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Abstract— Server selection plays an essential role in content selection is fundamentally different from traditional tbbal-

replication networks, such as peer-to-peer (P2P) and comne
delivery networks (CDNSs). In this paper, we perform an ana-
lytical investigation of the strengths and weaknesses of Bsting
server selection policies, based initially on an\//G/1 Processor
Sharing (PS) queueing-theoretic model. We develop a thedieal
benchmark to evaluate the performance of two general server
selection policies, referred to as EQDELAY and EQ _LOAD,
which characterize a wide range of existing server selectio
algorithms. We find that EQ_LOAD achieves an average delay
always higher than or equal to that of EQDELAY. A key
theoretical result of this paper is that in an N-server system,
the worst-case ratio between the average delay of EQELAY
or EQ_LOAD and the minimal average delay (obtained from
the benchmark) is preciselyN. We constructively show how this
worst-case scenario can arise in highly heterogeneous sgsts.
This result, when interpreted in the context of selfish routng,
means that the price of anarchy in unbounded delay networks

depends on the topology, and can potentially be very large.

Our analytical findings are extended in asymptotic regimes @
the G/G/1 First-Come First-Serve and multi-class M/G/1-PS
models and supported by simulations run for various arrival and
service processes, scheduling disciplines, and workloagdtebiting
temporal locality. These results indicate that our analyss is
applicable to realistic scenarios.

Index Terms— Content delivery networks, peer-to-peer net-
works, load balancing, distributed systems, price of anaray,
game theory.

I. INTRODUCTION

ancing problems, which usually assume that servers are co-
located [5].

Because server response time is an increasing function of
the load, the best server selection solution is usually het t
one that directs all the requests to a single server (e.g., th
fastest), which would slow down or even crash the server [6].
Thus, a number of server selection policies have been peapos
in the literature or implemented in commercial products.
Several of these policies fall within one of the following
two categories: (i) Equal load (EQOAD), where the access
probabilities to the servers are set so that all servers have
the same utilization. Examples of policies following this-a
proach include round-robin, or weighted-round-robin (WRR
for heterogeneous servers [5], and certain adaptive dtgosi
such as Least Loaded [4] and WebSeAl [7]; (i) Equal delay
(EQ.DELAY), where the access probabilities are set so that the
average delay at all the selected servers is equal or atdaast
the same order. SPAND [8] and the application layer anycast
architecture of [6] implement variations of this approach.

Although server selection is key to content replication net
works’ performance, existing evaluations of the above eserv
selection policies have mostly been obtained from paramete
ized simulations (e.qg., [9, 10]) due to the inherent comipfex
of modeling such networks. However, in the absence of theo-
retical guidelines, it is unknown to what extent experinaént
results obtained from a specific network configuration can be

Content replication has emerged as one of the most used@plied to other settings. Such guidelines can providengisse
paradigms for the provision of scalable and reliable Irgernanalytical understanding of the following important qiess:

services [1]. With content replication, the same data (&Vgb

1) How do the above server selection policies compare to

pages, multimedia files, etc.) is stored at multiple geograpeach other in terms of system-level performance (e.g. ageer
ically distant servers. Requests by clients are then faredr delay)? 2) How do factors such as network size, server

to one of these servers. Because of its inherent scalahititly
fault-tolerance, content replication has become a cotoees

capacities and network utilization affect their perforroa®n
3) What are the theoretical performance limitations anchioisu

of most modern networking architectures, including conteff these policies?

delivery networks (CDNs) and peer-to-peer (P2P) netwdzks [

3l
One of the key issues arising with content replication
that of server selection. In most content replication neksp

In this paper, we develop an analytical benchmark to
address these questions. We first model the behavior of the
gervers using a//G/1-PS (Processor Sharing) queueing-
theoretic model [11], and derivelosed-formsolutions for

a number ofserver-selection node@_g_’ enhanced DNS a theoretical benchmark pOllcy called OPT that minimizes
servers in CDNs [2,4] or supernodes in P2P networks [3})€ average delay. We analytically compare BRLAY and
are responsible for aggregating incoming client requests aEQ-LOAD’s average delays against OPT, and asymptotically
forwarding them to one of the servers. Given the geographi@tend the results (at high load) to more general arrival
span and the scale of content replication networks, senRépcesses and service disciplines, includify~/1-FCFS and
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multi-classM /G /1-PS. Additionally, we simulate the policies
performance under various service discipline and workload
conditions, e.g., based on synthetic traces generated dy th
ProwGen Web workload generator [12].

The main results of this paper are as follows: 1) The average



delay of EQLOAD is always higher than or equal to that of >
EQ_DELAY. In a system consisting aV servers, EQ_OAD’s ! N ! Server 1
average delay can be as muchMadimes that of EQDELAY. > I )

However, the difference between the performance of these tw S
policies vanishes when the load increases. 2) BothEEDAY s
and EQLOAD perform sub-optimally compared to the bench-

mark policy, OPT. A key analytical result developed in this -

paper is that, for anV-server system, the worst-case ratio e %):

between the average delay of HIELAY or EQ_LOAD and :

the minimal average delay achieved by the OPT policy is P g Ay SSNM Server N

exactly N. Thus, the potential inefficiency of EQELAY and
EQ.LOAD increases with the number of servers and can kg ;
very large. 3) The highest inefficiency of EQELAY and
EQ_LOAD occurs in heterogeneous systems. Thus, networks
whose nodes tend to have very different processing power s@gdection nodg forwards requests generated by its clients fol-
connectivity may benefit from more efficient server selectidowing a Poisson process with ratg. Further, we assume that
policies. 4) The above results appear to be quite inseaditiv the requests generated by different server selection nages
inter-arrival and service time distributions, servicectfitines independent. Therefore, the aggregate request procetsis a
and multi-class network settings. They are validated byrgsy Poisson with rate\ = Zj]\il A;. Each server selection noge
totic analysis as well as simulations with correlated atgy assigns request to servewith probability p;, independently
various service disciplines and multi-class networks. of other requests. Therefore, the arrival process to easkrse
Our results have an interesting game-theoretic interfioeta 4,7 = 1,2,..., N, is an independent Poisson process with rate
In the context of selfish routing, EQELAY is the equilibrium p;A. This scenario is illustrated in Fig. 1.
outcome (i.e., the Wardrop equilibrium) of a large number of We assume that the service time distribution at each server
selfish clients competing for server resources with the gbali is arbitrary with meanz;. The mean service rate of server
minimizing their own respective delays [13-16]. The worst-is p; = 1/Z;. In Sections Il and IV, we assume that each
case ratio between the average delays of theHEDAY server implementsBrocessor SharingPS) scheduling policy,
policy and OPT is often referred to ale price of anarchy where all the requests share the server’s capacity equadly a
as a key indicator of system inefficiency induced by selfiggpntinuously [19].
behavior. Most existing bounds of the price of anarchy areUnder the above assumptions, each server behaves as an
based on bounded or constant delay functions, and indicdte/G/1-PS queue. In such a network, the average delay of
modest performance degradation thattégpology indepen- @ request forwarded to serveris therefore given by the
dent[14, 17]. For unbounded delay functions that characteriellowing expression [19]
most computer networks, the price of anarchy is much more _ 1
difficult to determine [18]. In this paper, we show that the Ti(pi) = i — pih 1)

price of a}narchy W'thM/G/.l'.PS networks depends on the\/Ve note that the average delay depends on the service time
topology in the sense that it is exactly the number of Servelaribution only through its mean

(or links) N. Compared to known results [18], our result is Let p = (p1,po,...,py) denote the server access proba-

bothtight (i.e., the lower and upper bounds match each othqﬂity vector. Then, for a given vectgs, the average delay of
andgeneral(the result holds for any feasible load Condition)a request in the s,ystem is ’

The remainder of the paper is organized as follows. In Sec- N
tion Il, we introduce our model and notations. In Section Il — _ Di
we derive the benchmark server selection policy and obtain I'lp) = ZpiTi(pi) - Z i — P\’ ©)
a closed-form expression for the minimal average delay. We ) =t ) =1 » )
also analyze the performance of EUELAY and EQLOAD Any feasible vectop must satisfy several conditions. First,
policies. In Section IV, we analytically compare the thref? Pe @ legitimate probability vector, the coordinatepofust
policies, and derive matching upper and lower bounds of tHgNnon—negatwe and sum to one, thapjs> 0 for all 7 and
ratio of EQDELAY and EQLOAD’s average delays to that of 2_i—1 Pi = 1. In addition, the coordinates f must satisfy the
the benchmark policy. In Section V, we extend our analyticijdividual stability conditionsi.e., p; < /A, to guarantee
results toG/G/1-FCFS and multi-clasd//G/1-PS models. that the arrival rate of requests is smaller than the service

We present our simulation results in Section VI, and corelud@t€ at each server We denote byP the set of vectorp
the paper in Section VIL. that satisfy all the above constraints. It is straightfaveo

show that the seP is non-empty if and only if theggregate
stability condition\ < 3"V | ; is satisfied.

System Model.

N

Il. MODEL AND PROBLEM

A. Notation B. Model Justification

We consider a network consisting of a number of clients, The Poisson arrival assumption is theoretically justifigd b
M server selection nodes (SSNs) aldservers. Each serverthe fact that it represents the aggregation of requests tmade



a large population of clients [20]. Measurements of reqaest multiplier techniques [30]. We start by defining the Lagriamg
rivals to Web servers have been shown to match well a Poisganction
process, at least over small to moderate timescales [11].

N N

Processor Sharing is an idealization of the round-robir pol  (p,I,m) = T(p)+ l(zpi -1)— Z msp;
icy implemented by most existing Web servers, whereby each i—1 =1
request is given an equal share of the service capacity [21]. N _ N
Indeed, one can derive Processor Sharing from round-rgbin b = Z S L R— Z(Zpi -1) -
decreasing the quantum of time allocated to each request at o i pid i=1
each round to an infinitesimal value [11, 19]. N

Perhaps the most notable assumption we make is that the > mipi, ()
end-to-end delay that a request experiences is dominated by i=1
server delays. This assumption is made to maintain the risod@lhere I and m = (mj,ma,---,my) are the so-called

analytical tractability, but it also offers a reasonablstediction | agrange multipliers. The Lagrange multiplieenforces the
for many practical scenarios in content replication neksor equality constrainy>~ | p; = 1, while the multipliersim;
For example, recent studies have shown that, with backbantforce the inequality constraintgs > 0. In the sequel, we
over-provisioning, end-to-end bottlenecks increasingtgur denote byl (p) the set ofinactive servers to which requests
in servers rather than in the backbone [10, 22-25]. are never forwarded, that ig(p) = {i | p; = 0}.

It is important to point out that several of the above assump-Since T (p) is strictly convex and the set of constraints is
tions are going to be relaxed in Sections V, where we wilonvex as well, the well-known Karush-Kuhn-Tucker (KKT)
consider the case of general inter-arrival time distritmgi conditions are both necessary and sufficient for the exdsten
another service discipline, namely, First-Come Firstv6gand of a global minimump*, assuming that the individual stability
multi-class settings that capture the fact that differeBNS conditions are satisfied [30].
may favor different servers. We will show that, in certain Without loss of generality, we assume that the service rate
asymptotic load regimes, the results derived for M¢G/1-  vectoru = (u1, 2, ..., un)" is descending, i.eyy > o >
PS apply to these extended models as well. ... > puy. We now observe that in OPT, a faster server should
always serve a larger fraction of requests than a sloweeserv
Therefore, the access probabilities must satisfy the atig
orderingp; > p5 > --- > p};. As a result, the set of inactive
serversi(p*) must be one of the followingd, {N}, {N —

In this section, we derive closed-form expressions for the N},...,{2,3,...,N}.
average delay and probability vector for the benchmarlcgpli Let us denote the slowest active server in OPTNaS
as well as those for EQELAY and EQLOAD, under the that is, I(p*) = {N* + 1,N* +2,...,N}. The following
M/G/1-PS model. theorem establishes the value & and provides a closed-

form expression for the optimal solutigs. This theorem is
o ] proven by showing that the optimal solution satisfies all the
A. Derivation of The Benchmark Policy KKT conditions as well as the individual stability conditis.

Our benchmark policy, denoted as OPT, achieves the miRlue to space limitation, the complete proof is omitted here
mal average delay in the network introduced in Section I THut can be found in [31].
problem of deriving OPT can be formally stated as follows: Theorem 1: The optimal solutiorp* to Problem 1 can be

Problem 1 (OPT):Find the optimal server access probabilobtained as follows. Define

I11. ANALYZING THE BENCHMARK, EQ.DELAY AND
EQ_LOAD PoLICIES

ity vector ) o h (2321 i — /\) i
p* = argmin T(p), a; = =L — _ , 0<i<N. @4
pEP A )‘23:1 VHi
whereT(p) is as defined in Eq. (2). Then,

Problem 1 is an optimization problem, and has already beenl) N* is the maximum index for which a; > 0
the subject of studies in the literature under the generatiesd 2) I(p*) = {N* +1,N*+2,...,N}
of load sharing in queueing networks [26—28] as well as flow N Y

; . ; . Doy i VA

assignment [29]. Our contribution here is to providesed- 3) pF — Ki _ J*lN* . Yid I(pY),
form expressions for the optimal server access probabilities fo v _ AD A
the specific case df//G /1-PS servers. These expressions will 4) p; =0, Vi€ I(p”). _
be used to prove our main results in Sections IV and V thatWe can now determine the average delay achieved by the

compare between the performance of BELAY, EQ_LOAD optimal policy, by substituting the derived expressionpdf

and OPT. into Eq. (2):
As a first step to obtain the server access probabilities for i N* 2
Problem 1, we note that there exists a unique solution since—, ,. i (Zi:l Hi) N~
T(p) is strictly convex overP. Next, in order to solve the T(p) = Z S - - )

— /Li_pi/\ ( Ne o ) A
constrained optimization problem, we make use of Lagrange =t A iz = A



B. Performance Analysis of the EQELAY Policy IV. BENCHMARKING THE EQ_.DELAY AND EQ_LOAD

The goal of the EQDELAY policy is to set the probability POLICIES

access vector such that the average delay at all activerservelIn this section, we compare the performance of the
is the same and minimal. To formalize the problem, define tf) DELAY, EQ_LOAD and OPT policies. We first show
set that the average delay of ELDAD is always larger than or
_ N . equal to that of ECDELAY. At low load, the ratio between
S=Ap[Tilp) =T;(p;), V.5 #1(p)} () the average delays of the two policies can be as high as
We can then formulate the optimization problem for thd> for an N-serve_r system. At high load, however, when
EQ.DELAY policy as follows: all servers are active, EQE!_AY and EQLOAD have the
Problem 2 (EQDELAY): Find the server access probabilitySame average delay. More importantly, we .ShOW that, in the
vector worst case, the average delay of BELAY is exactly N
B times larger than the average delay of the OPT benchmark.
p= argpel(g)igs) (T(p)) - We show constructively how this worst-case ratio can be
As with Problem 1, it is faifly easy to verify that the@chieved in a highly loaded, heterogenous system. From a
set of inactive serverd(p) must be one of the following: game-theoretic standpoint, this result indicates thatthie
0,{N},{N — 1,N},....{2,3,...,N}. Denote the slowest CONteXt of selfish routing, the price of anarchy is topology-
active server in the minimal solution of Problem 2/5s The dependent and can potentially be very large for unbounded

following theorem, which is the analog of Theorem 1, progidél€lay networks. Finally, we show that, in the worst case, the
expressions foiv andp: average delay of EQOAD is also exactlyN times larger

Theorem 2: The solutionp to Problem 2 can be obtained'an the average delay of the OPT benchmark.
as follows. Define

. i A. Comparing the Average Delay and the Number of Active
7)\4'2/%’_2]':1#]’ paring g y

B; ' , 0<i<N. (7) Servers
i\ . . . . .
We first establish some basic comparative relations among
Then, EQ.DELAY, EQ_LOAD, and the OPT benchmark. We find
1) N is the maximum index for which 3; > 0, that OPT always has the lowest average delay while
2) I(p) = {N T1,N+2,.. N1, EQ.LOAD glways has the highest. In fa}ct, BQDAD’s aver-
)\4’]\7#1'*2].\1 y . age delay is the same as HBELAY at high load but can be
3) pi=—F"—— ViZI(D) N times as high as the latter at low load. We also find that
4) p; =0, Viel(p). EQ_DELAY utilizes the same number or fewer active servers
The average delay of requests for the_ BELAY policy is than OPT.
obtained by inserting the derived expressiopdhto Eq. (2): Theorem 3: 1) For any given service rate vectpr =
: (1, po, - .., un)" and aggregate arrival rate the aver-
_ N Pi N age delays of OPT, EQELAY and EQLOAD satisfy
T(p)=>» — = N : (8) the following relation:
=1 M TP S i — A

T(p*) <T(p) <T(P).

C. Performance Analysis of the EQDAD Policy 2) If N = N, then EQDELAY and EQLOAD have the

. . - L same average delay:
The EQLOAD policy aims at achieving the same utilization

at each of the servers in the system. The problem can be T(p) :T(I‘s)_
formally stated as follows:

Problem 3 (EQLOAD): Find a server access probability This situation happens when the load is high enough, so
vectorp € P such that that EQDELAY uses all the servers.
3) EQLOAD's average delay can b& times higher than

Pi _Pi i1 that of EQDELAY:

, ,N.
LMy . . . ()
The solution to this problem is straightforward and is given Sup — P)_n (11)
by pA T(D)
Di = ]571', Vi=1,2,...,N. 9 This situation may be realized with arbitrarily small
Zj:l Hj error at low load, i.e., when — 0.

Proof: We prove the above statements in order.

1) From the definition of the OPT policy, we already know
thatT(p*) < T(p). }
Sy (10) Next, we prove tha”ll”(f.)) <T{P).IfN=N, tben from
Dim1 Mi — Egs. (8) and (10), it is clear th&t(p) = T(p). Now,

The average delay for EQOAD satisfies the following ex-
pression

T(B) = <



suppose thatv < N. Sinces; < 0 for all 7 > N +1, Sinceay-11 < 0, the proof of the lemma follows. [
we deduce from Eq. (7) that

) N ) B. Bounding the Inefficiency of EQELAY
Npi <Y =X VizN+1 (12
=1
By summing both sides of Eq. (12) over all indices
from N + 1 to N, we obtain

We next show that, the worst-case ratio of BELAY’s
average delay to that of OPT is exactly. This is achieved
by developing matching lower- and upper-bounds of the delay
R ratio.We relate these results with the price of anarchy lilse
X R N routing.
N Z i < (N - N) Zﬂi —Al- (13) To improve readability, we first present this section’s con-
i=N+1 i=1 clusion in the following theorem:

Adding (X N .~ NA) to both sides of Eq. (13), Theorem 4:The worst-case ratio between HOELAY's
g ( 2=t P ) a- (13) average delay and that of OPT is exachy

we have
N N T(p)
o sup = = N. (16)
N(ZW—A) SN (D mi— A s T(p*)
=1 =1
or . Proof: This theorem is the direct result of Lemma 2
_ N < N ) (which lower-bounds the ratio) and Lemma 3 (which upper-
(Zif\il i — )\) - (sz,\’zl i — /\) bounds the ratio), and noting thaf* < N from Lemma 1.
. - [ ]
So we have proved that(p) < 7'(p). Remark 1:Before moving to the derivation of Lemmas 2
2) This is a direct result of Egs. (8) and (10). and 3, we note that the above result has an important

3) We only consider the non-trivial case df> 0. We can  game-theoretic interpretation. In the field of selfish rogfi
first upper bounc% as follows, noting thatV > 1: EQ.DELAY is of particular interest because it is the equi-
librium outcome of selfish and uncoordinated agents trying
to optimize their own performance. On the other hand, OPT
TP) NN, - A represents the social optimum under centralized controé. T

On the other hand, this bound is realized with arbitraril fthand side of Eq. (16), referred to_ﬂ_&e price of anarchy
small error at low load (i.e., the aggregate arrival ra gpresents the worst-case loss of efficiency when the dentra

X is close to 0), by constructing a service rate vegtor ized, system-level control is replaced by decentralizetrob
such that >>,ZJ-V In this case. the number Ofdesigned for individual optimization [15,16]. For bounded
active serl\L/IersN :Tzfg;.EQ DELAY a{nd Eq. (14) is delay functions, the price of anarchy is often modest and

S independent of the network topology [14,17]. Theorem 4
infinitesimally close tol'. Thus, Eq. (11) holds. shows that, in networks with unbounded delay functions such

}SM/G/l—PS, the price of anarchy ispology dependerin

= N
Z(p) — EM < N. (14)

Note that it is possible that when a new server is added
the network, EQLOAD’s average delay increases (see [31

for an example). , that the price of anarchy increases with the number of sgrver
Next, we compare the number of active servers in

EQ.DELAY and OPT. This result will be used later in thisalnd can be potentially very large. Note thatMr/G/l-PS (or
section. M /M /1) type delay functions, Roughgarden derived an upper

Lemma 1:For any service rate vectpr, load\ and number bound of the price of anarchy [14]. This bound is useful only

of serversNV, EQ.DELAY has the same or smaller number O]n/]henl the atggregate ttrhafﬁc_loa(i 's smaller _thf(_:m_tthe capatity o
active servers than OPT: e slowest server, otherwise it becomes infinite.

Now, as a first step of proving Theorem 4, we derive a lower

%e sense that it is exactly the number of the ser&rand this

esult holds for any service rate and load condition. It iepl

N < N*<N. bound of the delay ratio between HQELAY and OPT.
Proof: It suffices to show thaBy«41 < 0 for all N* < Lemma 2:For any givenN, we have
N: _
(5
AMN* +1)Bn+41 Sup = (p*) > N. 17)
N1 px T(p*)

= A- i+ (N* 4+ 1) un~ . - ;
; Hi 1 Proof: For anyN, we derive an example with a particular

N1 N*41 configuration of arrival rate and service rates parametark s

that the ratio of the average delays tendd/toAssume the sum
< A= , . N . .
< ; Hj T/ HIN*41 ; Hj of service rates of all the servers is 1. Furthermore, assume
Ne1 w1 is close to 1 angy, > po = pg = -+ = pn. Thus, we
have
= (an-)A| D VA | /VENT (1) _l-m

= W= 1 <7< N. (18)



In addition, assumgjf\:l1 i <A<1.ThenN* =N =N Now we prove Eq. (20) wheV* = N, which is equivalent
andT(p) = T(p). The ratio of Eqg. (8) to Eq. (5) yields to

T(p) N - . NAA . <N. (26)
™) (v ) N (5 vim) = (Shim =)
(Zi:l Ui) -N (Zi:l Hi — /\)
N v i—A
= TN \2 Taking into account thatir = LNH) we find that
(Zi:l Hi) Eqg. (26) is equivalent to Eq. (25).
N Step 2: The case oF* > N. Our original system had/
= 2 (19) servers with service rat€giy, po, ..., un) . We first remove
( L= ) all inactive servers in OPT from the original system. The

Note that for any givenV, the expressioiN — 1)(1 — ) resulting system, denoted as thesystem, has a service rate

appearing in the denominator of Eq. (19) becomes arbigrarl{€¢tor

small asi;; — 1. Sincepy < A < 1, we also haye th_ax —1 W= (wr, s,y un=) = (1 ey fgs e N

asu; — 1. Therefore, Eq. (19) becomes arbitrarily close to _
N asp; — 1 and the theorem is proven. m Clearly, theu system’s average delay under the OPT policy,

The major difficulty in proving Theorem 4 is to develop & (Py) , is the same as that of the original systeff(p*).
tight upper bound. In Lemma 3, we provide an upper bourdirthermore, according to Lemma 1, all removed servers are
that matches the lower bound of Lemma 2, based on ti@ctive in EQDELAY too, so we have the same relation for
construction of two auxiliary systems. EQ.DELAY: T(pu) = T(P). Consequently, the rauL of
Lemma 3:For a given system loadland associated number,

"th | syst th f th t
of active servers in OPTYV*, the following inequality holds: e original system is the same ) ortheu system.
o The key of upper-bounding the d"elay ratio is constructing
T®) _ n+ (20) another auxiliary system, called thesystem, which also has
T(p*) ' N* servers. In thev system, the fastesV servers have the

Proof: . From Lemma 1, we knowV* > N for any same rates as those in thesystem, but the remaininy* —
given \. We prove the theorem in two steps. In the first stepervers are assigned the threshold service rateThe service
we show that Eq. (20) holds wheN* = N. In the second rate vector of thev system is thus
step, we construct two auxiliary systems to show that Eq) (20

holds whenN* > N'. = (v1,02,...,0N=) = (W1, 2, - - s figgs 75 M - - -5 7))
StepAl. The case df* = N. We observe that in order for Becausgur < juy, v is also descending. More importantly,
serverN to be active, we must havey > 0 or theu andv systems have the same HUELAY average delay,
5 i.e., T(pu) = T(pv). This is because in the system, at load
A+ NMN - Z“i > 0. (21) A, all servers with the threshold service rate are inactive

as shown in Theorem 2. Since the two systems have the same
service rates for the activ¥ servers, they must have the same
average delay when the EQELAY policy is used.

=1
We now define thehreshold service rater as

(Zf;l i — /\) Before we evaluat@'(p? ), we need to show that all servers
ur = ——+%. (22) in thev system are active under OPT. This is achieved by first
N observing from the derivation a¥* in Theorem 1, that in the
From Eq. (21), we can show that; > ur. u system,
Becauseu; > po > -+ > pug, We have
VI > pr, Y1<ij<N. (23) Vi Z\/_>;“J_A

By summing both sides of Eq. (23) over all indicesetween Becauseuy-_; > uy-, We have
1 and N, we have N

N*—1 N*—1
N N
. VUN—1 N uj — A
N(N = Dpr <Y ;- (24) ; ’ ; !
i=1 j=1
i Repeating this procedure, we obtain
We combine Egs. (22) and (24) and obtain i i
P 2 Vi Y iG>y up—Ai=1,2,... N*.
Nepr+x< (> v | - (25) j=1 j=1
i=1 In particular,
_Note that the derivation of Eq. (25) only assumes there are N1 N+1
N active servers in EQDELAY and does not require that \/m Z ViG> Z uj — \

N* = N. Hence it can be used in Step 2 of the proof as well.



or Combining the expressions fdf(p,) and T(p;) and
incorporating Eq. (25), we have

N N
\/UN+1Z\/U_J'>ZUJ_/\- =
j=1 j=1

T (pv)
Becausevy |, = ur > ug,, we have T(py) .
) ) < A
N N T — N — .
Va1 D VG > Y g — A /\:L2(N N) VAT (lel\/m N\/;TT)
j=1 j=1 < N*.
or
N+1 Na1 From Eg. (28), we have
VUN+1 Z VUi > Z v — A (27) T(p) e
o -~ T(p*) ’
According to Eq. (4) in Theorem 1, Eq. (27) guarantees thghich completes the proof of the second step. ™

serverN +1 is active under OPT in the system. Because all

servers with indices larger thaN in the v system have the . .-

same service rate, they must have the same access prgbabilit Bogndlng _the Inefficiency of ELOAD ) )

Thus all servers in the system must be active under OPT. _ [N this section, we prove that the maximum ratio between
On the other hand, the system achieves the smallest OPEQ-LOAD's and OPT's average delays is exactly. Thus,

delay among allN*-server systems whose fastestservers somewhat surprisingly, this worst-case ratio for EQAD is

have the ratesu,...,uyg and who haveN active servers the same as that for EQELAY. _

under EQDELAY under load). To see this, we observe thatin 1heorem 5:The worst case delay ratio between EQAD

all systems meeting the above requirements, we haveyu, and OPT is exactiyV:

for N < i < N*, wherer; is the service rate of theth server T(p)

in any system under consideration; otherwise the systenidwou sup T(p*) =N. (30)

have more thanV active servers under EQELAY. Each

server in thev system has the largest possible service rate proof: From Theorem 3, we know tha(p) > T(p).

among all systems meeting the above two requirements. Agg,s according to Lemma 2, we must have
result, it achieves the same or smaller average delay uridér O

than any other system meeting the above two requirements. So sup _T(ﬁ) N.
we haveT (p*) < T(p%). pxT(p*) —
Combining the above analysis in both HRELAY and OPT, To complete the proof, we only need to show that
we see that _ _ _
T(p T(Pu T(pv P
T®) _ T(bu) _ _(p*>. (28) 1B _ (31)
T(p*) T(py) ~ T(PY) T(p*)
Now we upper boundg(g’*)) by evaluatingT(p,) and First, from Eq. (10), we note that
T(p%). By definition and the structure of, we know that T() < NL
& & iz M = A
Nur = Zf“ A= Zvi Y Taking OPT’s average delay expression, Eq. (5), into adgoun
=1 =1 we can prove Eq. (31) by showing that the following expres-
sion holds
and v 721\,3\7
i A
N* = Ui—A. N*l:] 2 <N7
S v
N* by
) . A(Z_:] ,uif)\)
Hence, thev system’s average delay under EIELAY is ‘
& . which can be simplified to
T(pv)=T(D) = —% = H_ (29) N* 2 N*
Yimvi— A HT (Zﬁ) — N* (Zm—A>—/\>o. (32)
i=1 i=1

For T(p%), we have
Now, we consider EQDELAY under the same parameters

* 2 A
o (Zf.v:l \/v_z) N pand ). If N = N*, then Eg. (32) is the same as Eq. (25),
TPy = ——% N "\ so Eq. (31) is proved. A
A (Zi:l Vi — /\) Next, we note that Eq. (25) also holds whah< N*. To

5 .. 2 2 prove this, consider a hypothetical system where all the
[Zi:1 Vii+ (N* = N)y/pr| —(N*)"pr serversN + 1, N +2,..., N are removed. In thev system,
AN* i " OPT and EQDELAY have the same number of active servers,




N, and Eq. (25) must be satisfied. Because Eq. (25) ordgcording to Lemma 3, the ratio between IPELAY’s and

provides a relation between the parame(erg /LQ,...,/LN) OPT's average delays is always smaller th&r. Thus, it
and )\, it must hold as well for the original system witN can become large only at high load. On the other hand,
servers. at low load, the ratio between EQDAD’s and OPT'’s (or

We are now ready to use induction on the variablé EQ.DELAY’'s) average delays can be as large A5 as
to prove that the following inequality holds for our originaindicated by Theorem 3.

system:
2 N V. EXTENSIONS FORM /G/1-FCFS,G/G/1-FCFSAND
Z\/LT _ N Z“' Al 2as0 N<N < N* MuLTI-CLASS M/G/1-PS MODELS
; i=1 In this section, we consider scenarios more general than

(33) the one studied so far. We will study th&//G/1-FCFS
First, we already know that Eq. (33) holds whéff = N, andG/G/1-FCFS models as well as multi-cladg/G/1-PS
which proves the induction basis. Now suppose Eqg. (33) holdstworks where each SSN-server pair has its own service time
for someN’, whereN < N’ < N*. We want to show

N1 2 N1 A. TheM/G/1-FCFS Model
Z Vi | = (N'+1) Z pi— A =A>0, (34) We consider the same model as the one introduced in
’ =1 Section Il, except that the scheduling policy at each serier
which is in fact the case since First-Come First-Serve instead of Processor Sharingowell
, 2 , ing the notations of [32], we denote as the variance of the
gl , i service time at server, Cs(i) = 0;/%; as the coefficient of
'21 Vi | = (N'+1) Z pi = A | = variation of the service time, where we remind that= 1/u;

is the mean service time at senietn addition, we denote by

N’ N’ d; the network delay to each serverWe assume that; is a

Z Vi |+ %/MZ Vi + N1 random variable with mead;.

i=1 i=1 Using the above notation, we can express the average
waiting time of a request at servérusing the well-known

2

Z‘“ “A| = Nuniia Pollaczek-Khinchin (PK) formula [32]
— KipiA
Wilpi) = —F—— 38
N'+1 (p:) pi (i — piX) %9

where K; =

S DI
=1

1+C2 ()
— .

The total average delay of a request forwarded to server

N/
- A B o i consists of the sum of the waiting time, service time, and
> VAN Z;\/”_l N 2”1 A3 hetwork delay. Thus,
_ — 1 -
Ti(pi) = Wilpi)+—+d;
> Y pi— M) = Npna (36) Hi
= Kip; A 1 -
= ——————=+—+4d
> 0. (37) i (i — i)
: . ) K; 1-K;, -
Note that Eq. (35) holds because of the induction hypothesis = St —td (39)
; Hi — Pi Hi
Eqg. (36) holds since o :
, Our optimization problem can then be formalized as follows:
(va 1 M — )\) Problem 4: Find the optimal server access probability vec-
VEN'41 > ——§5 — for all N < N* tor
L VHi p* = argminT(p), (40)
according to Theorem 1. Eq. (37) holds since peP
N whereT(p) = 2~ piT;(p;) andT; (p;) is given by Eq. (39).
(5 ) A STip) = Sl p Ty andT .
N < forall N' > N It is generally infeasible to obtain a closed-form solution
N’ to Problem 4 and numerical approaches must be used to
according to Theorem 2. Thus, Eq. (32), being a special casgrive the optimal solution [26, 30, 33]. However, by anaigz
of Eqg. (33), is proven and the proof is complete. B the system behavior at high load, we can derive closed-form

Remark 2: Theorems 4 and 5 reveal that H@AD and expressions for the optimal access probabilities in thyanme.
EQ.DELAY have the same worst-case ratio against OPT f@ur simulations in Section VI show that the asymptotically
terms of average delay. However, it is worth noting thatptimal server selection policy actually provides a soluti
EQ.DELAY can achieve this ratio only at high load whileclose to the minimum average delay for a wide range of server
EQ_LOAD can achieve it at both low and high loads. Indeedltilizations.



B. High Load Analysis

Server

In this section, we study Problem 4 under high load. High 1 2
load is defined as the regime where for any feasible prolyabili Y S NGRS 7 VR
vectorp € P, each coordinate satisfigs® — 1, for all i = I

. . Hi . . P, P,
1,2,..., N. Under this regime, the second and third terms in P, P,
Eq. (39) become negligible compared to the first term and the @ @
total average delay becomes SSN
N
= ~ Kip; Fig. 2. A multi-class network with 2 SSNs and 2 servers
Tp) =y T (41) 9
i=1 7t

Minimizing Eqg. (41) is similar to obtaining the minimum Using th i, — CA+CE6) heref
average delay in Section Ill. We can compute the optimgle server. Using the notatichi; = P » we therefore

server access probability; and the corresponding averag N

delayT(p*) as the following: T(p) = Z Kipi (45)
1, — i\
=1
o (S )vEE n |
pr = N ~ , 0<i<N; (42) whichisthe same as Eq. (41). Therefore, all the resultyelgri
A= VG in Section V-B can directly be applied /G /1-FCFS server
9 selection as well.
T(p") (5 R) e (43)
pP)= - ==
A (ziN: i — /\) A D. The Multi-ClassM/G/1-PS Model

The access probabilities and average delavs for t In this section, we extend our results to a multi-class
EQ.DELAY and pEQLOAD olicies can gbe derivyed in a??/G/l-PS model where each class is associated with a dif-
y P ferent SSN. Under this model, requests coming from differen

similar manner. . o .
. . .. SSNs may have different average service times when acgessin
The following lemma generalizes Lemma 2 and provides a

lower bound on the worst-case ratio between BELAY's (or agiven servej. Hence, the access probabilities may also differ

EQ LOAD's) and OPT’s average delays for té/C;/1-FCFS for different SSI\_ls_. Tr_us model qualitatively capt_ures thetf
case: that requests originating from a SSN geographically clase t

. . a certain server experience smaller average delay thae thos
Lemma 4:For any givenN servers, there exist parame-

L o=\ ;s\ originating from a remote SSN.
ters A and pi;, i N 1’2’ --» N, such thatT(p)/T(p") = The model is defined by an arrival rate vecfara service

T()/T(p*) — %K time matrix t, and a server access probability matBx As
The proof is similar to that of Lemma 2. Becausg is finite  in Section I, we denote SSMs request arrival rate as;.
(assuming the second moment exists) daid > % for any The arrival rate vector in this multi-class network is define
as A = ()\1,/\2,...,)\1\4)’. Suppose the service time for a
request forwarded by SSINto serverj is t;;. We denotet
as the service time matrix, with; at its i-th row andj-th

C. TheG/G/1-FCFS Model column. The probability that SSWNselects servef is denoted

Consider the same model as in Section V-A. but assurfi%P?is- Similar to the definition ot, we defineP as the server

now that the inter-arrival time between requests at eacreser2CceSs Probability matrix. Obviously, we haye;_, pi; = 1,
follows a general.i.d. distribution. Under such assumptions,1 i< M. ) _

each server can be modeled a&4G/1-FCFS queue [32]. We use _the notation o/ x N to represent a multi-class
Unfortunately, there exists no simple, general exprestion Nework with A/ SSNs andN servers. Fig. 2 illustrates the
the mean waiting time in &/G/1-FCFS and, therefore simplest network in this model, & x 2 multi-class network,

even a numerical derivation of the optimal access prokisili With the corresponding average service times and access

N
M/G/1 queue,zl‘%;m becomes arbitrarily large @ — oo.

becomes difficult. probabilities. N .
However, in the high load regime,wh@lﬁﬁ — 1, foralli = The utilization of serverj is pomputed_ by ;ummmg_all

1,2,..., N, a simple, asymptotically exact expression oi tS'SNS- request rate on servgrweighted by individual service
can be provided. Specifically, define the coefficient of \taia IMes- M
of the inter-arrival time at servaras C4(i), then [34] pj = Zpkj/\ktkj- (46)

— C% (i) + C%(i k=1

Wiy = a1 50, (44) ., y

(i — DiN) Then, SSNi’s average delay at servgris [35, 36]

As discussed earlier, at high load, the service time and (P) = tij
network delay are negligible compared to the waiting time in K C1—pj

(47)
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The average delay of aW x N networkT(P) is given by networks is the same as in single class ones. This conjecture

the following expression: is numerically verified in Section VI-E.
1 M N
T(P) = Sy ZZP@/\Z—T”—(P) VI. SIMULATIONS
2 A i j=1 In this section, we perform extensive simulations to ex-
N perimentally compare E@ELAY and EQLOAD versus the
= % Z L N (48) benchmark OPT policy. We first consider the case where the
YN\ L= pj workload conforms to thé//G/1-PS model. We assume that

Derivi Wtical solution for th he file size (and hence the service time) follows a heavgdai
Deriving an analytical solution for the Server access progy g distribution with cumulative distribution funatio
ability matrix P in multi-class networks is far more difficult 1

than computing the server access probability veptais done Flz)=1- —— x>0, (52)

in Section Ill, because the numbers of variables and boyndar (1 + az)

conditions increase significantly. For example, even inpm where b is the Pareto tail index This choice is justified by

2 x 2 networks, there exist nine possible configurations dere large number of experimental studies showing that Web

pending on whether specific network links connecting SSNige size distributions follow a Pareto distribution [37]38

and servers are active or not [31]. To overcome this difficultUsing this workload model, we compare the three policies’

we focus on the three policies’ asymptotic performancewt loaverage delay and standard deviation of the delay (which

load and high load, because as indicated in Section 1V, thasgates to fairness). Next, we evaluate the performance of

are the situations where EQELAY and EQLOAD exhibit the three policies using synthetic traces generated by a Web

their largest inefficiencies in single-class networks. workload generator, called ProwGen [12]. These traceséxhi
For low load conditions, the following theorem demontemporal locality in file popularity and, therefore, diffsom

strates that the ratio of the average delays of IKGAD to the M/G//1-PS model. Our simulations show that EQAD

OPT in multi-class networks is always smaller thain This and EQDELAY are substantially suboptimal in both cases.

result is consistent with single-class networks (i.e.,tiralfiss In addition, we simulate server selection for the case where
does not perform worse). The proof of this theorem can kervers are modeled by//G/1-FCFS queues. We compare
found in [31]. the average delay achieved by the (asymptotically optimal)
Theorem 6:Consider a general x N M/G/1-PS net- OPT policy to the minimum average delay obtained through
works, where\; — 0,1 <i < M. Then, a numerical optimization procedure. The simulation result
T(f’) indicate that our analysis approximates the minimum awerag

(49) delay closely for a wide range of server utilizations.

*

Next, consider the case of high load conditions2irx 2 Finally, we provide numerical results of a representative

multi-class networks. We first |g®; represent the service ratenmlt!'da_SS networ_k setting, where each server has_ difire
available to SSN 1 when SSN 2's arrival ratg is fixed ata S€rvice times for different SSNs. Our experiments inditiade

constantas. Formally, R, is defined as follows: the largest ratio of E@E,LAY’S (or EQ.LOAD’s) a\{erage
delay to that of OPT is likely to be the same as in single-

Ri= sup A, (50) class networks, in which case the general and tight bounds in
o Section IV can be used.
Xo=ag

The simulations described in this section are represestati
where0 < ay < %4—% Recall thafp; (i = 1,2) is serveri's of a variety of simulations that we performed for different
utilization as defined in Eq. (46). network sizes (from 5 to 500 servers) and utilizations (from
We refer to all the cases whepg approaches?; ashigh 0.05 to 0.95). Further, by Little’s Law, we note that if the
load with respect to SSN The following theorem states thatservice rates of all servers are changed by a multiplicative
at high load with respect to SSN 1 (or SSN 2), the ratio afonstant, then the ratio of the average delays betweenrbe th
average delays of EQELAY or EQ_LOAD to OPT does not policies remain the same.
exceed 2, as in the single-class case.
_Theorem 7:n 2 x 2 JV[/G/l—PS networks, at high load 5 Average Delay
with respect to SSN, wherei =1 or 2, we have:

_T(P) <2, and _T(f))
T(P*) T(P*)

In this section, we compare the three policies in the
) M/G/1-PS model using both analysis and simulations. The
purposes of this experiment are to validate the correctaneds
accuracy of our analysis and to quantify the difference betw
The above high load results (i.e., the ratio of the averagfee three policies at different load conditions. We define th
delays does not exceed the number of servers in the netwaalggregate utilizatiorp asp = A/ Z;VZI ;. We simulate a
can be extended to generd! x N networks, under more content replication network with ten servers, with the garv
specific conditions [31]. rate vector(12,12,1.5,1.5,1.5,1.5,1.5,1.5,1.5, 1.5) req/sec.
These results suggest that the largest ratio of the averdgehis scenario, servers 1 and 2 are eight times faster tiean t
delays of EQDELAY (or EQ_LOAD) to OPT in multi-class other eight servers, which, when interpreted using Moore’s

<2. (51
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Fig. 3. Average delays of the three policies by simulatiod analysis. Fig. 4. Standard deviation of delay

Law, roughly represents the situation of adding two serveggrvers, two have service rates of 20 reg/sec, four at 18aeg/
built with the latest hardware to an eight-server networktbufourteen at 2 reg/sec and twenty at 0.5 reg/sec. The Paikto ta
four or five years ago. The selection of the service ratesijgiex isb = 2.2.
consistent with measurement results of Web sites that serverig. 4 depicts the deviation of delays of the three policies
heavily dynamically generated content or large amount @fith 95% confidence interval of the 50 runs. We observe
multimedia content [22, 39]. that OPT and EQDELAY perform very similarly, while the
In this experiment, we consider Pareto job size distributiastandard deviation of EQOAD is noticeably higher at all
with b = 2.2. We solve respectively Egs. (5), (8), and (10)tilization values. A few comments are in order here. First,
to analytically obtain average delays for the three pddicieeven though the average delay at each server is the same for
and depict them in Fig. 3. Furthermore, we run ®fYG/1- EQ.DELAY, the actual delay of a request is still a random vari-
PS simulator 50 times for each of the three policies at eagBle. In particular, this delay depends on the number ofrothe
utilization point. We also depict the average delay for tBe Gequests concurrently being served, which obviously sarie
runs and the 95% confidence interval in Fig. 3 for the threger time. Therefore, the standard deviation of BELAY is
policies. non-zero and turns out to be on the same order as that of OPT.
From Fig. 3, we observe that the analysis and simulati®econd, the standard deviation of EQAD is higher than
results match very well. When comparing the three polices, what of EQDELAY, even at high load. This result is somewhat
find that both OPT and E@ELAY perform much better than surprising since the average delay of these two policies is
EQ.LOAD at low load. The reason is that, in this regimeidentical in this regime. This discrepancy is resolved binp
OPT and EQDELAY forward requests only to the fastesthat the average delay of requests at different serverstighao
server, while EQLOAD always sends a third of the requests tgame for EQLOAD. Therefore, EQLOAD and EQDELAY
the slower servers. At high load, EQDAD and EQDELAY  are not statistically identical even at high load.
achieve the same average delay, as proved in Section IV, and
significantly underperform the OPT benchmark. For instancg. prowGen Simulations
at utilizationp = 0.9, the average delay of EQELAY and
EQ.LOAD is approximately 30% higher than the optimaho
average delay.

Our analytic model and solutions are based on the assump-
n that the service time of different requests is indeend
On the other hand, some experimental studies have shown
o ) that Web requests exhibits temporal locality, see e.g.. [#i]
B. Standard Deviation of Delay and Fairness this section, we compare the performance of BELAY and

An apparent advantage of EQELAY is to serve each EQLOAD to that of OPT when request streams have short-
request with the same average delay (at the cost of highem temporal correlation.
overall average delay). This might lead to the belief that it We use the Web workload generator ProwGen [12] to pro-
has better fairness properties than the other server mglecduce synthetic Web workload that exhibits temporal logalit
policies. However, we show that this is actually not the case file popularity. ProwGen, originally developed for Web
at least with respect to OPT. cache performance evaluation, models the file popularitygus

In the following set of simulations, we evaluate the staddathe Zipf distribution, and the file size distribution using a
deviation of the delay obtained with each policy. This ntetricombination of a lognormal body and a Pareto tail. It can also
has been recognized as one of the best ways to measudel positive or negative correlation between file size and
fairness in queues [40]. We consider a system consistipgpularity if needed. Furthermore, it can use an LRU stack to
of N = 40 servers withM/G/1-PS queues. Among thesemodel request temporal locality.
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Fig. 6. Average delay of OPT fak//G/1-FCFS servers with deterministic

Fig. 5. Average delay with ProwGen traces Al y O UT . v
and Pareto file-size distributions: analytical resultsrugnerical results.

&r')ecial cases df//G/1-FCFS queues. In the first case, servers

In our simulations, we use default values for most ProwG - N
parameters, with a Zipf slope of 0.75, Pareto Tail index &f p.ar€ modeled a3//D/1-FCFS queuels. Thus, the file size is
EE(ed and K; = 0.5, for each servei. In the second case,

lognormal mean of 7KB, standard deviation of 11KB, and ta] file size distribution is P ith tail indéx— 2.2 |

cutoff size of 10KB. We al_so have a “dynamic” sta_ck W_ith F%hﬁs (':SSZ'Zﬁ czlglsr;mbem\llc;rr]iflise d ?gfl’v'{ :y[ (;(_for. e'a:h

depth of 1000 requests to introduce temporal locality. Ifina ) W denote byl th t d b|—2 _f (SPT

the correlation between file size and popularity is set tozer ' VErt. VV€ denote Yo the average delay 0 arni} .

which is consistent with literature findings [42]. the minimum average delay computed numerically, and depict
ap1em in the above two cases in Fig. 6.

We find that a peculiarity of ProwGen is that popul We observe from Fig. 6 that the OPT policy achieves delay

files tend to be generated at the end of the trace, and “one- L : o
9 ?ose to the minimum over a wide range of server utilizations

timers” (files accessed only once) are more likely to t&l . : ;
generated earlier in the trace. To mitigate this artifactlevh N ﬁbster\éeﬂt]h?t the dlcf;ferr]_enhciz bgtwef{n _ztamd da IS qwteth
still maintaining most of the short-term temporal localiye small & 8 i ow- tﬁn ¢ '9 '(?[ﬁ 3 . é; %X'Dmlfm’t €
divide the trace generated by ProwGen into segments e%ﬁerence etween the two methods is 5% f/D/1 (a

consisting of 4,000 requests and reshuffle the segmentsu jzation of 0.5) and 13% forM//G//1 with Pareto service

obtain the trace used in our simulations. We scale the meqa'ﬁt“bu“on (at utilization of 0.4). This results illusties the

file size to 11 KB, and use the same service rate array asr%)ustness and generality of our analytical model for a wide

Section VI-B. Each run contains about 550,000 requests, ana9e of service distributions and queueing disciplines.

the results are averaged over 50 runs.

The simulation results (with 95% confidence intervals) afe. Multi-Class Networks
shown in Fig. 5 together with analytical values based on Now we examine multi-class networks that explicitly model
our M/G/1-PS model. We observe that the average delagglays specific to each SSN-server pair. To highlight the dif
achieved by EQDELAY and EQLOAD are still higher than ference between single- and multi-class networks, we densi
OPT, especially at high load. Other performance charatiesi 5 2 x 2 network with the service time matrix
of EQ_.DELAY and EQLOAD observed in Section VI-A are 1 9
also present in this figure. Overall, the simulation resul#gch t= [ 3 1

the analysis fairly well for all the studied policies.
This means that for SSN 1, server 1's service time is only
. half that of server 2. Similarly, for SSN 2, server 2's seevic
D. Performance of the OPT Policy fdi/G/1-FCFS Servers time is only one third that of server 1. In practice, this petu
In Section V, we have shown that the OPT policy derivedould represent the situation where SSN 1 is physicallyeclos
for M/G/1-PS queues is asymptotically optimal at high loatb server 1, and SSN 2 is physically close to server 2.
for G/G/1-FCFS queues. The goal of this experiment is to We evaluate the average delays of the three policies as SSN
evaluate the performance of the OPT policy for FCFS servel's request rate increases from 0.01 to 1.5 req/sec, and SSN 2
at light and moderate loads. We compare between the averageeases from 0.01 to 1.33 reg/sec. Fig. 7 depicts thesrafio
delay achieved using the OPT policy and the minimum averag€ DELAY’s average delay (and that of EQOAD) to OPT
delay. The value of the minimum average delay is obtained by different request rates.
solving Problem 4 using theni ncon routine of MATLAB. Fig. 7(a) depicts the ratio of the average delay of
In the following simulation, we use the service rate vect@Q_DELAY to that of OPT. We observe that if SSN 1 and
of (6.06,0.757,0.757,0.757,0.757) req/sec. We consider two SSN 2 have comparable request rates, then they only access

} sec (53)
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the average delay of EQELAY (or EQ_LOAD) and that of
OPT is likely to occur when the network degenerates to the
single-class case.

=
i

s
N
q

VII. CONCLUSIONS

In this work, we analytically compared the performance
of server selection policies in content replication netgor
il This problem has gained significant importance in recentsyea
T i with the emergence of large-scale content delivery and-peer
to-peer network architectures over the Internet. We intoedl

1.05+

EQ_DELAY/OPT Delay Ratio
=
=
L

15 n 1 15 a mathematical framework, based on th&/G/1 Processor
05 00 05 Sharing queueing model, which allowed us to provide quan-

SSN 1 Request Rate SSN 2 Request Ra titative, yet non-trivial, insight into the performance sérver

(a) EQDELAY. selection policies. Furthermore, we proved that our resaié

also applicable to thé&//G/1-FCFS and multi-clas3//G/1-
PS queueing models, in certain asymptotic regimes.
144 Based on our model, we derived closed-form solutions for

£ 1351 a hypothetical benchmark policy, called OPT, that achieves

€ g3 the minimum average delay. We used this benchmark policy

§ 1251 to evaluate the performance of two server selection palicie

o, generically referred to as EQELAY and EQLOAD, which

g - are representative of a large class of existing algorithives.

e proved that EQLOAD’s average delay is always larger than

NIERS or equal to that of EQDELAY.

¥ 1,05 A major contribution of this paper is in the analytical
15 quantification of the performance difference of BXELAY

1y

1

1 05 ) 05 and EQLOAD with regard to the minimal average delay. We
SSN 1 Request Rate SSN 2 Request R analytically proved that, in anV-server system, the worst-
(b) EQ.LOAD. case ratio of EQDELAY’s (or EQ_LOAD’s) average delay

to the minimal average delay is exactly. Moreover, we
have provided analytical evidence that the same worst-case
ratio is likely to prevail in multi-class settings, wherdfdrent
SSNs may favor different servers. We have shown that large
inefficiency tends to occur in highly heterogeneous systems

their most efficient server (i.e., servers 1 and 2 respdglive 1, on1y under moderate and high utilization for the case of
In this case, EQDELAY and OPT use the same one server folr:'Q_DELAY.

each SSN, and have the same delay. The largest difference Q4 jations using our workload model as well as the Prow-

the policies occursywhen one SSN has very low request r§@, web workload generator show substantial inefficiency,
and the other SSN's access probabilities are differenthis t\ ;15 3006, in realistic scenarios. This result is relatively

case, the system degenerates to a single-class netwotksIn f,sansitive to arrival and service time distributions asllwe
experiment, a maximum difference of 15% is achieved whepy seryice disciplines. Other simulation results for woekd
SSN 1's rate is 0.02 req/sec and SSN 2's rate is 0.67 req/sggyipiting temporal locality, FCFS service models and inult
When both SSNs generate substantial amount of traffic, fi@ss settings show that our analytical results are general
performance difference between the two policies decreasgs,ygh for a number of practical situations. Finally, weehav
compared to the above single-class case. provided a game-theoretic interpretation to our results, i
For the case of the ratio between EQAD and OPT, the price of anarchy in unbounded delay networks depends
depicted in Fig. 7(b), it also appears that the largestdiffee on the network topology, and the potential inefficiency of
occurs when one of the SSNs generates little traffic. Whemy) DELAY (or EQ.LOAD) grows with the scale of the
this SSN's request rate increases, the difference becomesyork.
less significant. Additionally, the observation we made in The purpose of the benchmark policy developed in this
Section VI-A about EQLOAD's inefficiency at low load is paper was to study the theoretical strengths and limitation
also evident in the figure. The largest difference of 39% i existing server selection policies. Clearly, to develap
achieved when SSN 1's rate is 0.01 request/sec and SSN gbsnprehensive understanding of server selection, additio
rate is 0.14 request/sec. benchmarks related to other metrics (e.g., tail probadslit
The above results are representativ® to2 networks with of delay) ought to be investigated. Another important open
t11 < t12 and ity < to1. Additional numerical results for research area is to leverage the analytical insights peoviy
different network parameters can be found in [31]. They ahis work into the development of more efficient and robust
indicate that in multi-class networks, the largest ration®en  server selection policies.

Fig. 7. Average delay ratio for the multi-class service timatrix defined
in Eq. (53).
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