
1

A Comparative Analysis of Server Selection in
Content Replication Networks

Tao Wu and David Starobinski

Abstract— Server selection plays an essential role in content
replication networks, such as peer-to-peer (P2P) and content
delivery networks (CDNs). In this paper, we perform an ana-
lytical investigation of the strengths and weaknesses of existing
server selection policies, based initially on anM/G/1 Processor
Sharing (PS) queueing-theoretic model. We develop a theoretical
benchmark to evaluate the performance of two general server
selection policies, referred to as EQDELAY and EQ LOAD,
which characterize a wide range of existing server selection
algorithms. We find that EQ LOAD achieves an average delay
always higher than or equal to that of EQ DELAY. A key
theoretical result of this paper is that in an N -server system,
the worst-case ratio between the average delay of EQDELAY
or EQ LOAD and the minimal average delay (obtained from
the benchmark) is preciselyN . We constructively show how this
worst-case scenario can arise in highly heterogeneous systems.
This result, when interpreted in the context of selfish routing,
means that the price of anarchy in unbounded delay networks
depends on the topology, and can potentially be very large.
Our analytical findings are extended in asymptotic regimes to
the G/G/1 First-Come First-Serve and multi-classM/G/1-PS
models and supported by simulations run for various arrival and
service processes, scheduling disciplines, and workload exhibiting
temporal locality. These results indicate that our analysis is
applicable to realistic scenarios.

Index Terms— Content delivery networks, peer-to-peer net-
works, load balancing, distributed systems, price of anarchy,
game theory.

I. I NTRODUCTION

Content replication has emerged as one of the most useful
paradigms for the provision of scalable and reliable Internet
services [1]. With content replication, the same data (e.g., Web
pages, multimedia files, etc.) is stored at multiple geograph-
ically distant servers. Requests by clients are then forwarded
to one of these servers. Because of its inherent scalabilityand
fault-tolerance, content replication has become a cornerstone
of most modern networking architectures, including content
delivery networks (CDNs) and peer-to-peer (P2P) networks [2,
3].

One of the key issues arising with content replication is
that of server selection. In most content replication networks,
a number of server-selection nodes(e.g., enhanced DNS
servers in CDNs [2, 4] or supernodes in P2P networks [3])
are responsible for aggregating incoming client requests and
forwarding them to one of the servers. Given the geographical
span and the scale of content replication networks, server

Tao Wu is with Nokia Research Center, Cambridge, MA. David Starobinski
is with the ECE Department at Boston University.

This work was supported in part by NSF CAREER grant ANI-0132802.
Preliminary findings of this work were presented in the Networking 2005
Conference and GameNets 2006 Workshop.

selection is fundamentally different from traditional load bal-
ancing problems, which usually assume that servers are co-
located [5].

Because server response time is an increasing function of
the load, the best server selection solution is usually not the
one that directs all the requests to a single server (e.g., the
fastest), which would slow down or even crash the server [6].
Thus, a number of server selection policies have been proposed
in the literature or implemented in commercial products.
Several of these policies fall within one of the following
two categories: (i) Equal load (EQLOAD), where the access
probabilities to the servers are set so that all servers have
the same utilization. Examples of policies following this ap-
proach include round-robin, or weighted-round-robin (WRR)
for heterogeneous servers [5], and certain adaptive algorithms
such as Least Loaded [4] and WebSeAl [7]; (ii) Equal delay
(EQ DELAY), where the access probabilities are set so that the
average delay at all the selected servers is equal or at leaston
the same order. SPAND [8] and the application layer anycast
architecture of [6] implement variations of this approach.

Although server selection is key to content replication net-
works’ performance, existing evaluations of the above server
selection policies have mostly been obtained from parameter-
ized simulations (e.g., [9, 10]) due to the inherent complexity
of modeling such networks. However, in the absence of theo-
retical guidelines, it is unknown to what extent experimental
results obtained from a specific network configuration can be
applied to other settings. Such guidelines can provide essential
analytical understanding of the following important questions:
1) How do the above server selection policies compare to
each other in terms of system-level performance (e.g., average
delay)? 2) How do factors such as network size, server
capacities and network utilization affect their performance?
3) What are the theoretical performance limitations and bounds
of these policies?

In this paper, we develop an analytical benchmark to
address these questions. We first model the behavior of the
servers using anM/G/1-PS (Processor Sharing) queueing-
theoretic model [11], and deriveclosed-formsolutions for
a theoretical benchmark policy called OPT that minimizes
the average delay. We analytically compare EQDELAY and
EQ LOAD’s average delays against OPT, and asymptotically
extend the results (at high load) to more general arrival
processes and service disciplines, includingG/G/1-FCFS and
multi-classM/G/1-PS. Additionally, we simulate the policies
performance under various service discipline and workload
conditions, e.g., based on synthetic traces generated by the
ProWGen Web workload generator [12].

The main results of this paper are as follows: 1) The average



2

delay of EQLOAD is always higher than or equal to that of
EQ DELAY. In a system consisting ofN servers, EQLOAD’s
average delay can be as much asN times that of EQDELAY.
However, the difference between the performance of these two
policies vanishes when the load increases. 2) Both EQDELAY
and EQLOAD perform sub-optimally compared to the bench-
mark policy, OPT. A key analytical result developed in this
paper is that, for anN -server system, the worst-case ratio
between the average delay of EQDELAY or EQ LOAD and
the minimal average delay achieved by the OPT policy is
exactlyN . Thus, the potential inefficiency of EQDELAY and
EQ LOAD increases with the number of servers and can be
very large. 3) The highest inefficiency of EQDELAY and
EQ LOAD occurs in heterogeneous systems. Thus, networks
whose nodes tend to have very different processing power and
connectivity may benefit from more efficient server selection
policies. 4) The above results appear to be quite insensitive to
inter-arrival and service time distributions, service disciplines
and multi-class network settings. They are validated by asymp-
totic analysis as well as simulations with correlated arrivals,
various service disciplines and multi-class networks.

Our results have an interesting game-theoretic interpretation.
In the context of selfish routing, EQDELAY is the equilibrium
outcome (i.e., the Wardrop equilibrium) of a large number of
selfish clients competing for server resources with the goalof
minimizing their own respective delays [13–16]. The worst-
case ratio between the average delays of the EQDELAY
policy and OPT is often referred to asthe price of anarchy
as a key indicator of system inefficiency induced by selfish
behavior. Most existing bounds of the price of anarchy are
based on bounded or constant delay functions, and indicate
modest performance degradation that istopology indepen-
dent[14, 17]. For unbounded delay functions that characterize
most computer networks, the price of anarchy is much more
difficult to determine [18]. In this paper, we show that the
price of anarchy withM/G/1-PS networks depends on the
topology in the sense that it is exactly the number of servers
(or links) N . Compared to known results [18], our result is
both tight (i.e., the lower and upper bounds match each other)
andgeneral(the result holds for any feasible load condition).

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce our model and notations. In Section III,
we derive the benchmark server selection policy and obtain
a closed-form expression for the minimal average delay. We
also analyze the performance of EQDELAY and EQLOAD
policies. In Section IV, we analytically compare the three
policies, and derive matching upper and lower bounds of the
ratio of EQDELAY and EQLOAD’s average delays to that of
the benchmark policy. In Section V, we extend our analytical
results toG/G/1-FCFS and multi-classM/G/1-PS models.
We present our simulation results in Section VI, and conclude
the paper in Section VII.

II. M ODEL AND PROBLEM

A. Notation

We consider a network consisting of a number of clients,
M server selection nodes (SSNs) andN servers. Each server

��������������	



���




��

��


�������


�������



����

����



���

Fig. 1. System Model.

selection nodej forwards requests generated by its clients fol-
lowing a Poisson process with rateλj . Further, we assume that
the requests generated by different server selection nodesare
independent. Therefore, the aggregate request process is also
Poisson with rateλ =

∑M
j=1 λj . Each server selection nodej

assigns request to serveri with probability pi, independently
of other requests. Therefore, the arrival process to each server
i, i = 1, 2, . . . , N , is an independent Poisson process with rate
piλ. This scenario is illustrated in Fig. 1.

We assume that the service time distribution at each server
i is arbitrary with mean̄xi. The mean service rate of server
i is µi = 1/x̄i. In Sections III and IV, we assume that each
server implements aProcessor Sharing(PS) scheduling policy,
where all the requests share the server’s capacity equally and
continuously [19].

Under the above assumptions, each server behaves as an
M/G/1-PS queue. In such a network, the average delay of
a request forwarded to serveri is therefore given by the
following expression [19]

T i(pi) =
1

µi − piλ
. (1)

We note that the average delay depends on the service time
distribution only through its mean.

Let p = (p1, p2, . . . , pN )′ denote the server access proba-
bility vector. Then, for a given vectorp, the average delay of
a request in the system is

T (p) =
N
∑

i=1

piT i(pi) =
N
∑

i=1

pi

µi − piλ
. (2)

Any feasible vectorp must satisfy several conditions. First,
to be a legitimate probability vector, the coordinates ofp must
be non-negative and sum to one, that ispi ≥ 0 for all i and
∑N

i=1 pi = 1. In addition, the coordinates ofp must satisfy the
individual stability conditions, i.e., pi < µi/λ, to guarantee
that the arrival rate of requests is smaller than the service
rate at each serveri. We denote byP the set of vectorsp
that satisfy all the above constraints. It is straightforward to
show that the setP is non-empty if and only if theaggregate
stability conditionλ <

∑N
i=1 µi is satisfied.

B. Model Justification

The Poisson arrival assumption is theoretically justified by
the fact that it represents the aggregation of requests madeby



3

a large population of clients [20]. Measurements of requestar-
rivals to Web servers have been shown to match well a Poisson
process, at least over small to moderate timescales [11].

Processor Sharing is an idealization of the round-robin pol-
icy implemented by most existing Web servers, whereby each
request is given an equal share of the service capacity [21].
Indeed, one can derive Processor Sharing from round-robin by
decreasing the quantum of time allocated to each request at
each round to an infinitesimal value [11, 19].

Perhaps the most notable assumption we make is that the
end-to-end delay that a request experiences is dominated by
server delays. This assumption is made to maintain the model’s
analytical tractability, but it also offers a reasonable abstraction
for many practical scenarios in content replication networks.
For example, recent studies have shown that, with backbone
over-provisioning, end-to-end bottlenecks increasinglyoccur
in servers rather than in the backbone [10, 22–25].

It is important to point out that several of the above assump-
tions are going to be relaxed in Sections V, where we will
consider the case of general inter-arrival time distributions,
another service discipline, namely, First-Come First-Serve, and
multi-class settings that capture the fact that different SSNs
may favor different servers. We will show that, in certain
asymptotic load regimes, the results derived for theM/G/1-
PS apply to these extended models as well.

III. A NALYZING THE BENCHMARK, EQ DELAY AND

EQ LOAD POLICIES

In this section, we derive closed-form expressions for the
average delay and probability vector for the benchmark policy,
as well as those for EQDELAY and EQLOAD, under the
M/G/1-PS model.

A. Derivation of The Benchmark Policy

Our benchmark policy, denoted as OPT, achieves the mini-
mal average delay in the network introduced in Section II. The
problem of deriving OPT can be formally stated as follows:

Problem 1 (OPT):Find the optimal server access probabil-
ity vector

p∗ = arg min
p∈P

T (p),

whereT (p) is as defined in Eq. (2).
Problem 1 is an optimization problem, and has already been

the subject of studies in the literature under the general context
of load sharing in queueing networks [26–28] as well as flow
assignment [29]. Our contribution here is to provideclosed-
form expressions for the optimal server access probabilities for
the specific case ofM/G/1-PS servers. These expressions will
be used to prove our main results in Sections IV and V that
compare between the performance of EQDELAY, EQ LOAD
and OPT.

As a first step to obtain the server access probabilities for
Problem 1, we note that there exists a unique solution since
T (p) is strictly convex overP . Next, in order to solve the
constrained optimization problem, we make use of Lagrange

multiplier techniques [30]. We start by defining the Lagrangian
function

L(p, l,m) = T (p) + l(

N
∑

i=1

pi − 1) −
N
∑

i=1

mipi

=

N
∑

i=1

pi

µi − piλ
+ l(

N
∑

i=1

pi − 1) −

N
∑

i=1

mipi, (3)

where l and m = (m1, m2, · · · , mN ) are the so-called
Lagrange multipliers. The Lagrange multiplierl enforces the
equality constraint

∑N
i=1 pi = 1, while the multipliersmi

enforce the inequality constraintspi ≥ 0. In the sequel, we
denote byI(p) the set ofinactive servers to which requests
are never forwarded, that is,I(p) = {i | pi = 0}.

SinceT (p) is strictly convex and the set of constraints is
convex as well, the well-known Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient for the existence
of a global minimump∗, assuming that the individual stability
conditions are satisfied [30].

Without loss of generality, we assume that the service rate
vectorµ = (µ1, µ2, . . . , µN )′ is descending, i.e.,µ1 ≥ µ2 ≥
. . . ≥ µN . We now observe that in OPT, a faster server should
always serve a larger fraction of requests than a slower server.
Therefore, the access probabilities must satisfy the following
orderingp∗1 ≥ p∗2 ≥ · · · ≥ p∗N . As a result, the set of inactive
serversI(p∗) must be one of the following:∅, {N}, {N −
1, N}, . . . , {2, 3, . . . , N}.

Let us denote the slowest active server in OPT asN∗,
that is, I(p∗) = {N∗ + 1, N∗ + 2, . . . , N}. The following
theorem establishes the value ofN∗ and provides a closed-
form expression for the optimal solutionp∗. This theorem is
proven by showing that the optimal solution satisfies all the
KKT conditions as well as the individual stability conditions.
Due to space limitation, the complete proof is omitted here
but can be found in [31].

Theorem 1: The optimal solutionp∗ to Problem 1 can be
obtained as follows. Define

αi =
µi

λ
−

(

∑i
j=1 µj − λ

)√
µi

λ
∑i

j=1

√
µj

, 0 ≤ i ≤ N. (4)

Then,

1) N∗ is the maximum indexi for which αi > 0,
2) I(p∗) = {N∗ + 1, N∗ + 2, . . . , N},

3) p∗i = µi

λ
−

[

∑

N∗

j=1
µj−λ

]

√
µi

λ
∑

N∗

j=1

√
µj

, ∀i 6∈ I(p∗),

4) p∗i = 0, ∀i ∈ I(p∗).
We can now determine the average delay achieved by the

optimal policy, by substituting the derived expression ofp∗

into Eq. (2):

T (p∗) =

N∗

∑

i=1

p∗i
µi − p∗i λ

=

(

∑N∗

i=1

√
µi

)2

λ
(

∑N∗

i=1 µi − λ
) − N∗

λ
. (5)



4

B. Performance Analysis of the EQDELAY Policy

The goal of the EQDELAY policy is to set the probability
access vector such that the average delay at all active servers
is the same and minimal. To formalize the problem, define the
set

S = {p | T i(pi) = T j(pj), ∀i, j 6∈ I(p)}. (6)

We can then formulate the optimization problem for the
EQ DELAY policy as follows:

Problem 2 (EQDELAY): Find the server access probability
vector

p̂ = arg min
p∈(P∩S)

(

T (p)
)

.

As with Problem 1, it is fairly easy to verify that the
set of inactive serversI(p̂) must be one of the following:
∅, {N}, {N − 1, N}, . . . , {2, 3, . . . , N}. Denote the slowest
active server in the minimal solution of Problem 2 asN̂ . The
following theorem, which is the analog of Theorem 1, provides
expressions forN̂ and p̂:

Theorem 2: The solutionp̂ to Problem 2 can be obtained
as follows. Define

βi =
λ + iµi −

∑i
j=1 µj

iλ
, 0 ≤ i ≤ N. (7)

Then,

1) N̂ is the maximum indexi for which βi > 0,
2) I(p̂) = {N̂ + 1, N̂ + 2, . . . , N},

3) p̂i =
λ+N̂µi−

∑

N̂

j=1
µj

N̂λ
, ∀i 6∈ I(p̂),

4) p̂i = 0, ∀i ∈ I(p̂).
The average delay of requests for the EQDELAY policy is

obtained by inserting the derived expression ofp̂ into Eq. (2):

T (p̂) =

N̂
∑

i=1

p̂i

µi − p̂iλ
=

N̂
∑N̂

i=1 µi − λ
. (8)

C. Performance Analysis of the EQLOAD Policy

The EQLOAD policy aims at achieving the same utilization
at each of the servers in the system. The problem can be
formally stated as follows:

Problem 3 (EQLOAD): Find a server access probability
vector p̃ ∈ P such that

p̃i

µi

=
p̃j

µj

, ∀i, j = 1, 2, . . . , N.

The solution to this problem is straightforward and is given
by

p̃i =
µi

∑N
j=1 µj

, ∀i = 1, 2, . . . , N. (9)

The average delay for EQLOAD satisfies the following ex-
pression

T (p̃) =
N

∑N
i=1 µi − λ

. (10)

IV. B ENCHMARKING THE EQ DELAY AND EQ LOAD
POLICIES

In this section, we compare the performance of the
EQ DELAY, EQ LOAD and OPT policies. We first show
that the average delay of EQLOAD is always larger than or
equal to that of EQDELAY. At low load, the ratio between
the average delays of the two policies can be as high as
N , for an N -server system. At high load, however, when
all servers are active, EQDELAY and EQLOAD have the
same average delay. More importantly, we show that, in the
worst case, the average delay of EQDELAY is exactly N
times larger than the average delay of the OPT benchmark.
We show constructively how this worst-case ratio can be
achieved in a highly loaded, heterogenous system. From a
game-theoretic standpoint, this result indicates that, inthe
context of selfish routing, the price of anarchy is topology-
dependent and can potentially be very large for unbounded
delay networks. Finally, we show that, in the worst case, the
average delay of EQLOAD is also exactlyN times larger
than the average delay of the OPT benchmark.

A. Comparing the Average Delay and the Number of Active
Servers

We first establish some basic comparative relations among
EQ DELAY, EQ LOAD, and the OPT benchmark. We find
that OPT always has the lowest average delay while
EQ LOAD always has the highest. In fact, EQLOAD’s aver-
age delay is the same as EQDELAY at high load but can be
N times as high as the latter at low load. We also find that
EQ DELAY utilizes the same number or fewer active servers
than OPT.

Theorem 3: 1) For any given service rate vectorµ =
(µ1, µ2, . . . , µN )′ and aggregate arrival rateλ, the aver-
age delays of OPT, EQDELAY and EQLOAD satisfy
the following relation:

T (p∗) ≤ T (p̂) ≤ T (p̃).

2) If N̂ = N , then EQDELAY and EQLOAD have the
same average delay:

T (p̂) = T (p̃).

This situation happens when the load is high enough, so
that EQDELAY uses all the servers.

3) EQ LOAD’s average delay can beN times higher than
that of EQDELAY:

sup
µ,λ

T (p̃)

T (p̂)
= N. (11)

This situation may be realized with arbitrarily small
error at low load, i.e., whenλ → 0.

Proof: We prove the above statements in order.

1) From the definition of the OPT policy, we already know
that T (p∗) ≤ T (p̂).
Next, we prove thatT (p̂) ≤ T (p̃). If N̂ = N , then from
Eqs. (8) and (10), it is clear thatT (p̂) = T (p̃). Now,



5

suppose that̂N < N . Sinceβi ≤ 0 for all i ≥ N̂ + 1,
we deduce from Eq. (7) that

N̂µi ≤
N̂
∑

i=1

µi − λ, ∀i ≥ N̂ + 1. (12)

By summing both sides of Eq. (12) over all indicesi
from N̂ + 1 to N , we obtain

N̂

N
∑

i=N̂+1

µi ≤
(

N − N̂
)





N̂
∑

i=1

µi − λ



 . (13)

Adding
(

N̂
∑N̂

i=1 µi − N̂λ
)

to both sides of Eq. (13),
we have

N̂

(

N
∑

i=1

µi − λ

)

≤ N





N̂
∑

i=1

µi − λ





or
N̂

(

∑N̂
i=1 µi − λ

) ≤ N
(

∑N
i=1 µi − λ

) .

So we have proved thatT (p̂) ≤ T (p̃).
2) This is a direct result of Eqs. (8) and (10).
3) We only consider the non-trivial case ofλ > 0. We can

first upper boundT (p̃)

T (p̂)
as follows, noting thatN̂ ≥ 1:

T (p̃)

T (p̂)
=

N

N̂

∑N̂
i=1 µi − λ

∑N
i=1 µi − λ

< N. (14)

On the other hand, this bound is realized with arbitrarily
small error at low load (i.e., the aggregate arrival rate
λ is close to 0), by constructing a service rate vectorµ

such thatµ1 � ∑N
i=2 µi. In this case, the number of

active serversN̂ = 1 for EQ DELAY, and Eq. (14) is
infinitesimally close toN . Thus, Eq. (11) holds.

Note that it is possible that when a new server is added to
the network, EQLOAD’s average delay increases (see [31]
for an example).

Next, we compare the number of active servers in
EQ DELAY and OPT. This result will be used later in this
section.

Lemma 1:For any service rate vectorµ, loadλ and number
of serversN , EQ DELAY has the same or smaller number of
active servers than OPT:

N̂ ≤ N∗ ≤ N.
Proof: It suffices to show thatβN∗+1 ≤ 0 for all N∗ <

N :

λ(N∗ + 1)βN∗+1

= λ −
N∗+1
∑

j=1

µj + (N∗ + 1)µN∗+1

≤ λ −
N∗+1
∑

j=1

µj +
√

µN∗+1

N∗+1
∑

j=1

√
µj

= (αN∗+1)λ





N∗+1
∑

j=1

√
µj



 /
√

µN∗+1. (15)

SinceαN∗+1 ≤ 0, the proof of the lemma follows.

B. Bounding the Inefficiency of EQDELAY

We next show that, the worst-case ratio of EQDELAY’s
average delay to that of OPT is exactlyN . This is achieved
by developing matching lower- and upper-bounds of the delay
ratio.We relate these results with the price of anarchy in selfish
routing.

To improve readability, we first present this section’s con-
clusion in the following theorem:

Theorem 4:The worst-case ratio between EQDELAY’s
average delay and that of OPT is exactlyN :

sup
µ,λ

T (p̂)

T (p∗)
= N. (16)

Proof: This theorem is the direct result of Lemma 2
(which lower-bounds the ratio) and Lemma 3 (which upper-
bounds the ratio), and noting thatN∗ ≤ N from Lemma 1.

Remark 1:Before moving to the derivation of Lemmas 2
and 3, we note that the above result has an important
game-theoretic interpretation. In the field of selfish routing,
EQ DELAY is of particular interest because it is the equi-
librium outcome of selfish and uncoordinated agents trying
to optimize their own performance. On the other hand, OPT
represents the social optimum under centralized control. The
left hand side of Eq. (16), referred to asthe price of anarchy,
represents the worst-case loss of efficiency when the central-
ized, system-level control is replaced by decentralized control
designed for individual optimization [15, 16]. For bounded
delay functions, the price of anarchy is often modest and
independent of the network topology [14, 17]. Theorem 4
shows that, in networks with unbounded delay functions such
asM/G/1-PS, the price of anarchy istopology dependentin
the sense that it is exactly the number of the serversN , and this
result holds for any service rate and load condition. It implies
that the price of anarchy increases with the number of servers
and can be potentially very large. Note that forM/G/1-PS (or
M/M/1) type delay functions, Roughgarden derived an upper
bound of the price of anarchy [14]. This bound is useful only
when the aggregate traffic load is smaller than the capacity of
the slowest server, otherwise it becomes infinite.

Now, as a first step of proving Theorem 4, we derive a lower
bound of the delay ratio between EQDELAY and OPT.

Lemma 2:For any givenN , we have

sup
µ,λ

T (p̂)

T (p∗)
≥ N. (17)

Proof: For anyN , we derive an example with a particular
configuration of arrival rate and service rates parameters such
that the ratio of the average delays tends toN . Assume the sum
of service rates of all the servers is 1. Furthermore, assume
µ1 is close to 1 andµ1 � µ2 = µ3 = · · · = µN . Thus, we
have

µi =
1 − µ1

N − 1
, 1 < i ≤ N. (18)



6

In addition, assume
∑N−1

i=1 µi < λ < 1. ThenN∗ = N̂ = N
andT (p̃) = T (p̂). The ratio of Eq. (8) to Eq. (5) yields

T (p̂)

T (p∗)
=

Nλ
(

∑N
i=1

√
µi

)2

− N
(

∑N
i=1 µi − λ

)

≥ Nλ
(

∑N
i=1

√
µi

)2

=
Nλ

(√
µ1 +

√

(N − 1)(1 − µ1)
)2 . (19)

Note that for any givenN , the expression(N − 1)(1 − µ1)
appearing in the denominator of Eq. (19) becomes arbitrarily
small asµ1 → 1. Sinceµ1 < λ < 1, we also have thatλ → 1
as µ1 → 1. Therefore, Eq. (19) becomes arbitrarily close to
N asµ1 → 1 and the theorem is proven.

The major difficulty in proving Theorem 4 is to develop a
tight upper bound. In Lemma 3, we provide an upper bound
that matches the lower bound of Lemma 2, based on the
construction of two auxiliary systems.

Lemma 3:For a given system loadλ and associated number
of active servers in OPT,N∗, the following inequality holds:

T (p̂)

T (p∗)
< N∗. (20)

Proof: . From Lemma 1, we knowN∗ ≥ N̂ for any
given λ. We prove the theorem in two steps. In the first step,
we show that Eq. (20) holds whenN∗ = N̂ . In the second
step, we construct two auxiliary systems to show that Eq. (20)
holds whenN∗ > N̂ .

Step 1: The case ofN∗ = N̂ . We observe that in order for
serverN̂ to be active, we must haveβ

N̂
> 0 or

λ + N̂µ
N̂
−

N̂
∑

i=1

µi > 0. (21)

We now define thethreshold service rateµT as

µT =

(

∑N̂
i=1 µi − λ

)

N̂
. (22)

From Eq. (21), we can show thatµ
N̂

> µT .
Becauseµ1 ≥ µ2 ≥ · · · ≥ µ

N̂
, we have

√
µiµj > µT , ∀ 1 ≤ i, j ≤ N̂ . (23)

By summing both sides of Eq. (23) over all indicesi between
1 andN̂ , we have

N̂(N̂ − 1)µT <

N̂
∑

i=1

N̂
∑

j=1

j 6=i

√
µiµj . (24)

We combine Eqs. (22) and (24) and obtain

N̂2µT + λ <





N̂
∑

i=1

√
µi





2

. (25)

Note that the derivation of Eq. (25) only assumes there are
N̂ active servers in EQDELAY and does not require that
N∗ = N̂ . Hence it can be used in Step 2 of the proof as well.

Now we prove Eq. (20) whenN∗ = N̂ , which is equivalent
to

N̂λ
(

∑N̂
i=1

√
µi

)2

− N̂
(

∑N̂
i=1 µi − λ

)

< N̂. (26)

Taking into account thatµT =

(

∑

N̂

i=1
µi−λ

)

N̂
, we find that

Eq. (26) is equivalent to Eq. (25).
Step 2: The case ofN∗ > N̂ . Our original system hasN

servers with service rates(µ1, µ2, . . . , µN )′. We first remove
all inactive servers in OPT from the original system. The
resulting system, denoted as theu system, has a service rate
vector

u = (u1, u2, . . . , uN∗)′ = (µ1, µ2, . . . , µN̂
, . . . , µN∗)′.

Clearly, theu system’s average delay under the OPT policy,
T (p∗

u) , is the same as that of the original system,T (p∗).
Furthermore, according to Lemma 1, all removed servers are
inactive in EQDELAY too, so we have the same relation for
EQ DELAY: T (p̂u) = T (p̂). Consequently, the ratioT (p̂)

T (p∗)
of

the original system is the same asT (p̂u)

T (p∗
u
)

of the u system.
The key of upper-bounding the delay ratio is constructing

another auxiliary system, called thev system, which also has
N∗ servers. In thev system, the fastest̂N servers have the
same rates as those in theu system, but the remainingN∗−N̂
servers are assigned the threshold service rate,µT . The service
rate vector of thev system is thus

v = (v1, v2, . . . , vN∗)′ = (µ1, µ2, . . . , µN̂
, µT , µT , . . . , µT )′.

BecauseµT < µ
N̂

, v is also descending. More importantly,
theu andv systems have the same EQDELAY average delay,
i.e.,T (p̂u) = T (p̂v). This is because in thev system, at load
λ, all servers with the threshold service rateµT are inactive
as shown in Theorem 2. Since the two systems have the same
service rates for the activêN servers, they must have the same
average delay when the EQDELAY policy is used.

Before we evaluateT (p∗
v), we need to show that all servers

in thev system are active under OPT. This is achieved by first
observing from the derivation ofN∗ in Theorem 1, that in the
u system,

√
uN∗

N∗

∑

j=1

√
uj >

N∗

∑

j=1

uj − λ.

BecauseuN∗−1 ≥ uN∗ , we have

√
uN∗−1

N∗−1
∑

j=1

√
uj >

N∗−1
∑

j=1

uj − λ.

Repeating this procedure, we obtain

√
ui

i
∑

j=1

√
uj >

i
∑

j=1

uj − λ, i = 1, 2, . . . , N∗.

In particular,

√

u
N̂+1

N̂+1
∑

j=1

√
uj >

N̂+1
∑

j=1

uj − λ



7

or

√

u
N̂+1

N̂
∑

j=1

√
uj >

N̂
∑

j=1

uj − λ.

Becausev
N̂+1 = µT ≥ u

N̂+1, we have

√

v
N̂+1

N̂
∑

j=1

√
uj >

N̂
∑

j=1

uj − λ

or

√

v
N̂+1

N̂+1
∑

j=1

√
vj >

N̂+1
∑

j=1

vj − λ. (27)

According to Eq. (4) in Theorem 1, Eq. (27) guarantees that
serverN̂ +1 is active under OPT in thev system. Because all
servers with indices larger than̂N in the v system have the
same service rate, they must have the same access probability.
Thus all servers in thev system must be active under OPT.

On the other hand, thev system achieves the smallest OPT
delay among allN∗-server systems whose fastestN̂ servers
have the ratesµ1, . . . , µN̂

and who haveN̂ active servers
under EQDELAY under loadλ. To see this, we observe that in
all systems meeting the above requirements, we haveri ≤ µT

for N̂ < i ≤ N∗, whereri is the service rate of thei-th server
in any system under consideration; otherwise the system would
have more thanN̂ active servers under EQDELAY. Each
server in thev system has the largest possible service rate
among all systems meeting the above two requirements. As a
result, it achieves the same or smaller average delay under OPT
than any other system meeting the above two requirements. So
we haveT (p∗

v) ≤ T (p∗
u).

Combining the above analysis in both EQDELAY and OPT,
we see that

T (p̂)

T (p∗)
=

T (p̂u)

T (p∗
u)

≤ T (p̂v)

T (p∗
v)

. (28)

Now we upper bound T (p̂)

T (p∗)
by evaluatingT (p̂v) and

T (p∗
v). By definition and the structure ofv, we know that

N̂µT =

N̂
∑

i=1

µi − λ =

N̂
∑

i=1

vi − λ

and

N∗µT =

N∗

∑

i=1

vi − λ.

Hence, thev system’s average delay under EQDELAY is

T (p̂v) = T (p̂) =
N̂

∑N̂
i=1 vi − λ

=
1

µT

. (29)

For T (p∗
v), we have

T (p∗
v) =

(

∑N∗

i=1

√
vi

)2

λ
(

∑N∗

i=1 vi − λ
) − N∗

λ

=

[

∑N̂
i=1

√
µi + (N∗ − N̂)

√
µT

]2

− (N∗)
2
µT

λN∗µT

.

Combining the expressions forT (p̂v) and T (p∗
v) and

incorporating Eq. (25), we have

T (p̂v)

T (p∗
v)

<
λN∗

λ + 2
(

N∗ − N̂
)√

µT

(

∑N̂
i=1

√
µi − N̂

√
µT

)

< N∗.

From Eq. (28), we have

T (p̂)

T (p∗)
< N∗,

which completes the proof of the second step.

C. Bounding the Inefficiency of EQLOAD

In this section, we prove that the maximum ratio between
EQ LOAD’s and OPT’s average delays is exactlyN . Thus,
somewhat surprisingly, this worst-case ratio for EQLOAD is
the same as that for EQDELAY.

Theorem 5:The worst case delay ratio between EQLOAD
and OPT is exactlyN :

sup
µ,λ

T (p̃)

T (p∗)
= N. (30)

Proof: From Theorem 3, we know thatT (p̃) ≥ T (p̂).
Thus, according to Lemma 2, we must have

sup
µ,λ

T (p̃)

T (p∗)
≥ N.

To complete the proof, we only need to show that

T (p̃)

T (p∗)
< N. (31)

First, from Eq. (10), we note that

T (p̃) ≤ N
∑N∗

i=1 µi − λ
.

Taking OPT’s average delay expression, Eq. (5), into account,
we can prove Eq. (31) by showing that the following expres-
sion holds

N
∑

N∗

i=1
µi−λ

(
∑

N∗

i=1

√
µi

)

2

λ
(
∑

N∗

i=1
µi−λ

) − N∗

λ

< N,

which can be simplified to
(

N∗

∑

i=1

√
µi

)2

− N∗

(

N∗

∑

i=1

µi − λ

)

− λ > 0. (32)

Now, we consider EQDELAY under the same parameters
µ andλ. If N̂ = N∗, then Eq. (32) is the same as Eq. (25),
so Eq. (31) is proved.

Next, we note that Eq. (25) also holds when̂N < N∗. To
prove this, consider a hypotheticalw system where all the
serversN̂ + 1, N̂ + 2, . . . , N are removed. In thew system,
OPT and EQDELAY have the same number of active servers,



8

N̂ , and Eq. (25) must be satisfied. Because Eq. (25) only
provides a relation between the parameters

(

µ1, µ2, . . . , µN̂

)′

and λ, it must hold as well for the original system withN
servers.

We are now ready to use induction on the variableN ′

to prove that the following inequality holds for our original
system:




N ′

∑

i=1

√
µi





2

− N ′





N ′

∑

i=1

µi − λ



− λ > 0, N̂ ≤ N ′ ≤ N∗.

(33)
First, we already know that Eq. (33) holds whenN ′ = N̂ ,
which proves the induction basis. Now suppose Eq. (33) holds
for someN ′, whereN̂ ≤ N ′ < N∗. We want to show




N ′+1
∑

i=1

√
µi





2

− (N ′ + 1)





N ′+1
∑

i=1

µi − λ



− λ > 0, (34)

which is in fact the case since




N ′+1
∑

i=1

√
µi





2

− (N ′ + 1)





N ′+1
∑

i=1

µi − λ



− λ

=





N ′

∑

i=1

√
µi





2

+ 2
√

µN ′+1

N ′

∑

i=1

√
µi + µN ′+1

−N ′





N ′

∑

i=1

µi − λ



− N ′µN ′+1

−





N ′+1
∑

i=1

µi − λ



− λ

> 2
√

µN ′+1

N ′

∑

i=1

√
µi − N ′µN ′+1 −





N ′

∑

i=1

µi − λ



(35)

>





N ′

∑

i=1

µi − λ



− N ′µN ′+1 (36)

≥ 0. (37)

Note that Eq. (35) holds because of the induction hypothesis.
Eq. (36) holds since

√
µN ′+1 >

(

∑N ′

i=1 µi − λ
)

∑N ′

i=1

√
µi

, for all N ′ < N∗

according to Theorem 1. Eq. (37) holds since

µN ′+1 ≤

(

∑N ′

i=1 µi − λ
)

N ′ for all N ′ ≥ N̂

according to Theorem 2. Thus, Eq. (32), being a special case
of Eq. (33), is proven and the proof is complete.

Remark 2:Theorems 4 and 5 reveal that EQLOAD and
EQ DELAY have the same worst-case ratio against OPT in
terms of average delay. However, it is worth noting that
EQ DELAY can achieve this ratio only at high load while
EQ LOAD can achieve it at both low and high loads. Indeed,

according to Lemma 3, the ratio between EQDELAY’s and
OPT’s average delays is always smaller thanN∗. Thus, it
can become large only at high load. On the other hand,
at low load, the ratio between EQLOAD’s and OPT’s (or
EQ DELAY’s) average delays can be as large asN , as
indicated by Theorem 3.

V. EXTENSIONS FORM/G/1-FCFS,G/G/1-FCFSAND

MULTI -CLASS M/G/1-PS MODELS

In this section, we consider scenarios more general than
the one studied so far. We will study theM/G/1-FCFS
andG/G/1-FCFS models as well as multi-classM/G/1-PS
networks where each SSN-server pair has its own service time.

A. TheM/G/1-FCFS Model

We consider the same model as the one introduced in
Section II, except that the scheduling policy at each serveri is
First-Come First-Serve instead of Processor Sharing. Follow-
ing the notations of [32], we denoteσ2

i as the variance of the
service time at serveri, CS(i) = σi/x̄i as the coefficient of
variation of the service time, where we remind thatx̄i = 1/µi

is the mean service time at serveri. In addition, we denote by
di the network delay to each serveri. We assume thatdi is a
random variable with mean̄di.

Using the above notation, we can express the average
waiting time of a request at serveri using the well-known
Pollaczek-Khinchin (PK) formula [32]

W i(pi) =
Kipiλ

µi (µi − piλ)
, (38)

whereKi ≡ 1+C2

S(i)
2 .

The total average delay of a request forwarded to server
i consists of the sum of the waiting time, service time, and
network delay. Thus,

T i(pi) = W i(pi) +
1

µi

+ d̄i

=
Kipiλ

µi (µi − piλ)
+

1

µi

+ d̄i

=
Ki

µi − piλ
+

1 − Ki

µi

+ d̄i. (39)

Our optimization problem can then be formalized as follows:
Problem 4: Find the optimal server access probability vec-

tor
p∗ = arg min

p∈P
T (p), (40)

whereT (p) =
∑N

i=1 piT i(pi) andT i(pi) is given by Eq. (39).
It is generally infeasible to obtain a closed-form solution

to Problem 4 and numerical approaches must be used to
derive the optimal solution [26, 30, 33]. However, by analyzing
the system behavior at high load, we can derive closed-form
expressions for the optimal access probabilities in this regime.
Our simulations in Section VI show that the asymptotically
optimal server selection policy actually provides a solution
close to the minimum average delay for a wide range of server
utilizations.



9

B. High Load Analysis

In this section, we study Problem 4 under high load. High
load is defined as the regime where for any feasible probability
vectorp ∈ P , each coordinate satisfiespiλ

µi
→ 1, for all i =

1, 2, . . . , N . Under this regime, the second and third terms in
Eq. (39) become negligible compared to the first term and the
total average delay becomes

T (p) ∼=
N
∑

i=1

Kipi

µi − piλ
. (41)

Minimizing Eq. (41) is similar to obtaining the minimum
average delay in Section III. We can compute the optimal
server access probabilityp∗i and the corresponding average
delayT (p∗) as the following:

p∗i =
µi

λ
−

(

∑N
j=1 µj − λ

)√
Kiµi

λ
∑N

j=1

√

Kjµj

, 0 ≤ i ≤ N ; (42)

T (p∗) =

(

∑N
i=1

√
Kiµi

)2

λ
(

∑N
i=1 µi − λ

) −
∑N

i=1 Ki

λ
. (43)

The access probabilities and average delays for the
EQ DELAY and EQLOAD policies can be derived in a
similar manner.

The following lemma generalizes Lemma 2 and provides a
lower bound on the worst-case ratio between EQDELAY’s (or
EQ LOAD’s) and OPT’s average delays for theM/G/1-FCFS
case:

Lemma 4:For any givenN servers, there exist parame-
ters λ and µi, i = 1, 2, . . . , N , such thatT (p̃)/T (p∗) =

T (p̂)/T (p∗) →
∑

N

i=1
Ki

K1

.
The proof is similar to that of Lemma 2. BecauseK1 is finite

(assuming the second moment exists) andKi ≥ 1
2 for any

M/G/1 queue,
∑

N

i=1
Ki

K1

becomes arbitrarily large asN → ∞.

C. TheG/G/1-FCFS Model

Consider the same model as in Section V-A, but assume
now that the inter-arrival time between requests at each server
follows a generali.i.d. distribution. Under such assumptions,
each server can be modeled as aG/G/1-FCFS queue [32].
Unfortunately, there exists no simple, general expressionfor
the mean waiting time in aG/G/1-FCFS and, therefore,
even a numerical derivation of the optimal access probabilities
becomes difficult.

However, in the high load regime, whenpiλ
µi

→ 1, for all i =

1, 2, . . . , N , a simple, asymptotically exact expression forW i

can be provided. Specifically, define the coefficient of variation
of the inter-arrival time at serveri asCA(i), then [34]

W i(pi) ∼=
C2

A(i) + C2
S(i)

2 (µi − piλ)
. (44)

As discussed earlier, at high load, the service time and
network delay are negligible compared to the waiting time in

Fig. 2. A multi-class network with 2 SSNs and 2 servers

the server. Using the notationKi =
C2

A(i)+C2

S(i)
2 , we therefore

have

T (p) ∼=
N
∑

i=1

Kipi

µi − piλ
, (45)

which is the same as Eq. (41). Therefore, all the results derived
in Section V-B can directly be applied toG/G/1-FCFS server
selection as well.

D. The Multi-ClassM/G/1-PS Model

In this section, we extend our results to a multi-class
M/G/1-PS model where each class is associated with a dif-
ferent SSN. Under this model, requests coming from different
SSNs may have different average service times when accessing
a given serverj. Hence, the access probabilities may also differ
for different SSNs. This model qualitatively captures the fact
that requests originating from a SSN geographically close to
a certain server experience smaller average delay than those
originating from a remote SSN.

The model is defined by an arrival rate vectorλ, a service
time matrix t, and a server access probability matrixP. As
in Section II, we denote SSNi’s request arrival rate asλi.
The arrival rate vector in this multi-class network is defined
as λ = (λ1, λ2, . . . , λM )

′. Suppose the service time for a
request forwarded by SSNi to serverj is tij . We denotet
as the service time matrix, withtij at its i-th row andj-th
column. The probability that SSNi selects serverj is denoted
by pij . Similar to the definition oft, we defineP as the server
access probability matrix. Obviously, we have

∑N
j=1 pij = 1,

1 ≤ i ≤ M .
We use the notation ofM × N to represent a multi-class

network with M SSNs andN servers. Fig. 2 illustrates the
simplest network in this model, a2 × 2 multi-class network,
with the corresponding average service times and access
probabilities.

The utilization of serverj is computed by summing all
SSNs’ request rate on serverj, weighted by individual service
times:

ρj =
M
∑

k=1

pkjλktkj . (46)

Then, SSNi’s average delay at serverj is [35, 36]

T ij(P) =
tij

1 − ρj

. (47)



10

The average delay of anM ×N networkT (P) is given by
the following expression:

T (P) =
1

∑M
i=1 λi





M
∑

i=1

N
∑

j=1

pijλiT ij(P)





=
1

∑M
i=1 λi





N
∑

j=1

1

1 − ρj

− N



 (48)

Deriving an analytical solution for the server access prob-
ability matrix P in multi-class networks is far more difficult
than computing the server access probability vectorp as done
in Section III, because the numbers of variables and boundary
conditions increase significantly. For example, even in simple
2 × 2 networks, there exist nine possible configurations de-
pending on whether specific network links connecting SSNs
and servers are active or not [31]. To overcome this difficulty,
we focus on the three policies’ asymptotic performance at low
load and high load, because as indicated in Section IV, these
are the situations where EQDELAY and EQLOAD exhibit
their largest inefficiencies in single-class networks.

For low load conditions, the following theorem demon-
strates that the ratio of the average delays of EQLOAD to
OPT in multi-class networks is always smaller thanN . This
result is consistent with single-class networks (i.e., multi-class
does not perform worse). The proof of this theorem can be
found in [31].

Theorem 6:Consider a generalM × N M/G/1-PS net-
works, whereλi → 0, 1 ≤ i ≤ M . Then,

T (P̃)

T (P∗)
< N. (49)

Next, consider the case of high load conditions in2 × 2
multi-class networks. We first letR1 represent the service rate
available to SSN 1 when SSN 2’s arrival rateλ2 is fixed at a
constanta2. Formally,R1 is defined as follows:

R1 = sup
ρ1<1

ρ2<1

λ2=a2

λ1, (50)

where0 ≤ a2 < 1
t21

+ 1
t22

. Recall thatρi (i = 1, 2) is serveri’s
utilization as defined in Eq. (46).

We refer to all the cases whereλ1 approachesR1 as high
load with respect to SSN 1. The following theorem states that
at high load with respect to SSN 1 (or SSN 2), the ratio of
average delays of EQDELAY or EQ LOAD to OPT does not
exceed 2, as in the single-class case.

Theorem 7:In 2 × 2 M/G/1-PS networks, at high load
with respect to SSNi, wherei = 1 or 2, we have:

T (P̂)

T (P∗)
< 2, and

T (P̃)

T (P∗)
< 2. (51)

The above high load results (i.e., the ratio of the average
delays does not exceed the number of servers in the network)
can be extended to generalM × N networks, under more
specific conditions [31].

These results suggest that the largest ratio of the average
delays of EQDELAY (or EQ LOAD) to OPT in multi-class

networks is the same as in single class ones. This conjecture
is numerically verified in Section VI-E.

VI. SIMULATIONS

In this section, we perform extensive simulations to ex-
perimentally compare EQDELAY and EQLOAD versus the
benchmark OPT policy. We first consider the case where the
workload conforms to theM/G/1-PS model. We assume that
the file size (and hence the service time) follows a heavy-tailed
Pareto distribution with cumulative distribution function

F (x) = 1 − 1

(1 + ax)b
x ≥ 0, (52)

where b is the Pareto tail index. This choice is justified by
the large number of experimental studies showing that Web
file size distributions follow a Pareto distribution [37, 38].
Using this workload model, we compare the three policies’
average delay and standard deviation of the delay (which
relates to fairness). Next, we evaluate the performance of
the three policies using synthetic traces generated by a Web
workload generator, called ProWGen [12]. These traces exhibit
temporal locality in file popularity and, therefore, differfrom
theM/G/1-PS model. Our simulations show that EQLOAD
and EQDELAY are substantially suboptimal in both cases.

In addition, we simulate server selection for the case where
servers are modeled byM/G/1-FCFS queues. We compare
the average delay achieved by the (asymptotically optimal)
OPT policy to the minimum average delay obtained through
a numerical optimization procedure. The simulation results
indicate that our analysis approximates the minimum average
delay closely for a wide range of server utilizations.

Finally, we provide numerical results of a representative
multi-class network setting, where each server has different
service times for different SSNs. Our experiments indicatethat
the largest ratio of EQDELAY’s (or EQ LOAD’s) average
delay to that of OPT is likely to be the same as in single-
class networks, in which case the general and tight bounds in
Section IV can be used.

The simulations described in this section are representative
of a variety of simulations that we performed for different
network sizes (from 5 to 500 servers) and utilizations (from
0.05 to 0.95). Further, by Little’s Law, we note that if the
service rates of all servers are changed by a multiplicative
constant, then the ratio of the average delays between the three
policies remain the same.

A. Average Delay

In this section, we compare the three policies in the
M/G/1-PS model using both analysis and simulations. The
purposes of this experiment are to validate the correctnessand
accuracy of our analysis and to quantify the difference between
the three policies at different load conditions. We define the
aggregate utilizationρ as ρ = λ/

∑N
j=1 µj . We simulate a

content replication network with ten servers, with the service
rate vector(12, 12, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5) req/sec.
In this scenario, servers 1 and 2 are eight times faster than the
other eight servers, which, when interpreted using Moore’s



11

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Aggregate Utilization

A
ve

ra
ge

 D
el

ay
 (

se
c)

 

 

EQ_DELAY Sim
EQ_DELAY Analysis
EQ_LOAD Sim
EQ_LOAD Analysis
OPT Sim
OPT Analysis

Fig. 3. Average delays of the three policies by simulation and analysis.

Law, roughly represents the situation of adding two servers
built with the latest hardware to an eight-server network built
four or five years ago. The selection of the service rates is
consistent with measurement results of Web sites that serve
heavily dynamically generated content or large amount of
multimedia content [22, 39].

In this experiment, we consider Pareto job size distribution
with b = 2.2. We solve respectively Eqs. (5), (8), and (10)
to analytically obtain average delays for the three policies
and depict them in Fig. 3. Furthermore, we run anM/G/1-
PS simulator 50 times for each of the three policies at each
utilization point. We also depict the average delay for the 50
runs and the 95% confidence interval in Fig. 3 for the three
policies.

From Fig. 3, we observe that the analysis and simulation
results match very well. When comparing the three polices, we
find that both OPT and EQDELAY perform much better than
EQ LOAD at low load. The reason is that, in this regime,
OPT and EQDELAY forward requests only to the fastest
server, while EQLOAD always sends a third of the requests to
the slower servers. At high load, EQLOAD and EQDELAY
achieve the same average delay, as proved in Section IV, and
significantly underperform the OPT benchmark. For instance,
at utilization ρ = 0.9, the average delay of EQDELAY and
EQ LOAD is approximately 30% higher than the optimal
average delay.

B. Standard Deviation of Delay and Fairness

An apparent advantage of EQDELAY is to serve each
request with the same average delay (at the cost of higher
overall average delay). This might lead to the belief that it
has better fairness properties than the other server selection
policies. However, we show that this is actually not the case,
at least with respect to OPT.

In the following set of simulations, we evaluate the standard
deviation of the delay obtained with each policy. This metric
has been recognized as one of the best ways to measure
fairness in queues [40]. We consider a system consisting
of N = 40 servers withM/G/1-PS queues. Among these

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Aggregate Utilization

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 D

el
ay

 (
se

c)

 

 

EQ_DELAY
EQ_LOAD
OPT

Fig. 4. Standard deviation of delay

servers, two have service rates of 20 req/sec, four at 10 req/sec,
fourteen at 2 req/sec and twenty at 0.5 req/sec. The Pareto tail
index isb = 2.2.

Fig. 4 depicts the deviation of delays of the three policies
with 95% confidence interval of the 50 runs. We observe
that OPT and EQDELAY perform very similarly, while the
standard deviation of EQLOAD is noticeably higher at all
utilization values. A few comments are in order here. First,
even though the average delay at each server is the same for
EQ DELAY, the actual delay of a request is still a random vari-
able. In particular, this delay depends on the number of other
requests concurrently being served, which obviously varies
over time. Therefore, the standard deviation of EQDELAY is
non-zero and turns out to be on the same order as that of OPT.
Second, the standard deviation of EQLOAD is higher than
that of EQDELAY, even at high load. This result is somewhat
surprising since the average delay of these two policies is
identical in this regime. This discrepancy is resolved by noting
that the average delay of requests at different servers is not the
same for EQLOAD. Therefore, EQLOAD and EQDELAY
are not statistically identical even at high load.

C. ProWGen Simulations

Our analytic model and solutions are based on the assump-
tion that the service time of different requests is independent.
On the other hand, some experimental studies have shown
that Web requests exhibits temporal locality, see e.g. [41]. In
this section, we compare the performance of EQDELAY and
EQ LOAD to that of OPT when request streams have short-
term temporal correlation.

We use the Web workload generator ProWGen [12] to pro-
duce synthetic Web workload that exhibits temporal locality
in file popularity. ProWGen, originally developed for Web
cache performance evaluation, models the file popularity using
the Zipf distribution, and the file size distribution using a
combination of a lognormal body and a Pareto tail. It can also
model positive or negative correlation between file size and
popularity if needed. Furthermore, it can use an LRU stack to
model request temporal locality.



12

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Aggregate Utilization

A
ve

ra
g

e
 D

e
la

y 
(s

e
c)

 

 

EQ_DELAY Sim
EQ_DELAY Analysis
EQ_LOAD Sim
EQ_LOAD Analysis
OPT Sim
OPT Analysis

Fig. 5. Average delay with ProWGen traces

In our simulations, we use default values for most ProWGen
parameters, with a Zipf slope of 0.75, Pareto Tail index of 1.2,
lognormal mean of 7KB, standard deviation of 11KB, and tail
cutoff size of 10KB. We also have a “dynamic” stack with a
depth of 1000 requests to introduce temporal locality. Finally,
the correlation between file size and popularity is set to zero,
which is consistent with literature findings [42].

We find that a peculiarity of ProWGen is that popular
files tend to be generated at the end of the trace, and “one-
timers” (files accessed only once) are more likely to be
generated earlier in the trace. To mitigate this artifact while
still maintaining most of the short-term temporal locality, we
divide the trace generated by ProWGen into segments each
consisting of 4,000 requests and reshuffle the segments to
obtain the trace used in our simulations. We scale the mean
file size to 11 KB, and use the same service rate array as in
Section VI-B. Each run contains about 550,000 requests, and
the results are averaged over 50 runs.

The simulation results (with 95% confidence intervals) are
shown in Fig. 5 together with analytical values based on
our M/G/1-PS model. We observe that the average delays
achieved by EQDELAY and EQLOAD are still higher than
OPT, especially at high load. Other performance characteristics
of EQ DELAY and EQLOAD observed in Section VI-A are
also present in this figure. Overall, the simulation resultsmatch
the analysis fairly well for all the studied policies.

D. Performance of the OPT Policy forM/G/1-FCFS Servers

In Section V, we have shown that the OPT policy derived
for M/G/1-PS queues is asymptotically optimal at high load
for G/G/1-FCFS queues. The goal of this experiment is to
evaluate the performance of the OPT policy for FCFS servers
at light and moderate loads. We compare between the average
delay achieved using the OPT policy and the minimum average
delay. The value of the minimum average delay is obtained by
solving Problem 4 using thefmincon routine of MATLAB.

In the following simulation, we use the service rate vector
of (6.06, 0.757, 0.757, 0.757, 0.757) req/sec. We consider two

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Aggregate Utilization

A
ve

ra
ge

 D
el

ay
 (

se
c)

 

 

M/D/1 Numerical (d
n
)

M/D/1 Analytical (d
a
)

M/G/1 Numerical (d
n
) K=6

M/G/1 Analytical (d
a
) K=6

Fig. 6. Average delay of OPT forM/G/1-FCFS servers with deterministic
and Pareto file-size distributions: analytical results vs.numerical results.

special cases ofM/G/1-FCFS queues. In the first case, servers
are modeled asM/D/1-FCFS queues. Thus, the file size is
fixed andKi = 0.5, for each serveri. In the second case,
the file size distribution is Pareto with tail indexb = 2.2. In
this case, it can be verified thatKi = 1 + 1

b−2 = 6, for each
serveri. We denote byda the average delay of OPT anddn

the minimum average delay computed numerically, and depict
them in the above two cases in Fig. 6.

We observe from Fig. 6 that the OPT policy achieves delay
close to the minimum over a wide range of server utilizations.
We observe that the difference betweendn and da is quite
small at both low- and high-loads. At its maximum, the
difference between the two methods is 5% forM/D/1 (at
utilization of 0.5) and 13% forM/G/1 with Pareto service
distribution (at utilization of 0.4). This results illustrates the
robustness and generality of our analytical model for a wide
range of service distributions and queueing disciplines.

E. Multi-Class Networks

Now we examine multi-class networks that explicitly model
delays specific to each SSN-server pair. To highlight the dif-
ference between single- and multi-class networks, we consider
a 2 × 2 network with the service time matrix

t =

[

1 2
3 1

]

sec. (53)

This means that for SSN 1, server 1’s service time is only
half that of server 2. Similarly, for SSN 2, server 2’s service
time is only one third that of server 1. In practice, this setup
could represent the situation where SSN 1 is physically close
to server 1, and SSN 2 is physically close to server 2.

We evaluate the average delays of the three policies as SSN
1’s request rate increases from 0.01 to 1.5 req/sec, and SSN 2’s
increases from 0.01 to 1.33 req/sec. Fig. 7 depicts the ratios of
EQ DELAY’s average delay (and that of EQLOAD) to OPT
at different request rates.

Fig. 7(a) depicts the ratio of the average delay of
EQ DELAY to that of OPT. We observe that if SSN 1 and
SSN 2 have comparable request rates, then they only access



13

0
0.5

1
1.5

0
0.5

1
1.5

1

1.05

1.1

1.15

1.2

SSN 2 Request RateSSN 1 Request Rate

E
Q

_D
E

LA
Y

/O
P

T
 D

el
ay

 R
at

io

(a) EQDELAY.

0
0.5

1
1.5

00.511.5
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

SSN 2 Request RateSSN 1 Request Rate

E
Q

_L
O

A
D

/O
P

T
 D

el
ay

 R
at

io

(b) EQ LOAD.

Fig. 7. Average delay ratio for the multi-class service timematrix defined
in Eq. (53).

their most efficient server (i.e., servers 1 and 2 respectively).
In this case, EQDELAY and OPT use the same one server for
each SSN, and have the same delay. The largest difference of
the policies occurs when one SSN has very low request rate
and the other SSN’s access probabilities are different. In this
case, the system degenerates to a single-class network. In this
experiment, a maximum difference of 15% is achieved when
SSN 1’s rate is 0.02 req/sec and SSN 2’s rate is 0.67 req/sec.
When both SSNs generate substantial amount of traffic, the
performance difference between the two policies decreases
compared to the above single-class case.

For the case of the ratio between EQLOAD and OPT,
depicted in Fig. 7(b), it also appears that the largest difference
occurs when one of the SSNs generates little traffic. When
this SSN’s request rate increases, the difference becomes
less significant. Additionally, the observation we made in
Section VI-A about EQLOAD’s inefficiency at low load is
also evident in the figure. The largest difference of 39% is
achieved when SSN 1’s rate is 0.01 request/sec and SSN 2’s
rate is 0.14 request/sec.

The above results are representative to2× 2 networks with
t11 < t12 and t22 < t21. Additional numerical results for
different network parameters can be found in [31]. They all
indicate that in multi-class networks, the largest ratio between

the average delay of EQDELAY (or EQ LOAD) and that of
OPT is likely to occur when the network degenerates to the
single-class case.

VII. C ONCLUSIONS

In this work, we analytically compared the performance
of server selection policies in content replication networks.
This problem has gained significant importance in recent years
with the emergence of large-scale content delivery and peer-
to-peer network architectures over the Internet. We introduced
a mathematical framework, based on theM/G/1 Processor
Sharing queueing model, which allowed us to provide quan-
titative, yet non-trivial, insight into the performance ofserver
selection policies. Furthermore, we proved that our results are
also applicable to theG/G/1-FCFS and multi-classM/G/1-
PS queueing models, in certain asymptotic regimes.

Based on our model, we derived closed-form solutions for
a hypothetical benchmark policy, called OPT, that achieves
the minimum average delay. We used this benchmark policy
to evaluate the performance of two server selection policies,
generically referred to as EQDELAY and EQLOAD, which
are representative of a large class of existing algorithms.We
proved that EQLOAD’s average delay is always larger than
or equal to that of EQDELAY.

A major contribution of this paper is in the analytical
quantification of the performance difference of EQDELAY
and EQLOAD with regard to the minimal average delay. We
analytically proved that, in anN -server system, the worst-
case ratio of EQDELAY’s (or EQ LOAD’s) average delay
to the minimal average delay is exactlyN . Moreover, we
have provided analytical evidence that the same worst-case
ratio is likely to prevail in multi-class settings, where different
SSNs may favor different servers. We have shown that large
inefficiency tends to occur in highly heterogeneous systems,
but only under moderate and high utilization for the case of
EQ DELAY.

Simulations using our workload model as well as the ProW-
Gen Web workload generator show substantial inefficiency,
up to 30%, in realistic scenarios. This result is relatively
insensitive to arrival and service time distributions as well
as service disciplines. Other simulation results for workload
exhibiting temporal locality, FCFS service models and multi-
class settings show that our analytical results are general
enough for a number of practical situations. Finally, we have
provided a game-theoretic interpretation to our results, i.e.,
the price of anarchy in unbounded delay networks depends
on the network topology, and the potential inefficiency of
EQ DELAY (or EQ LOAD) grows with the scale of the
network.

The purpose of the benchmark policy developed in this
paper was to study the theoretical strengths and limitations
of existing server selection policies. Clearly, to developa
comprehensive understanding of server selection, additional
benchmarks related to other metrics (e.g., tail probabilities
of delay) ought to be investigated. Another important open
research area is to leverage the analytical insights provided by
this work into the development of more efficient and robust
server selection policies.



14

REFERENCES

[1] K. Obraczka, P. Danzig, and D. DeLucia, “Massively replicating services
in autonomously managed, wide-area internetworks,” University of
Southern California, Tech. Rep. 93-541, 1993.

[2] A. Vakali and G. Pallis, “Content delivery networks: status and trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[3] B. Yang and H. G. Molina, “Designing a super-peer network,” in
Proceedings of the Nineteenth International Conference onData En-
gineering, Bangalore, India, 2003.

[4] Cisco, “Cisco global site selector platforms: Chapter 1,”
http://www.cisco.com/en/US/products/hw/contnetw/ps4162/products
configurationguide chapter09186a00800ca80e.html.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The state of the
art in locally distributed Web-server systems,”ACM Computing Surveys
(CSUR), vol. 34, no. 2, pp. 263–311, 2002.

[6] E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee, “Application-layer
anycasting: a server selection architecture and use in a replicated Web
service,” IEEE/ACM Transactions on Networking, vol. 8, no. 4, Aug.
2000.

[7] Y. Korilis, A. Lazar, and A. Orda, “Architecting noncooperative net-
works,” IEEE Journal of Selected Areas in Communications, vol. 13,
no. 7, pp. 1241–1251, 1995.

[8] M. Stemm, R. Katz, and S. Seshan, “A network measurement archi-
tecture for adaptive applications,” inProceedings of IEEE INFOCOM,
Tel-Aviv,Israel, Mar. 2000.

[9] T. Ng, Y. Chu, S. Rao, K. Sripanidkulchai, and H. Zhang,
“Measurement-based optimization techniques for bandwidth-demanding
peer-to-peer systems,” inProceedings of IEEE INFOCOM, San Fran-
cisco, CA, Apr. 2003.

[10] L. Qiu, Y. Yang, Y. Zhang, and S. Shenker, “On selfish routing
in Internet-like environments,” inProceedings of ACM SIGCOMM,
Karlsruhe, Germany, Aug. 2003.

[11] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers in the
application tier for e-commerce systems,” inProceedings of the Twelfth
IEEE International Workshop on Quality of Service, Montreal, Canada,
June 2004.

[12] M. Busari and C. Williamson, “ProWGen: a synthetic workload gener-
ation tool for simulation evaluation of Web proxy caches,”Computer
Networks, vol. 38, no. 6, 2002.

[13] J. Wardrop, “Some theoretical aspects of road traffic research,” Pro-
ceedings of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378,
1952.

[14] T. Roughgarden,Selfish Routing and the Price of Anarchy. MIT Press,
2005.

[15] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Pro-
ceedings of Symposium on Theoretical Aspects in Computer Science,
Trier, Germany, Mar. 1999.

[16] T. Roughgarden and E. Tardos, “How bad is selfish routing?” Journal
of the ACM, vol. 49, no. 2, pp. 236–259, 2002.

[17] J. Correa, A. Schulz, and N. Stier-Moses, “On the inefficiency of equilib-
ria in congestion games,” http://jcorrea.uai.cl/papers/CSS2005.pdf, 2005.

[18] T. Roughgarden, “The price of anarchy is independent ofthe network
topology,” Journal of Computer and System Sciences, vol. 67, no. 2, pp.
341–364, Sept. 2003.

[19] L. Kleinrock, Queueing systems. Wiley, 1976, vol. 2.
[20] S. Karlin and H. Taylor,A First Course in Stochastic Processes.

Academic Press, 1975.
[21] Apache, “http://www.apache.org/.”
[22] S. Ranjan, R. Karrer, and E. Knightly, “Wide area redirection of dynamic

content by Internet data centers,” inProceedings of IEEE INFOCOM,
Hong Kong, China, Mar. 2004.

[23] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate
link overload as observed on an IP backbone,” inProceedings of IEEE
INFOCOM, San Francisco, CA, 2003.

[24] C. Fraleighet al., “Packet-level traffic measurements from the Sprint IP
backbone,”IEEE Network, vol. 17, no. 6, pp. 6–16, 2003.

[25] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-
works,” IEEE/ACM Transactions on Networking, vol. 12, no. 2, pp.
219–232, Apr. 2004.

[26] A. Tantawi and D. Towsley, “Optimal static load balancing in distributed
computer systems,”Journal of the ACM, vol. 32, no. 2, pp. 445–465,
1985.

[27] K. Ross and D. Yao, “Optimal load balancing and scheduling in a
distributed computer system,”Journal of the ACM, vol. 38, no. 3, pp.
676–689, 1991.

[28] C. Kim and H. Kameda, “An algorithm for optimal static load balancing
in distributed computer systems,”IEEE Transactions on Computers,
vol. 41, no. 3, pp. 381–384, 1992.

[29] M. Gerla and L. Kleinrock, “On the topological design ofdistributed
computer networks,”IEEE Transactions on Communications, vol. 25,
no. 1, pp. 48–60, Jan. 1977.

[30] D. Bertsekas,Nonlinear Programming, 2nd ed. Athena Scientific, 1999.
[31] T. Wu, “An analytical study of server selection for scalable Internet

services,” Ph.D. Dissertation, Boston University, 2007.
[32] L. Kleinrock, Queueing systems. Wiley, 1975, vol. 1.
[33] H. Kameda, J. Li, C. Kim, and Y. Zhang,Optimal Load Balancing in

Distributed Computer Systems. Springer-Verlag, 1997.
[34] W. Marchal, “Some simpler bounds on the mean queueing time,”

Operations Research, vol. 26, pp. 1083–1088, 1978.
[35] R. Wolff, Stochastic Modeling and the Theory of Queues. Prentice

Hall, 1989.
[36] A. Zwart, “Sojourn times in a multiclass processor sharing queue,” in

Proceedings of the Sixteenth International Teletraffic Congress, Edin-
burgh, UK, June 1999.

[37] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes,”IEEE/ACM Transactions on
Networking, vol. 5, no. 6, pp. 835–846, 1997.

[38] D. Starobinski and M. Sidi, “Modeling and analysis of power-tail distri-
butions via classical teletraffic methods,”Queueing Systems (QUESTA),
vol. 36, no. 1–3, pp. 243–267, 2000.

[39] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “DDoS-
resilient scheduling to counter application layer attacksunder imperfect
detection,” inProceedings of IEEE INFOCOM, Barcelona, Spain, Apr.
2006.

[40] B. Avi-Itzhak and H. Levy, “On measuring fairness in queues,”Advances
in Applied Probability, vol. 36, no. 3, pp. 919–936, 2004.

[41] A. Mahanti, D. Eager, and C. Williamson, “Temporal locality and its
impact on Web proxy cache performance,”Performance Evaluation,
vol. 42, no. 2–3, pp. 187–203, 2000.

[42] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,”in Proceedings
of IEEE INFOCOM, New York, NY, Mar. 1999, pp. 126–134.

PLACE
PHOTO
HERE

Tao Wu (S’97-M’00) joined Nokia Research Center
in 1999, where he is currently a Senior Research
Engineer. At Nokia, he has led several research
projects on mobile content delivery and multime-
dia management, and has over twenty papers and
patents, awarded or pending, in these areas. His
current research interests include human computer
interface and multimedia networking and manage-
ment.

Tao received a bachelor degree from Tsinghua
University, an MS degree from Rice University, and

a Ph.D. degree from Boston University, all in electrical engineering.

PLACE
PHOTO
HERE

David Starobinski (S’95-M’99-SM’07) received his
Ph.D. in Electrical Engineering (1999) from the
Technion-Israel Institute of Technology. In 1999-
2000, he was a visiting post-doctoral researcher
in the EECS department at UC Berkeley. Since
September 2000, he has been at Boston University,
where he is now an Associate Professor.

Dr. Starobinski received a CAREER award from
the U.S. National Science Foundation and an Early
Career Principal Investigator (ECPI) award from the
U.S. Department of Energy. His research interests

are in the modeling and performance evaluation of high-speed, wireless, and
sensor networks.


