.

Index Terms—blockchains, Bitcoin, measurements, perfor-
mance.

I. INTRODUCTION

Blockchains and cryptocurrencies have emerged as disrup-
tive technologies with profound financial and societal impact.
Indeed, as of December 2021, the global cryptocurrency mar-
ket cap exceeds two trillion dollars, with the leading cryptocur-
rency, Bitcoin, accounting for half of this market. The Bitcoin
cryptocurrency is seeing increased adoption throughout the
industry, including by financial firms and banks [1], [2], S&P
500 companies [3], [4], and small investors. Notably, the
mayor-elects of New York and Miami recently announced
that they will receive some paychecks in Bitcoin [5]. Bitcoin
has also proven useful for maintaining communication and
transaction in countries experiencing financial distress [6], [7].

As the name implies, blockchains consist of a chain of
blocks, each of which is comprised of a set of transactions. The
chains are maintained by consensus (rather than centralized
control), which relies upon mining and subsequent dissemi-
nation of blocks [8]. The process of verifying the integrity
and correctness of blocks is performed by full nodes [9],
[10], which store the entire blockchain [11] and form a peer-
to-peer network for updates. Full nodes verify that a newly
mined block meets specifications and is valid (e.g., it does not
contain doubly-spent transactions). Once a full node validates
a block, it relays the block’s contents to peers [12] based on the
specifications of an underlying block relay protocol. As such,
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full nodes and block relay protocols play a crucial role in the
performance and security of the blockchain system [13]–[16].

Block relay protocols, in turn, need to be resilient to churn
of full nodes, a phenomenon wherein a node independently de-
parts and returns to the peer-to-peer network [17]–[19]. Churn
is ubiquitous and pervasive in blockchain networks [18]–[20]
and may occur due to a variety of reasons, such as the need to
apply software patches or intermittency of power or network
connectivity. Indeed, power outages are common in developing
countries [21], [22] and not unusual in developed countries as
well [23], [24].

The original (legacy) block relay protocol implemented
by Satoshi Nakamoto in Bitcoin is the normal block relay
protocol [25], in which blocks are relayed with full copies
of their transactions. Subsequently, the compact block relay
protocol [26] was developed (and is now the default) in
an effort to reduce the total bandwidth required for block
propagation. A compact block contains the same metadata as
a normal block, but instead of sending a full copy of each
transaction, it sends only a hash of the transaction. Depending
on the number of inputs and outputs, a transaction may contain
several hundred bytes [27], [28], whereas the hashes used for
the compact block require only 6 bytes per transaction [26].
Replacing normal blocks with compact blocks should therefore
result in significant bandwidth savings, provided that the
receiver already has the relevant transactions in its mempool
and just needs to know in which blocks they belong. The
work in [18], [19] shows that this assumption often does not
hold, however, due to churn. These findings raise the following
question: Could the compact block protocol perform worse
than the normal protocol, especially when faced with node
churn?

More recently, Ozisik et al. [29], [30] introduced Graphene,
a block relay protocol that uses probabilistic data struc-
tures, namely Bloom filters and inverted Bloom lookup tables
(IBLTs) to relay blocks. The premise of that work is that
combination of these data structures further reduces the size
of the block and, consequently, the bandwidth required to
relay blocks. However, the work in [29], [30] only compares
the performance of Graphene with the compact block relay
protocol through simulation. Chiefly, the impact of churn is
ignored altogether. Since Graphene is a complex protocol,
which may incur several round-trips of communication in the
worst-case, it is unclear from the outset if and when this
protocol is superior to compact blocks. Is the performance
gain achievable with Graphene significant enough to warrant
replacement of the compact block relay protocol in Bitcoin?

To answer the above questions, we perform a thorough and
systematic comparison of the three aforementioned protocols
(i.e., the normal, compact block, and Graphene protocols)
under various network regimes. Our comparisons are carried



2

out through the popular Bitcoin Unlimited (BU) client, which
is a concrete implementation of Bitcoin Cash (a fork of the
Bitcoin blockchain - see Section II-A) that can support all three
protocols after some code changes. Unlike existing simulation-
based evaluations, our experiments include important real-
world artifacts such as the fluctuations in node connectivity
that are ubiquitous for these networks. We note that while other
block relay protocols have been proposed in the literature (cf.
Section II), none of them are currently implemented in Bitcoin
clients.

Our experimental testbed, which consists of 12 full nodes,
operates in three network regimes. The first regime represents
an ideal situation where the full relay nodes in our testbed
are always on, i.e., continuously connected to the BU
network. In the second regime, nodes in the testbed exhibit
statistical churn, mimicking the statistical behavior
of real-life churning nodes on the Bitcoin network [18]–[20].
In the third regime, nodes experience periodic churn,
wherein nodes cycle through “on” and “off” periods at a fixed
frequency. This regime allows us to compare and contrast
the impact of different churn parameters on the performance
of block relay protocols, and to emulate scheduled network
outages due to the aforementioned electrical power loss. We
stress that all our experiments consist of full nodes that relay,
but do not mine, Bitcoin blocks.
Main Contributions.

• We describe and develop fine-grained measurement capa-
bilities to log and assess the performance of three block
relay protocols in-situ;

• We set up a testbed and evaluate the performance of
the protocols in three different network regimes through
extensive experiments;

• We report results for different metrics including the block
propagation delay per hop, the communication size (total
amount of communication needed to relay a block), and
the probability of decoding a block at various points of
execution of the protocols;

• We perform an in-depth analysis of the dynamic and
temporal behavior of the protocols, through which we
identify inefficiencies.

Main Findings.
1) In both the always on and statistical churn

regimes, Graphene performs by far the best among the
protocols. The mean propagation delays of the compact
block and normal block protocols are, respectively, about
1.4 times and 5 times larger than for Graphene, while the
mean communication sizes are, respectively, at least 1.8
times and 15 times larger.

2) In the periodic churn regime, Graphene protocol
still generally performs best, but there are cases where the
compact block protocol is superior. The normal protocol
consistently performs the worst.

3) Regardless of the location of the peers of our testbed
nodes, reducing communication can significantly reduce
the propagation delay, as evidenced by the computation
of the Spearman Rank Correlation (SRC) coefficient [31]
between these two metrics.

4) We uncover previously unknown protocol inefficiencies.
For Graphene, we show that a churning node may miss
many transactions upon rejoining the network, which can
lead to significant delay in decoding the first few blocks.
For compact blocks, we find that, excluding the coinbase
transaction, i.e., the transaction created by a miner to
collect the reward for their work, full transactions con-
tained in the first message sent by the protocol are often
redundant or insufficient for block decoding.

In summary, under the many scenarios considered in this
paper, the normal protocol never performs better than the
compact block protocol, even under extreme churn. In turn,
Graphene generally performs better than the compact block
protocol, sometimes by a significant amount. Our analysis
includes a discussion of potential solutions to the observed in-
efficiencies. Though these experimental results were measured
on Bitcoin Unlimited clients of the Bitcoin Cash network, we
expect that they should also be of interest to the related main
Bitcoin network.

A. Road map

The rest of this paper is organized as follows. In Section II,
we present extensive background on the three block propa-
gation protocols discussed in this work, together with other
related works. In Section III, we introduce our measurement
tool, and evaluate the performance of the three block relay
protocols in the always on, statistical churn, and
periodic churn network regimes, together with in-depth
analyses of the Graphene and compact block relay protocols.
Section IV concludes the paper, suggests potential improve-
ments to the protocols, and discusses areas for future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide relevant background material on
the relay of blocks in the Bitcoin Unlimited network, followed
by a discussion of related works.

A. Bitcoin Unlimited

Bitcoin Unlimited is an implementation of the Bitcoin
Cash (BCH) protocol which was forked in 2017 from the
reference implementation of Bitcoin, also known as Bitcoin
Core [32]. The first release of BCH-compatible Bitcoin Unlim-
ited came in the same year [33]. We next explain the reasoning
behind this fork.

The problem of scalability in Bitcoin is well docu-
mented [34]. The original Bitcoin protocol placed a 1 MB size
limit on a block, which is a collection of Bitcoin transactions.
While the exact reason remains unknown, it is speculated that
Satoshi Nakamoto, the creator of Bitcoin, placed this limit
to prevent adversaries from creating very large blocks filled
with invalid transactions and spamming the network [35]. This
limitation capped the maximum rate at which transactions
could be committed to the blockchain at roughly 7 transactions
per second [36], which seemed sufficient at the time. However,
over the years, the popularity of Bitcoin grew together with
the volume of transactions. In 2010, for example, the number



3

Listing 1: Workflow of the normal block relay protocol.
SRC and DST are peers where the former sends a normal
block which the latter receives.

1 SRC: send headers to DST for block 𝐺
2 DST: request block 𝐺 from SRC via getdata
3 SRC: send block 𝐺 to DST via block
4 DST: process block 𝐺 and relay to peers

of confirmed transactions (i.e., added to a block) per day was
recorded at less than 200. In comparison, by 2016, this number
grew to around 250,000 confirmed transactions per day - a
roughly three orders of magnitude increase [37]. However,
roughly 25,000 transactions still remained unconfirmed (i.e.,
waiting to be added to a block) per day. Critics of Bitcoin
Core believe that the block size limit is one of the causes for
the low throughput of transaction confirmation in Bitcoin.

Enter BCH-compatible Bitcoin Unlimited. It differs from
Bitcoin Core mainly in the following ways: a) the block size
limit is removed from consensus rules, and b) miners can
freely adjust the block size [38]. Bitcoin Unlimited promises
a higher transaction throughput than Bitcoin Core. While
the number of transactions in a Bitcoin Core block remains
strictly below 2,600 [39], Bitcoin Unlimited blocks have been
known to contain over 24,000 transactions (e.g., block number:
681,765) [40].

Similar to Bitcoin Core, a new block is generated, or
mined, roughly every 10 minutes, on average, in Bitcoin
Unlimited. Likewise, a new transaction, when announced, is
stored in local memory, dubbed the mempool, of every node
participating in the network, where it remains until added to
a future block. In this paper, we focus on Bitcoin Unlimited
because it supports not only the default and compact block
relay protocol but also the newer Graphene protocol, which
allows us to compare the performance of all of these protocols
on a common platform.

B. Relay of blocks in Bitcoin Unlimited

When a node in the Bitcoin network receives a new block
from one of its peers, it processes the block and relays it
forward to its remaining peers. This relay of blocks allows
the trust-less Bitcoin network to maintain consensus on valid
transactions and balances available in wallets (or user ac-
counts). We describe next the three block relay protocols
of interest that are implemented in Bitcoin Unlimited. For
the purpose of explaining the protocols, we consider two
connected nodes SRC – a source node that relays information
– and DST – a destination node that receives it.
Normal (legacy) block relay. The original block relay protocol
implemented by Satoshi Nakamoto in Bitcoin is the normal
block relay protocol. In this protocol, blocks are relayed with
full transactions included, which often results in a waste of
bandwidth as the receiving node most likely already received
these transactions from their peers earlier.

Listing 1 shows the process of normal block relay: SRC an-
nounces the availability of a new block by sending the block’s

Listing 2: Workflow of the compact block relay protocol.
SRC and DST are peers where the former sends a compact
block which the latter receives.

1 SRC: send headers to DST for block 𝐺
2 DST: request block 𝐺 from SRC via getdata
3 SRC: send block 𝐺 to DST via cmpctblock
4 DST: attempt to reconstruct block 𝐺
5 if reconstruct successful, i.e., no missing transactions in

block 𝐺 then
6 DST: process block 𝐺 and propagate to peers

7 else
8 DST: request missing transactions from SRC via

getblocktxn
9 SRC: send requested transactions to DST via

blocktxn
10 DST: reconstruct block 𝐺
11 DST: process block 𝐺 and relay to peers

header to DST via a headers1 message; DST requests the
block from SRC if it is not already present in its inventory by
sending a getdata message to the latter; SRC then responds
with the full block via the block message; DST processes the
block which includes, among other steps, validating the block
header, validating the transactions within the block, removing
transactions included in the block from its mempool, and so
on; finally, DST propagates the block to its other peers.
Compact block relay. The compact block relay protocol was
introduced to Bitcoin Core in 2016 [41] and implemented
in Bitcoin Unlimited in 2019 [42]. Unlike a normal block
which contains full transactions, the compact block only
contains a 6-byte hash of each transaction with only a few full
transactions (including the coinbase transaction) - we evaluate
the usefulness of these extra full transactions in Section III-I.
This process can reduce the bandwidth required to propagate
a block by several orders of magnitude. The protocol works
under the assumption that the receiver of the block already
has in its mempool all transactions that are representative of
the 6-byte hashes contained in the block.

Listing 2 shows the relay of a compact block. SRC an-
nounces the availability of a new block by sending a headers
message to DST who requests the block using the getdata
message if the block is not already present in its inventory.
SRC responds with the cmpctblock message which contains
the block header, some full transactions, and 6-byte hashes
of the remaining transactions. If no transactions are missing
from the receiver’s mempool, DST is able to successfully
reconstruct the block, and propagate it to peers (represented
by lines 5-6).

If DST cannot find all transactions in its mempool that
correspond to the 6-byte hashes that are included in the block,
the compact block reconstruction fails. This is represented by
lines 7-11 in Listing 2. DST requests these missing transactions
by sending a getblocktxn message to SRC who responds
with the requested transactions in a blocktxn message.
DST is now able to successfully reconstruct the block and

1Note that newer versions of Bitcoin Unlimited replace the legacy inv
message with the headers message for the purpose of block relay.
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propagate it forward to peers. It is evident that recovering
missing transactions requires extra round-trip communication,
which incurs delay in propagation of the block and consumes
additional bandwidth.

Note that, to the best of our knowledge, unlike Bitcoin Core,
which supports both low bandwidth and high bandwidth modes
in the compact block protocol, the Bitcoin Unlimited client
only supports the low bandwidth mode [43], whereby a node
only propagates a block forward after fully validating it locally.
We refer the reader to the documentation of the compact block
protocol for further details on the two modes [26]. Listing 2
depicts the low bandwidth mode of the protocol.
Graphene block relay. The Graphene block relay [29], [30]
protocol is a more complex protocol that uses probabilistic
data structures, namely Bloom filters and invertible Bloom
lookup tables (IBLTs), to relay blocks (see Appendix A for
background on both of these data structures). The combination
of these data structures further reduces the size of the block
and, consequently, the bandwidth required to relay blocks.

We next examine the Graphene block relay protocol in
detail. We note in passing that this detailed description of
the Graphene implementation in Bitcoin Unlimited is a con-
tribution in its own right, since prior works provide only
higher-level descriptions. Listing 3 shows the workflow of the
Graphene block relay protocol. SRC announces the availability
of a new block to DST via the headers message. If DST does
not already have the block in its inventory, it sends a request to
SRC with a get_grblk message along with the size 𝑚 of its
mempool, i.e., the number of transactions in its mempool. SRC
encodes the hashes of transactions in the block in a Bloom
filter 𝐵 and an IBLT 𝐼. It uses 𝑚 as a parameter to determine
the sizes of these data structures which in turn determines
the number of symmetric differences that can be recovered
from 𝐼. SRC then sends the Bloom filter 𝐵 and the IBLT 𝐼

to DST with the grblk message. DST collects hashes of all
transactions currently in its mempool and orphan pool [44],
[45] and passes them through the Bloom filter 𝐵. It creates a
candidate set 𝐶 of transactions whose hashes successfully pass
through the filter. DST then uses 𝐶 to construct a local IBLT
𝐼 ′, performs the subtraction operation, i.e., 𝐼− 𝐼 ′, and attempts
to extract the transaction hashes encoded in 𝐼 by decoding the
result obtained from the subtraction operation. If the decoding
process is successful and DST has in its mempool and/or
orphan pool all transactions that are included in the block,
it reconstructs and processes the block, and then propagates it
to its peers. This scenario is represented by the code branch
marked by ① in Listing 3.

However, even if the subtraction operation 𝐼 − 𝐼 ′ and the
successive decoding operation are successful, there may be
some transactions in the block that are missing from the
mempool and orphan pool of DST. In this case, DST needs
to recover the missing transactions before it can process the
block. DST does this by sending a get_grblktx message
to SRC who responds with the requested transactions in a
grblktx message. DST is now able to successfully recon-
struct the block, process it, and propagate it to peers. Note that
similar to compact block relay, recovering missing transactions
requires an extra round-trip communication and delays the

Listing 3: Workflow of the Graphene block relay proto-
col. SRC and DST are peers where the former sends a
Graphene block that the latter receives.

1 SRC: send headers to DST for block 𝐺
2 DST: request block 𝐺 from SRC via get_grblk
3 SRC: encode hashes of transactions in block 𝐺 into

Bloom filter 𝐵 and IBLT 𝐼

4 SRC: send 𝐵 and 𝐼 to DST in grblk
5 DST: create candidate set 𝐶 from transactions in mempool

and orphan pool whose hashes pass through 𝐵
6 DST: create IBLT 𝐼 ′ from 𝐶

7 DST: attempt to extract encoded transaction hashes, i.e.,
find 𝐼 − 𝐼 ′, and decode result

8 if IBLT subtraction 𝐼 − 𝐼 ′ and decode successful then
9 DST: attempt to reconstruct block 𝐺

10 if reconstruct successful, i.e., no missing transactions
in block 𝐺 then ▶ ①

11 DST: process block 𝐺 and relay to peers

12 else ▶ ②
13 DST: request missing transactions from SRC via

get_grblktx
14 SRC: send requested transactions to DST via

grblktx
15 DST: reconstruct block 𝐺
16 DST: process block 𝐺 and relay to peers

17 else ▶ IBLT subtraction and decode failed;
initiate failure recovery

18 DST: create Bloom filter 𝐹 of transaction set 𝐶
19 DST: request failure recovery from SRC by sending 𝐹

via get_grrec
20 SRC: find set 𝐶 ′ of transaction that are in block 𝐺 but

not in Bloom filter 𝐹
21 SRC: create IBLT 𝐽

22 SRC: send set 𝐶 ′ and IBLT 𝐽 to DST via grrec
23 DST: create IBLT 𝐽 ′ from candidate set 𝐶 ∪ 𝐶 ′

24 DST: attempt to extract encoded transaction hashes,
i.e., find 𝐽 − 𝐽 ′, and decode result

25 if IBLT subtraction 𝐽 − 𝐽 ′ and decode successful then
26 DST: attempt to reconstruct block 𝐺
27 if reconstruct successful, i.e., no missing

transactions in 𝐺 then ▶ ③
28 DST: process block 𝐺 and relay to peers

29 else ▶ ④
30 DST: request missing transactions from SRC

via get_grblktx
31 SRC: send requested transactions to DST via

grblktx
32 DST: reconstruct block 𝐺
33 DST: process block 𝐺 and relay to peers

34 else ▶ ⑤
35 DST: initiate fail-over mechanism by requesting

normal block
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propagation of the block in addition to consuming additional
bandwidth. This scenario is represented by the code branch
marked by ② in Listing 3.

Next, we look at the case when the subtraction operation
𝐼 − 𝐼 ′ and the successive decode operation are not successful.
This may happen when DST is missing too many transactions
from its mempool. It, thus, cannot create a transaction candi-
date set 𝐶 and, consequently, an IBLT 𝐼 ′ that is sufficient to
perform the subtraction and decode operations successfully.
When this happens, DST enters failure recovery [46] with
SRC. This step requires one or more extra round-trips of
communication to recover from the IBLT decode failure which
further delay block propagation and consume extra bandwidth.

To perform failure recovery, DST creates a new Bloom
filter 𝐹 and inserts into it hashes of the transactions from
the candidate set 𝐶. This enables SRC to determine which
transactions are present in DST’s mempool. DST then sends
𝐹 to SRC with a get_grrec message. SRC creates a new
set of transactions 𝐶 ′ that is comprised of the transactions that
are in the block but whose hashes are not in 𝐹. It also creates
a revised IBLT 𝐽 adjusting for the false positives that appear
in 𝐹, and then sends 𝐶 ′ and 𝐽 to DST as a grrec message.
DST creates a new candidate set of transactions 𝐶 ∪ 𝐶 ′. It
locally creates an IBLT 𝐽 ′ from this candidate set and uses it to
extract the transaction hashes encoded in 𝐽 by first performing
the subtraction operation 𝐽 − 𝐽 ′ and then decoding the result
of the subtraction operation.

If the subtraction and decoding operations are successful,
DST attempts to reconstruct the block. If at this point, there are
no transactions missing from its mempool, DST successfully
reconstructs the block, processes it, and propagates it forward
to peers. This scenario is represented by the code branch
marked by ③ in Listing 3.

If, however, there are still some transactions missing from
its mempool, DST requests these transactions from SRC.
Upon receiving the missing transactions, DST successfully
reconstructs the block, processes it, and propagates it forward
to peers. Note that this scenario requires yet another round-
trip communication further delaying block propagation and
consuming additional bandwidth. This scenario is represented
by the code branch marked by ④ in Listing 3.

One may wonder why there may still be missing transac-
tions after failure recovery. This could be because the Bloom
filter has a non-zero probability of false positives and SRC
may falsely conclude that there already exists a transaction in
Bloom filter 𝐹 and not include it in the set of transactions
𝐶 ′. In this case, DST may end up in a situation where it
needs to perform another round-trip communication to recover
transactions that are included in the block but not present in
its mempool.

Finally, if the subtraction operation 𝐽−𝐽 ′ and the successive
decode operation also fail, DST must fall back to a fail-over
mechanism by requesting a full block (as in the normal block
protocol) instead of a Graphene block from SRC. This scenario
is represented by the code branch marked by ⑤ in Listing 3.

C. Other related work

Neudecker [47] built a tool (that is not publicly avail-
able) for monitoring different aspects of the Bitcoin network.
Though this tool provides valuable information on general
network properties, including end-to-end propagation delays
and churn, it does not provide detailed information about
events related to the propagation of transactions and blocks
at individual nodes, which is crucial for understanding the
causes of delays and network inefficiencies.

Kalodner et al. [48] present BlockSci, a blockchain analysis
tool designed to perform an analysis on transaction graphs,
scripts, block indexes and other data that are view-able by
the end-user. Though this tool is geared towards analysis of
privacy and forensics, it lacks the ability to perform analysis on
parameters such as propagation times of blocks, transactions
missing from blocks, etc., which our logging system is able
to achieve.

Imtiaz et al. [18], [19] show that churn is ubiquitous in the
Bitcoin network, and they create statistical distributions that
characterize this churn. They use the characterization to study
the impact of churn on the propagation of compact blocks in
the Bitcoin network. In our work, we present an in-depth study
of the efficiency of the Graphene block relay protocol, with
and without churn, and provide a comparison to the default
and compact block protocols. We further identify previously
unknown inefficiencies of the compact block protocol (see
Section III-I). The work in [20] shows that churn is significant
in the Ethereum network. This confirms that churn is a general
phenomenon in blockchain systems that must be considered in
the design of block relay protocols.

Rohrer et al. [49] present Kadcast, a protocol which, unlike
mainstream blockchain systems such as Bitcoin or Ethereum,
uses a structured overlay network to propagate blocks in the
blockchain networks. The authors show, via simulations, that
their protocol performs better, in terms of propagation delay of
blocks, than “VanillaCast”, a framework representative of most
blockchain networks. To the best of our knowledge, however,
the authors do not account for churn in their simulations. It is,
therefore, not known how well the protocol performs in such
conditions.

As the Bitcoin protocol is currently designed, a node floods
announcements of transactions it receives to all of its peers
even though it is possible that those peers already know of the
transactions being announced [50]. Prior work [51] shows that
transaction announcement accounts for 30−50% of the overall
Bitcoin network traffic. Zhange et al. [52] and Naumenko et
al. [51] respectively propose RepuLay and Erlay to improve
the relay of transactions in the Bitcoin network which should
consequently improve the relay of blocks. However, to the
best of our knowledge, the former was only evaluated over
simulations and not implemented in the Bitcoin software,
whereas the latter is currently undergoing review and has yet
to be merged in the Bitcoin software [53], [54].

III. EVALUATION OF BLOCK RELAY PROTOCOLS

In this section, we experimentally evaluate the performance
of the Graphene, compact, and default block relay protocols in
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three network regimes: (i) always on, which represents the
ideal situation where full nodes stay continuously connected
to the BU network; (ii) statistical churn, where nodes
churn according to statistical characterization derived in the
literature [18], [19]; and (iii) periodic churn, whereby
nodes follow a periodic churn pattern with fixed duration
for the “on” and “off” periods. This allows us to better
isolate churn factor that affects the performance of block
relay protocols. Further, this can emulate disconnections due
to power outages, with nodes staying off the network over
extended durations (see discussion in Section I).

The rest of this section is organized as follows. We first
detail the mechanisms we employ to collect data from our
experiments. Next, we describe our measurement setup. Then,
in the rest of this section, we present our extensive findings
on the efficiency (or lack thereof) of the aforementioned block
relay protocols for various metrics and in different network
regimes.

A. Data collection mechanism

Our data collection mechanism builds upon the “log-to-file
system” developed in [18], [19] that produces human-friendly,
easy-to-read text files. First, we port the system to the Bitcoin
Unlimited software. Next, we significantly augment this log-
ging system with new capabilities to record data relevant to
Graphene blocks, including capturing various events relevant
to this complex protocol, as described in Section II. We also
add new functionality so that data related to compact and
normal blocks can be recorded with finer granularity. The
logging system allows one to (i) identify events when they
occur; (ii) follow the changes in states as they take place;
and (iii) record relevant data, e.g., the hash of a block that
is announced and the list of transactions in the block, to
files which one can later use to obtain results. Note that
the Graphene block relay protocol has two dozen states and
numerous state transitions which requires significant effort
to identify and track in the Bitcoin Unlimited software. The
Appendix of the dissertation [55] expands in greater detail
upon the complexity of capturing all events related to each
block relay protocol.

The primary data point in our experiments is a block and we
tie every data associated with the block to its unique hash. We
do this for each Graphene, compact, and normal block received
by our measurement nodes. This allows us to isolate, identify,
and acquire enough information to get necessary results. We
use this logging system as our primary method of obtaining
data in our experiments. Our logging system is public and
available on GitHub [56].

B. Experimental setup

The purpose of the experiments in this section is to gauge
the performance of the Graphene, compact, and default block
relay protocols. For this purpose, we connect 12 nodes to
the live BU network. The nodes are Dell Inspiron 3670
desktops, each equipped with an 8th Generation Intel® Core
i5−8400 processor (9 MB cache, up to 4.0 GHz), 1 TB
HDD and 12 GB RAM. The nodes are each running the

Linux Ubuntu 18.04.5 LTS (Bionic Beaver) distribution. The
nodes run v1.9.0.1 of BU with an implementation of a bug
fix [57] and an implementation of the logging system detailed
in Section III-A. We have made this version of BU public
and available on GitHub [56]. We emphasize that all of the
nodes in our experimental setup are on both the DST side
of Listings. 1 - 3 when they receive blocks from their peers
and on the SRC side when they relay blocks to their peers.
However, any reference to a “node” in this paper is when it
is on DST side and relevant information is recorded.

To study the performance of block relay protocols in the
always on and statistical churn regimes, we run
experiments and measure data over a period of two weeks
starting from Tuesday, April 20, 2021 00:00:00 EST. Six nodes
always stay connected to the BU network throughout the mea-
surement period. Two of these nodes are configured to accept
Graphene blocks only, two to accept compact blocks only,
and the remaining two to accept neither, i.e., accept default
blocks only. Additionally, six nodes fluctuate on and off the
BU network using session lengths sampled from distributions
that represent churn in the Bitcoin network [19]. Specifically,
the nodes stay on and off the network with session lengths
sampled from the log-logistic (see Eq. (1) and corresponding
parameter values in [19]) and the Weibull (see Eq. (2) and
corresponding parameter values in [19]) distributions, respec-
tively. Two of these nodes accept Graphene blocks only, two
accept compact blocks only, and the remaining two only accept
default blocks.

To study the performance of block relay protocols in the
periodic churn regime, we introduce the following fluc-
tuation periods: 20 minutes (m), 1 hour (h), 3 h, and 6 h.
We chose the duration of these periods based on results of
preliminary experiments: durations that are either shorter or
longer do not yield results that are markedly different from
ones presented in this section in the 20 minutes and 6 hours,
respectively. For each of the fluctuation period duration, we
further divide experiments into two cases. In the first experi-
ment, which ran for one week starting from Thursday, March
25, 2021 22:00:00 EST, we set the off duty cycle to be 25% of
the fluctuation period. That is, during each fluctuation period,
the node stays off the network for the first 25% of the time,
and on the network for the remaining 75% of the time. In
the second experiment, which ran for one week starting from
Friday, April 02, 2021 02:01:19 EST, we similarly set the off
duty cycle to be 75% of the total duration of the fluctuation
periods. We split the 12 nodes in our testbed into four groups
of three nodes. Each group is configured with one of the four
aforementioned fluctuation periods (i.e., 20 m, 1 h, 3 h, and
6 h). Within each group, one node accepts Graphene blocks,
one node accepts compact blocks, and the last node accepts
default blocks only.

To get an in-depth view of additional transactions in
cmpctblock messages, we performed another experiment
which ran for two weeks starting from Friday, September
3, 2021 02:00:00 EST. In this experiment, three of the 12
nodes are always on, and the remaining nine statistically
churn according to distributions presented in prior work [18],
[19]. Since this is a study on additional transactions in
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Fig. 1: Complementary cumulative distribution functions
(CCDFs) of block propagation delays in Graphene, compact,
and normal block relay protocols in the always on and
statistical churn regimes. The Graphene block relay
protocol performs best in roughly 99% of blocks whereas the
normal block relay protocol always performs worst.

Fluctuating
period

Graphene Compact Default

100
ms

1,000
ms

100
ms

1,000
ms

100
ms

1,000
ms

20 m 83.65% 10.57% 86.25% 16.57% 98.16% 69.19%
1 hr 76.56% 15.65% 84.10% 15.42% 95.88% 51.67%
3 hr 75.26% 8.85% 79.22% 8.62% 93.55% 37.67%
6 hr 75.60% 3.30% 79.03% 3.41% 93.60% 36.65%

(a)

Fluctuating
period

Graphene Compact Default

100
ms

1,000
ms

100
ms

1,000
ms

100
ms

1,000
ms

20 m 95.66% 42.02% 96.72% 49.13% 99.19% 86.54%
1 hr 75.35% 28.46% 78.96% 21.99% 97.24% 46.81%
3 hr 78.86% 16.61% 77.99% 14.92% 96.34% 48.32%
6 hr 77.52% 9.22% 76.02% 9.03% 92.04% 38.75%

(b)

TABLE I: Fraction of blocks that have propagation delay
larger than 100 ms, and 1,000 ms in Graphene, compact
and default block relay protocols over varying fluctuating
periods with (a) 25%, and (b) 75% off duty cycles, in the
the periodic churn regime.

cmpctblock messages, all 12 nodes are configured to accept
compact blocks only.

Note that nodes configured to accept Graphene or compact
blocks only must also accept default blocks as a fail-over
mechanism in case the aforementioned protocols fail drasti-
cally. Therefore, our testbed nodes could connect to peers that
are not configured with the same relay protocol. In such cases,
a testbed node and its peer will relay default blocks only. To
make sure that we do not introduce any bias in our results, we
do not force our nodes to drop connections with peers with
whom they can only communicate via the default block relay.
Thus, our nodes connect to peers following the protocol im-
plemented in the Bitcoin software by default. Results obtained
from our experiment are detailed in the sections that follow.
We have made our experimental logs publicly available for
use by the wider research community [58].

C. Statistics on the propagation delay of blocks

In this section, we present statistics on the one-hop block
propagation delays in different network regimes. We measure
propagation delay as the difference between the time the
header of a block, i.e., the headers message, is received
by a measurement node and the time at which the block is
fully reconstructed and processed.

Fig. 1 shows the complementary cumulative distribution
functions (CCDFs) of block propagation delays for nodes in
the always on and statistical churn regimes con-
figured with the Graphene, compact, and normal block relay
protocols. In nodes in the always on regime, Graphene,
compact, and normal blocks have mean propagation delays
of 190.67 ms, 268.34 ms, and 974.11 ms, respectively. On the
other hand, in nodes in the statistical churn regime,
Graphene, compact, and normal blocks have mean propagation
delays of 259.13 ms, 364.19 ms, and 1287.22 ms, respectively.

These statistics show that i) Graphene blocks have the
smallest average propagation delays out of the three protocols,
whereas normal blocks have the largest average propagation
delays across both regimes, and ii) blocks across the three
different protocols in the statistical churn regime
always have, on average, larger block propagation delays
as compared to blocks across the respective protocols in
the always on regime, which is explained by nodes not
receiving several transactions from their peers while they are
off the network. Upon receiving a block that may contain many
of these missing transactions, the nodes must perform round-
trip communication to recover the transactions (in the case of
Graphene or compact block relay protocols) and/or to recover
from block decode failure (in the case of Graphene block relay
protocol) which also results from missing transactions. The
extra communication adds to the delay in reconstructing blocks
and, consequently, the delay in propagation of these blocks.

Interestingly, even though the absolute performance of each
of the three protocols is different in the always on and
statistical churn regimes, their relative performance
remains the same, i.e., in both regimes the average propagation
delay of Graphene is about 29% lower than that of the compact
block protocol and 80% lower than that of the normal block
protocol.

TABLE I shows the fraction of blocks that have a prop-
agation delay exceeding 100 ms and 1,000 ms respectively,
across the block relay protocols in nodes in the periodic
churn regime, for different fluctuating periods and off duty
cycles. A key takeaway from the table is that the default block
relay protocol always performs worse, in our experiments,
than both the Graphene and compact block relay protocols.
The default block contains full transactions as compared to
Graphene and compact blocks that contain short hashes of a
majority of transactions, and the result is that default blocks
take longer to propagate.

A trend that can be observed across all fluctuating periods
is that both Graphene and compact block relay protocols
perform worse when they are off the network for 75% of
the fluctuating periods. Similar to the case with always on
and statistical churn regimes, this can be attributed
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Fig. 2: CCDFs of block communication sizes in Graphene,
compact, and default block relay protocols in the always on
and statistical churn regimes. Graphene block relay
protocol performs best in both regimes whereas default block
relay protocol performs worst.

to extra round-trip communication for recovering missing
transactions and performing failure recovery.

Next, it is apparent that as the lengths of the fluctuating
periods increase, the performance of both the Graphene and
compact block relay protocols improves. That is, a smaller
fraction of blocks has large propagation delays. We theorize
that this is because as the nodes stay off the network for longer,
a large number of the transactions that they miss receiving
from their peers is already included in blocks that they also
miss receiving while they are off the network. Therefore, once
they rejoin the network, they miss fewer transactions and suffer
from fewer failures, thereby requiring fewer additional round-
trip communications. Therefore, they experience shorter block
propagation delays.

On the other hand, we note that the Graphene block relay
protocol generally outperform the compact block relay pro-
tocol except for a few cases, especially when the fluctuating
period is 1 hr and the off duty cycle is 75% of the fluctu-
ating period. This is likely because the node misses several
transactions from its peers that are going to be included in
the next few blocks that it will receive. Therefore, the node
requires additional round-trip communication to recover these
transactions adding to the propagation delay of blocks.

D. Statistics on the communication size per block

Next, we look at statistics on the communication size per
block received by different types of nodes. When calculat-
ing the total communication size per block, we take into
account the serialized size of the initial block received (i.e.,
grblk, cmpctblock, and block for Graphene, compact
and default blocks, respectively), and the serialized sizes of
all follow up round-trip messages sent and received to and
from peers. These messages could, e.g., be sent to recover
missing transactions from peers or to perform failure recovery.
For detail on all possible message exchanges between nodes
in BU, please refer to Section II-B.

Fig. 2 shows the CCDFs of block communication sizes for
the nodes in the always on and statistical churn
regimes configured with the Graphene, compact and normal
block relay protocols. Again, Graphene performs best. In

Block relay
protocol

Comm.
size

Fluctuating period

20 m 1 hr 3hrs 6 hrs

Graphene
10 kB 57.20% 69.41% 50.82% 51.54%

100 kB 47.72% 54.45% 23.04% 13.06%
1,000 kB 23.90% 23.54% 9.04% 4.70%

Compact
10 kB 76.65% 64.40% 57.92% 51.50%

100 kB 52.29% 52.05% 26.76% 13.53%
1,000 kB 18.27% 13.93% 9.18% 5.10%

Default
10 kB 98.56% 98.50% 98.46% 99.23%

100 kB 82.71% 81.05% 81.37% 81.03%
1,000 kB 30.51% 25.98% 26.62% 28.63%

(a)
Block relay

protocol
Comm.

size
Fluctuating period

20 m 1 hr 3hrs 6 hrs

Graphene
10 kB 26.93% 29.91% 41.41% 31.74%

100 kB 11.20% 18.83% 12.46% 7.77%
1,000 kB 3.39% 11.07% 4.75% 2.13%

Compact
10 kB 63.20% 60.83% 57.26% 53.20%

100 kB 25.10% 24.46% 19.45% 9.55%
1,000 kB 5.87% 4.77% 5.53% 1.81%

Default
10 kB 98.15% 98.15% 98.09% 98.05%

100 kB 83.03% 82.46% 82.14% 81.72%
1,000 kB 31.54% 28.97% 28.57% 27.79%

(b)

TABLE II: Fraction of blocks that have communication sizes
larger than 10 kB, 100 kB, and 1,000 kB in Graphene, compact
and default block relay protocols over varying fluctuating
periods with (a) 25%, and (b) 75% off duty cycles, in the
the periodic churn regime.

nodes in the always on regime, Graphene, compact, and
normal blocks have mean communication sizes of 24.53 kB,
46.17 kB, and 599.93 kB, respectively. On the other hand,
in nodes in the statistical churn regime, Graphene,
compact, and normal blocks have mean communication sizes
of 40.58 kB, 73.37 kB, and 592.64 kB, respectively.

TABLE II shows the fractions of blocks that have a total
communication size larger than 10, 100, and 1,000 kBs across
the block relay protocols in nodes in the periodic churn
regime for different fluctuating periods and off duty cycles.
Similar to the statistics presented in Section III-C, a key
takeaway from the table is that the default block relay protocol
always performs worse than Graphene and compact block
relay protocols. That is, default blocks are always larger in
size than Graphene and compact blocks and any additional
round-trip communication combined. This is because default
blocks contain full transactions each of which can be several
hundred bytes in size [27], [28]. By comparison, Graphene
and compact blocks contain only short hashes representing
transactions which considerably reduce the overall size of the
blocks.

We observe more trends similar to those highlighted in the
Section III-C: across all fluctuating periods, both Graphene and
compact block relay protocols perform worse when their off
duty cycle is 75% of the fluctuating period; as the length of the
fluctuating periods increase, the performance of the Graphene
and compact block relay protocols improves. Finally, the
Graphene block relay protocol almost always outperforms the
compact block relay protocol except in a few cases where our
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Block relay protocol Graphene Compact Default
Correlation coefficient 𝜌 0.51 0.61 0.68

(a)

Fluctuating
period

Correlation coefficient 𝜌
Graphene Compact Default

25% 75% 25% 75% 25% 75%
20 m 0.69 0.76 0.68 0.78 0.67 0.50
1 hr 0.65 0.85 0.69 0.84 0.50 0.42
3 hr 0.60 0.70 0.72 0.79 0.61 0.32
6 hr 0.56 0.61 0.72 0.71 0.61 0.74

(b)

TABLE III: Coefficients for Spearman Rank Correlation be-
tween the block propagation delays and block communica-
tion sizes in Graphene, compact, and default block relay
protocols in nodes in the (a) statistical churn, and
(b) periodic churn regimes. In general, the propagation
delays and communication size are moderately to highly
correlated.

proposed theory from the previous section applies.

E. Correlation between propagation delay and communication
per block

As observed from the previous two sections, the communi-
cation and delay performance of the various protocols follow
similar trends. We next rigorously quantify the correlation
between these metrics by calculating the Spearman Rank
Correlation (SRC) coefficient 𝜌 [31]. Provided two data sets
𝐷1 and 𝐷2 of equal size 𝑛, the SRC coefficient is given by

𝜌 = 1 −
6
∑𝑛
𝑖=1

(
𝐷1𝑖 − 𝐷2𝑖

)2
𝑛
(
𝑛2 − 1

) ,

where −1 ≤ 𝜌 ≤ +1, and 𝐷1𝑖 and 𝐷2𝑖 are the ranks of the 𝑖𝑡ℎ

data point in sets 𝐷1 and 𝐷2, respectively [59]. Values of 𝜌 =

+1 and 𝜌 = −1 imply an exact monotonic relation between data
sets 𝐷1 and 𝐷2 where the former implies that 𝐷1 increases
as 𝐷2 increases and the latter implies the opposite [60]. The
ranks in SRC are determined as follows: the data sets are
sorted in ascending order and the values are replaced by their
corresponding ranks [61].

Our results are summarized in TABLE III(a) and TA-
BLE III(b). We find that there generally exists moderate, i.e.,
𝜌 ∈ [0.4, 0.6), to strong relationship, i.e., 𝜌 ∈ [0.6, 0.8) [62],
between block propagation delays and block communication
sizes in all three block propagation relay protocols. That is,
as churning nodes exchange additional messages to recover
missing transactions in blocks, their propagation delay can be
expected to increase regardless of the geographical locations
of neighboring peers in the Bitcoin network.

F. Graphene in depth
Our findings in Sections III-C and III-D indicate that the

performance of the Graphene block relay protocol degrades
in some cases. In this section, we take a deeper look into the
potential reasons for this degraded performance.

Recall from Section II-B that there are several scenarios
where the Graphene protocol requires extra round-trip com-
munication, which includes recovering missing transactions
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Fig. 3: Proportion of block decode failures, i.e., scenarios ③,
④, and ⑤ in Listing 3, over different fluctuation periods with
25% and 75% off duty cycles, in the the periodic churn
regime. Block decode failure rates are higher when nodes
churn more often and stay off the network longer thereby not
being able to recover. This is prominent in fluctuating periods
of 20 m and 1 hr.

from peers and performing failure recovery when block decode
fails. The Graphene block relay protocol is complex: for
example, block decode could be successful but there might
be transactions missing from the mempool. On the other
hand, block decode could fail and there may or may not still
be transactions missing from the mempool even after failure
recovery.

Block decode failure occurs when the condition in line 8 of
Listing 3 returns false (i.e., the subtraction operation 𝐼 − 𝐼 ′
fails). When this happens, failure recovery is performed as
depicted by lines 17 onward (i.e., scenarios ③, ④, and ⑤)
in the Listing 3.

Fig. 3 shows the proportion of Graphene blocks that suffer
from decode failure when the off duty cycle is 25% and 75%,
respectively, and for different fluctuation periods. The figure
shows that block decode failure rates are higher when nodes
churn more often and stay off the network longer. They are,
hence, unable to recover from staying off the network. As the
nodes churn less frequently as well as stay on the network
longer, the block decode failure rates significantly drop.

Next, we investigate the case when block decode is suc-
cessful but transactions are missing from the mempool of the
node when a new block is received. This is represented as
Scenario ② in Listing 3 on lines 12-16.

Fig. 4(a) shows the mean number of transactions missing
from mempool when a block is received and successfully
decoded with 25% and 75% off duty cycle. The combination
of Fig. 3 and Fig. 4(a) provide a thought-provoking insight:
when a node churns frequently, it misses receiving enough
transactions that will result in a higher fraction of block decode
failures and the missing transactions will be recovered via
failure recovery. On the other hand, when a node churns less
frequently, it still misses transactions which are not enough
to cause block decode failure. These transactions are then
recovered by sending transaction recovery requests to peers.
Additionally, as the nodes stay on the network for longer, they
miss fewer transactions. In either cases, both failure recovery
and recovering missing transactions require an extra round-trip
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Fig. 4: Average number of missing transactions (with 95%
confidence intervals) from blocks that are (a) decoded suc-
cessfully, i.e., scenario ② in Listing 3, and (b) not decoded
successfully and require failure recovery, i.e., scenario ④ in
Listing 3, over different fluctuation periods with 25% and 75%
off duty cycles, in the the periodic churn regime

communication.
Finally, we take a look at the case when block decode is

unsuccessful and there are still missing transactions even after
failure recovery is performed. This is represented as scenario
④ in Listing 3 on lines 29-33. Interestingly, Fig. 4(b) reveals
that when nodes fluctuate frequently and stay off the network
longer, they may still miss transactions after failure recovery.
This requires an additional extra round-trip of communication
on top of that needed to perform failure recovery.

The insights presented in this section explain the cause
behind degraded performance of the Graphene block relay
protocol in the case when nodes churn frequently and stay
off the network longer. In some cases, up to two extra round-
trips of communication are required resulting in higher delays
in propagation and larger communication sizes.

G. Temporal analysis of the Graphene block relay protocol

In this section, we study the prevalence of scenarios dis-
cussed in Section II in Graphene blocks received by churning
nodes. More precisely, we consider what happens in the
Graphene block relay protocol when a churning node rejoins
the network. For this purpose, we create collections of blocks
received in each interval for which the churning nodes are
connected to the Bitcoin Unlimited network. We then identify
the scenarios that each block goes through.
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Fig. 5: Percentage of blocks (with 95% confidence intervals)
received in the statistical churn regime that face the
five scenarios after the churning nodes rejoin the network.
The longer a node stays on the network, the more scenario
① (i.e., no extra round-trip) prevails whereas the scenarios
③, ④, and ⑤ do not occur very often.
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Fig. 6: Percentage of blocks received in the periodic
churn regime with a fluctuation period of 1 hr and off duty
cycle of (a) 25% and (b) 75% that face the five scenarios
after a node rejoins the network. In either case, scenario ①
does not represent the majority of cases for the first block and
scenarios ③ and ⑤ occur infrequently.

We first consider the statistical churn regime.
Fig. 5 shows findings (with 95% confidence intervals) for the
first 10 Graphene blocks received after rejoining the network.
Roughly 54% of the Graphene blocks received by a node im-
mediately after it rejoins the network are successfully decoded
and have no missing transactions. A significant portion, i.e.,
roughly 39%, of the Graphene blocks are successfully decoded
but have missing transactions. This shows that nodes need to
perform round-trip communication with their peers to recover
missing transactions immediately after they rejoin the network.
While there are some blocks that suffer from scenarios in-
volving block decode failures, their proportion is relatively
small. As the node stays connected to the network and receives
further blocks, the chances of transactions missing from the
block significantly decrease. This trend continues on albeit
some random off shoots with small probability (depicted by
small peaks in the figure) in blocks with missing transactions.

We observe similar behavior in the periodic churn
regime. For example, Fig. 6(a) and Fig. 6(b) show statistics for
Graphene blocks received by nodes with a fluctuating period of
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1 hr and off duty cycles of 25% and 75%, respectively. In both
cases, when nodes rejoin the network, they see a large portion
of blocks with missing transactions regardless of whether the
IBLT decoding process is successful or not. This behavior is
worse in nodes that stay off the network longer. However, sim-
ilar to the statistical churn regime, the performance
of the Graphene block relay protocol improves over time, and
the proportion of blocks with missing transactions decreases
significantly.

These results show that the performance of Graphene de-
grades when a node rejoins the network, often resulting from
missing transactions. Prior work [19] shows that synchroniz-
ing mempools of churning nodes with mempools of highly-
connected nodes in the Bitcoin network helps improve the
performance of the compact block relay protocol in churning
nodes. Therefore, we believe similar mempool synchronization
can improve the performance of the Graphene block relay
protocol as well – although we leave the evaluation of this
hypothesis to future work.

H. Size of first message across block relay protocols
In this section, we investigate the size of the first block

message for each of the relay protocols, as a function of the
number of transactions included in a block. Initial messages
are important because they are transmitted regardless of the
specific scenario that ends up happening with future messages.
We are specifically interested in identifying trends as well
as outliers. Recall from Section II that the first messages
are grblk, cmpctblock, and block for the Graphene,
compact, and default block relay protocols, respectively.

Fig. 7 shows on the x-axis the number of transactions in
a block received by nodes and on the y-axis the size of the
first block message in bytes, in the statistical churn
regime. Notice that both the x- and y-axes are plotted on a
log scale. The figure shows that for default blocks, the block
message is almost always the largest. This is because in default
blocks, the first message is the entire block and contains full
transactions included in the block. Hence, as the number of
transactions in the block increase, so does the size of the
block message. The block message has, on average, a size
of 5.93 × 105 bytes with a standard deviation of 7.02 × 105

bytes.
Next we compare the sizes of grblk and cmpctblock

messages. We observe that when the number of transactions in
a block is small (i.e., up to 60 transactions), the cmpctblock
message usually has a smaller size than the grblk message.
Further, there is a visibly direct relationship between the
number of transactions in a compact block and the size of
the cmpctblock message in the shape of an almost straight
line. This line also forms a lower bound for the size of the
cmpctblock messages, because for every transaction in a
block, the cmpctblock message contains a 6-byte hash
for the transaction. Therefore, as the number of transactions
in a block increase, so does the size of the cmpctblock
message. Note, however, that there are instances in which the
size of the cmpctblock message deviates from the straight
line. This is due to the additional transactions included in the
cmpctblock message.
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Fig. 7: Sizes of the first block messages, i.e., block,
cmpctblock, and grblk, against the number of transac-
tions in the respective compact blocks. The block messages
almost always have the largest sizes.
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Fig. 8: Sizes of the cmpctblock messages (left y-axis) and
the number of additional transactions in blocks (right y-axis)
against the number of transactions in the respective compact
blocks. There exists a direct correlation between the number of
additional transactions in and the sizes of the cmpctblock
messages

While it may appear from Fig. 7 that cmpctblock are
smaller in size than the grblk messages, we emphasize that
the former are only bounded from below by the straight line
marked by crosses in Fig. 7. Sizes of grblk messages, on
the other hand, appear to be bounded from above by a curve,
marked by green circles, that appears to be asymptotically
linear. As the number of transactions in blocks increase, the
sizes of the initial grblk message tend to significantly deviate
from the curve. Contrary to cmpctblock messages, the sizes
of grblk messages do not depend on the number of additional
transactions in the message. Upon examining the software
implementation of the Graphene protocol in Bitcoin Unlim-
ited, we find that grblk messages always contain only one
additional transaction: the coinbase transaction. Therefore, we
conjecture that the deviation from the curve is best explained
by the size of the mempool sent by the SRC node to the
DST node (see the discussion in Section II-B). This parameter
sets the sizes of the Bloom filter and IBLT included in the
grblk message, which in turn determines the overall size of
the message. We leave further examination of this conjecture
to future work.

Overall, the grblk message has an average size of 1.21 ×
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Fig. 9: Number of useful additional transactions in
cmpctblock messages against the total number of addi-
tional transactions in respective cmpctblock messages in
(lower half) always on and (upper half) statistically churning
nodes. The diagonal (𝑥 = 𝑦) represents the case when 100%
of the additional transactions in cmpctblock messages are
useful.

104 bytes while the cmpctblock message has an average
size of 6.24 × 104 bytes. Thus, the first message in Graphene
is significantly smaller. Still, the cmpctblock message is
much smaller than the block message of the normal block
protocol, the latter having an average size of 5.93×105 bytes.

I. On the usefulness of additional transactions in the compact
block relay protocol

Recall that the compact block protocol sends additional
transactions as part of the cmpctblock messages. These
are full transactions that the source node SRC predicts the
receiving node DST may be missing from its mempool. In
this section, we examine if these additional transactions are
useful.

Denote by 𝑆1 the set of additional transactions included in
a block received by a node, and by 𝑆2 the set of transactions
contained in the mempool of the node when the block is
received. The number of useful additional transactions, i.e.,
transactions included in 𝑆1 but not in 𝑆2, is given by | 𝑆1 \ 𝑆2 |
where \ denotes set subtraction.

The statistics on number of useful additional transactions
in cmpctblock messages are shown in Fig. 9. The x-axes
show the number of additional transactions in a cmpctblock
message and the y-axes show the number of useful additional
transactions. The straight 𝑥 = 𝑦 line represents 100% useful
additional transactions in the cmpctblock message. The fig-
ure is divided into two halves where the upper half represents
statistics in the statistical churn regime and the lower
half in the always on regime. Note that both x-axes and y-
axes are plotted on a log scale.

We observe from the figure that churning nodes have
relatively more instances of useful additional transactions
compared to always on nodes. This is because the former are
likely to miss more transactions from their mempool than the
latter, since they were off the network. However, in both type
of nodes, cmpctblock messages rarely have 100% useful
additional transactions. In fact, in many cases, the only useful
additional transaction in both churning and always connected

nodes is the coinbase transaction, regardless of the number
of additional transactions in the cmpctblock message. The
data point clusters in the middle of the two halves of the figures
show that in a few cases, some additional transactions other
than the coinbase transactions are useful. However, even in
those cases, the difference between the number of additional
transactions and the number of useful additional transactions
is usually high (up several orders of magnitude).

We next investigate whether useful additional transactions in
cmpctblock messages save round-trip communication. That
is, does the DST still miss transactions after receiving useful
additional transactions included in a cmpctblock message?

Denote by 𝑀 the set of transactions in a node’s mempool
when it receives a block, by 𝑇 the set of missing transactions
in the block, and by 𝐴 the set of additional transactions in
the cmpctblock message for that block. Then 𝑋 = 𝑇 \𝑀 is
the set of transactions in the block that are missing from the
node’s mempool, and 𝑌 = 𝐴 ∩ (𝑇 \𝑀) is the set of additional
transactions that help recover the missing transactions.

Our analysis shows that in both churning and always con-
nected nodes, roughly 87% of cmpctblock messages con-
tain only one additional transaction: the coinbase transaction
that is always helpful. In the remaining cmpctblock mes-
sages, we exclude the coinbase transaction for further analysis.
There are now three cases: (a) the additional transactions are
not helpful at all, i.e., |𝑌 | = 0; (b) additional transactions are
partially helpful, but not enough to recover all transactions in
𝑋 , i.e., 𝑌 ≠ 𝑋 given |𝑌 | > 0; or (c) additional transactions
are completely helpful and recover all transactions in 𝑋 , i.e.,
𝑌 ≡ 𝑋 . We find that there are no instances where the additional
transactions are completely helpful to recover all transactions
in 𝑋 (i.e., case (c)). On the other hand, additional transactions
in roughly 84% of cmpctblock messages are not helpful at
all (case (a)). In the remaining roughly 16% of cmpctblock
messages, additional transactions are partially helpful (case
(b)).

Our findings in this section show that though additional
transactions (excluding the coinbase transaction) are some-
times helpful, in many instances they are either duplicates and
thus end up wasting bandwidth, or not enough to completely
recover transactions in blocks that may be missing in the
node’s mempool. Our calculations show that in the always
on and statistical churn regimes, roughly 90% and
96%, respectively, of bandwidth consumed by additional trans-
actions is unnecessary and wasted.

IV. CONCLUSION

We have methodically studied the empirical performance
of three popular block relay protocols (Graphene, compact
blocks, and the Bitcoin default) on a live blockchain, through
the Bitcoin Unlimited (BU) client and in a variety of network
regimes. Our experiments have identified regimes in which the
different protocols excel.

For nodes that are always on or have statistical
churn, the Graphene block relay protocol performed the
best and the Bitcoin default block relay protocol performed
the worst in terms of average block communication sizes
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and propagation delays, with the compact block relay pro-
tocol performing in-between. More precisely, compared to
Graphene, compact and default blocks have roughly 40% and
400% higher propagation delays, and over 80% and 1400%
larger communication sizes. As a result, it seems preferable
to configure nodes with the Graphene block relay protocol
under typical network conditions.

For nodes that are periodically churning, our results were
more nuanced. We found that the default block relay protocol
performed worse than Graphene and compact blocks, in terms
of propagation delay and communication sizes, regardless of
the off duty cycle used in our experiments. Graphene generally
performed better than compact blocks in nodes configured with
a 25% off-duty cycle, and vice versa in a 75% off-duty cycle
regime. More precisely, Graphene performance significantly
degrades when the destination misses many transactions as
this causes additional rounds of communication. As a result,
if nodes churn frequently or are off the network for long
periods of time, it may be preferable to configure them with
the compact block protocol.

In summary, our work methodically demonstrates the benefit
regime of the Graphene protocol, and suggest that it should
be of interest to other blockchains, including BTC (i.e., the
main Bitcoin blockchain). We thus encourage integrating and
evaluating Graphene within Bitcoin Core, the client software
for BTC.

A. Inefficiencies and potential solutions

Our paper provided a detailed description of the imple-
mentation of the Graphene block relay protocol in Bitcoin
Unlimited. We showed that there exist five scenarios for the
completion of block relay between two nodes. In general,
scenarios ① and ② are the most common and complete
within one and two round-trips, respectively. Yet, when nodes
are churning, our fine-grained temporal analysis of Graphene
identified an inefficiency. Specifically, consider a churning
node that has just rejoined the network. Our analysis showed
that for the first received block in the periodic churn
regime, scenarios ④ and/or ⑤ occur more often than scenario
③ in most considered cases. This suggests that the block
failure recovery procedure in the protocol could be optimized
to avoid unnecessary rounds of communication. For example,
one could send transaction hashes when initiating failure
recovery (rather than a Bloom filter) so that there is no
chance of false positives. This should in principle remove the
occurrence of scenarios ④ and ⑤. Indeed, the node would
not need to decode IBLTs and probabilistically reconstruct
the Graphene blocks while incurring an additional round-trip
to recover transactions corresponding to the aforementioned
hashes. The infrequent occurrence of the scenario suggests
that the overhead of this approach should be negligible. Indeed,
after the first three blocks are received, scenario ③ occurs with
a probability smaller than 10% in both the statistical
churn and periodic churn regimes.

We also studied the practice of including additional trans-
actions (i.e., full transactions predicted by the SRC node to
be missing from the mempool of the DST node) in the initial

message of the compact block relay protocol. Our analysis
shows that in our experimental nodes in both always on and
statistical churn regimes, a large portion, i.e., roughly
87%, of the cmpctblock messages only contain the coinbase
transaction. Of the remaining portion of the cmpctblock
messages, over 90% of the additional transactions result in
wasted bandwidth. Our analysis shows that this respectively
accounts on average for 10 MB and 34 MB of communication
in nodes in the always on and statistical churn
regimes, aggregated over the measurement period. As such,
there may be benefits from limiting these additional transac-
tions from the cmpctblock messages.

APPENDIX

EXTENDED BACKGROUND

A Bloom filter [63] is essentially a bit-vector, i.e., an array 𝐴
of size 𝑚 where each element in the array can only be either
0 or 1. Given a set 𝑆 of 𝑛 objects, the Bloom filter allows
testing objects 𝑠𝑖 , where 𝑖 ∈ [1, 𝑛], for membership in 𝑆.
The bit-vector 𝐴 representing a bloom filter is first initialized
such that all bits are set to 0, i.e., ∀ 𝑗 ∈ [1, 𝑚], 𝐴[ 𝑗] = 0.
To represent 𝑆 as a Bloom filter, each object 𝑠𝑖 ∈ 𝑆 is
hashed with predefined hash functions ℎ1, ℎ2, . . . , ℎ𝐾 . The
output of each hash function determines a location in the
bit-vector, the bit corresponding to which is set to 1, i.e.,
∀𝑖 ∈ [1, 𝑛],∀𝑘 ∈ [1, 𝐾], 𝐴 [ℎ𝑘 (𝑠𝑖)] = 1. The object 𝑟 that
is to be tested for membership in 𝑆 is hashed against the
same hash functions. 𝑟 is most likely a member of 𝑆 if all
bits corresponding to the locations in 𝐴 obtained by hashing
it are set to 1, i.e., when the result of⋂

𝑘∈[1,𝐾 ]
𝐴 [ℎ𝑘 (𝑟)]

is 1. 𝑟 is definitely not a member of 𝑆 even if a single bit
corresponding to the locations in 𝐴 obtained by hashing it is
set to 0, i.e., when the result of⋂

𝑘∈[1,𝐾 ]
𝐴 [ℎ𝑘 (𝑟)]

is 0.
The Bloom filter is a probabilistic data structure. Given

a set of objects 𝑆 and a Bloom filter 𝐴 of size 𝑚, denote
with P 𝑓 𝑝 the probability that a false positive and with P 𝑓 𝑛
the probability that a false negative occurs as a result of the
test of membership of an object 𝑟 in 𝑆. While a Bloom filter
does allow false positives, i.e., P 𝑓 𝑝 ≥ 0, false negatives can
never occur, i.e., P 𝑓 𝑛 = 0. Further, P 𝑓 𝑝 is configurable and
depends on the number of objects in the set, i.e., |𝑆 |, the size
of the Bloom filter, i.e., 𝑚, and the number of predefined hash
functions, i.e., 𝐾 [64], [65].

A Bloom filter, however, does not allow listing of all
members of the set that it represents. This operation can be
performed with an inverted Bloom lookup table (IBLT) [66],
[67] which, in addition to the insertion and lookup operations,
also supports listing members of a set. Given two sets of
objects 𝑆1 and 𝑆2 where the contents of the sets are not
identical, IBLTs can be used to efficiently find the symmetric
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differences between the two sets. We represent the two sets
𝑆1 and 𝑆2 each with an IBLT 𝐼𝑆1 and 𝐼𝑆2 , respectively.
The symmetric difference between the two sets, i.e., 𝐷𝑆1−𝑆2 ,
can then be found by first subtracting the IBLTs from one
another using a process dubbed as the peeling process, i.e.,
𝐼 ′ = 𝐼𝑆1 − 𝐼𝑆2 , and then finally decoding the difference 𝐼 ′ [68].
The decoding process is successful if all symmetric differences
between 𝑆1 and 𝑆2 are found. Otherwise, the decode process
has failed. Similar to a Bloom filter, an IBLT is a probabilistic
data structure, and there is a non-zero probability that the
decode process will fail. When this happens, the process can
be repeated by modifying the parameters that govern the size
of the IBLTs.
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