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Abstract—Motivated by recent regulatory evolutions that pave
the way to secondary spectrum markets, we investigate profit
maximization in a loss network that accommodates calls of two
classes of users: primary users (PUs) and secondary users (SUs).
PUs have preemptive priority over SUs, i.e. when a PU arrives
to the system and finds all channels busy, it preempts an SU. We
assume that SU demand is sensitive to price whereas PU demand
is inelastic. We study the optimal pricing policy of SUs to maxi-
mize the average profit by introducing a finite horizon discounted
dynamic programming formulation. Our main contribution is to
show that the optimal pricing policy depends only on the total
number of users, i.e. the total occupancy. We also demonstrate
that optimal prices increase with the total occupancy and show
that the optimal pricing policy structure of the original system
is not preserved for systems with price-sensitive PUs. Finally, we
extend the results to non-preemptive loss systems and establish a
connection with results obtained for such models in the literature.

Index Terms—Dynamic programming, dynamic spectrum ac-
cess, Markov decision process, stochastic control

I. INTRODUCTION

Commercially available wireless spectrum has become dras-
tically scarce because of the increasing use of wireless devices,
such as smartphones and tablets. According to a recent study
conducted on the worldwide mobile traffic in 2G, 3G and 4G
networks by Ericsson, the mobile data traffic will increase
tenfold between 2011 and 2016 and there will be five billion
subscribers by then. Furthermore, the traffic generated by
smartphones will be approximately equal to the PC network
traffic [8]. The spectrum tug of war between the wireless
service providers (SPs) has become so drastic that Verizon
Wireless has offered $3.9 billion to buy wireless spectrum
from some cable companies to increase its current spectrum
[33].

While the market is in desperate need of additional spec-
trum, studies show that the spectrum allocated to license
holders is often underutilized in space and time [26]. Federal
Communication Commission (FCC) reports that spectrum
utilization varies between 15% and 85% [1]. To amend woes
stemming from inefficient spectrum utilization, FCC has taken
a remarkable step by announcing the Secondary Market Initia-
tive in October 2003 [9]. With the approval of FCC, licensees
can lease their spectrum to secondary users. Consequently,
these regulations induced the use of cognitive radio (CR)
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technologies which enable smart use of the spectrum through
opportunistic spectrum hand-off and secondary market usage.

State-of-the-art spectrum utilization techniques are useful
if the SP manages to regulate the optimal control over the
secondary users. In CR systems, there are two classes of
customers: primary users (PU) which have permanent license
to access the spectrum and secondary users (SU) which are
temporarily allowed into the system whenever the system
is underutilized. In general, the PUs are long term contract
customers and SUs lease excess spectrum when the system
allows them [16].

A wireless SP serving both PUs and SUs has two main
objectives. Firstly, the provider must attract the greatest num-
ber of SUs to increase its profit. Secondly, the provider
must ensure the Quality of Service (QoS) of PUs, i.e. the
performance perceived by PUs should not be affected by
the presence of SUs. In this paper, our main objective is to
investigate the optimal pricing policy an SP should employ
in order to obtain the maximum possible profit from SUs. A
pricing policy enforces the prices advertised to the SUs. SUs
are considered to be price-sensitive users, i.e. their arrivals
are regulated by the price advertised by SP. PUs, on the other
hand, are considered to be inelastic to the price i.e., the arrivals
of PUs are unaffected by pricing. The price per call from an
SU is collected upon arrival.

In order to emphasize the importance of PUs, we consider
the PUs as the higher priority users whereas the SUs are the
lower priority users. We use a preemption mechanism that
allows SUs in the system when there is capacity and aborts
the service of an SU whenever a PU needs service, in line
with the interweave paradigm of cognitive radios [15].

For every evicted SU, the SP has to pay a certain cost.
This allows us to ensure that PUs have access to spectrum
whenever they need and SUs have access to excess spectrum
when available [16]. As a practical application of preemption
in CR networks, FCC Block D at 700 MHz employs such a
termination model where public safety services are the PUs
and commercial services are the SUs as explained in Tortelier
et al. [29].

Our contributions in this paper are as follows:
1) We derive the optimal pricing policy of SUs which

maximizes the long-run average profit in a preemptive
system with price-sensitive SUs and inelastic PUs. We
formulate the problem as a two-dimensional (2D) Markov
decision process (MDP) optimization problem, and prove
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that the optimal pricing policy of SUs depends only on
the total number of users (PUs and SUs) in the system
in the long-run.

2) We prove that the optimal prices increase with the to-
tal occupancy, through the introduction and analysis of
an auxiliary one-dimensional system that has the same
optimal pricing policy as the original system.

3) We provide numerical results showing that the optimal
congestion-based pricing policies outperform static pric-
ing and can be efficiently computed in networks with
hundreds of channels.

4) We establish a connection with non-preemptive systems
and formally demonstrate that, under the same param-
eters, the optimal pricing policies for preemptive and
non-preemptive loss systems are identical. This result
allows the application of methodologies developed for
non-preemptive systems to preemptive loss systems.

The rest of this paper is organized as follows. Related
work is discussed in Section II. We introduce our model
and statistical assumptions in Section III. In Section IV, we
derive the structure of the optimal pricing policy and prove
the monotonicity of prices. In Section V, we describe the
application of our results to the problem of optimal admission
control of SUs. We also study systems with price-sensitive PUs
and show, via numerical examples, that the optimal pricing
policies in those cases depend on the individual number of
PUs and SUs. We extend our results to non-preemptive loss
systems in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

In this section, we present a literature review which can
be grouped under three main categories: cognitive radios,
preemption, and pricing.

Cognitive radios support three main approaches for spec-
trum access by SUs: underlay, overlay, and interweave [15].
While the underlay and overlay approaches permit concurrent
communication by PUs and SUs, the interweave approach al-
lows SUs to communicate only over spectrum holes temporar-
ily left available by PUs. The preemption model considered
in our work is consistent with the interweave approach. Thus,
the performance of PUs is not impacted by SUs.

While preemption models aligned with the interweave ap-
proach already exist in the literature on cognitive radios [24,
37], these models focus on admission control rather than
optimal pricing as done in our work. Specifically these papers
analyze channel reservation schemes that allow a trade-off
between blocking and eviction of SUs. Such a trade-off can
also be achieved in our model by tuning the cost that the
SP must pay to preempted calls. Increasing the cost lowers
the eviction probability at the expense of raising the blocking
probability, since fewer SUs are admitted.

Work on control policies for systems with preemption can
also be found in the operations research literature. However,
none of those works considers pricing. One of the earliest
works on preemption is the work of Helly, which proposes ap-
proaches on the control of two class traffic with different prior-
ities and limited capacity [17]. Garay and Gopal investigate the

use of preemption control in high speed networks and analyze
call preemption [12]. Next, Xu and Shanthikumar examine a
first-come first-served non-identical multi-server system and
determine its optimal admission control policy using duality
and preemption [34]. Brouns and van der Wal study a single
server queue with two different classes of users with identical
service rates [6]. Brouns extends these results to a multi-server
system where there are no preemption costs [5]. Zhao et al.
use preemption in order to provide differentiated services in
a parallel multi-class loss network [36]. Finally, Ulukus et
al. consider a system with two classes, non-identical service
rates and different priorities [31]. They study admission and
preemption control that maximize the expected discounted
revenue and prove that preemption is only optimal when the
system is full. They provide monotonicity results and a loose
threshold type of admission control policy.

There also exists a rich body of work in the field of pricing
for queues. However, our work appears to be the first to
consider pricing in conjunction with preemption. The seminal
work of Naor [23] introduces the idea of using pricing as a
queue control mechanism to achieve social optimality. Chen
and Frank [7] investigate pricing for an M/M/1 queue, while
Low in [19] extends it further to consider a multi-server queue
with restricted waiting space. Altman et al. consider admission
control for a multi-class loss system in [3]. Yildirim and
Hasenbein [35] combine pricing and admission control for
queues experiencing batch arrivals. The work of Feinberg and
Yang in [10] considers admission control subject to several
objectives, such as bias optimality. Finally, the work of Giloni
et al. [14] investigates the problem pricing and admission
control with several customer classes with different rewards
and/or waiting costs with prices/arrival rates that are not
necessarily monotone.

Paschalidis and Tsitsiklis analyze congestion-dependent
pricing of a multi-class system, where all classes of users
are sensitive to price [25]. Mutlu et al. investigate the optimal
dynamic pricing policy of a system consisting of inelastic PUs
and price-sensitive SUs [21]. Gans and Savin characterize a
system consisting of two types of users within the context of a
rental management problem which resemble the PUs and SUs
in our model [11].

In summary, our work differs from the preceding work by
focusing on pricing control in preemptive systems. Previous
work on pricing does not consider preemption, whereas pre-
vious work that utilizes preemption does not consider pricing.
Furthermore, our model incorporates dynamic pricing of SUs
(i.e., pricing is based on the current state of the system), while
a significant amount of the literature on pricing assume that
prices are not congestion-dependent.

III. MODEL DESCRIPTION

In this section, we describe our model and statistical as-
sumptions. We assume that there are C identical and parallel
channels (i.e. the system capacity is C) which are allocated
for the use of the calls of users of two classes: PUs and SUs.

We assume that each call requests the same amount of band-
width corresponding to a single channel. PUs have preemptive
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priority over the SUs. In our case, a channel is allocated to a
higher priority call even if a lower priority call is in progress.
When the lower priority call is preempted, it is withdrawn
from the system permanently. Note that PUs and SUs join
and leave the system individually, rather than in batch.

Regardless of the class type, call durations are indepen-
dent and exponentially distributed with mean µ−1 unless
terminated prematurely. The exponential assumption is needed
for analytical tractability, similar to other analytical work
on cognitive radios [24, 37], and can be justified in certain
environments [13]. We model our system as a finite state 2D
continuous-time MDP. The rest of the system description is as
follows:

States: The state of the system is in the form (x, y) where
x ≥ 0 is the number of PU calls in the system and y ≥ 0 is
the number of SU calls in the system, and both x and y are
integers.

Rewards and costs: u(x, y) is the reward per SU call at
state (x, y). The reward is collected upon arrival. As defined
in the work of Paschalidis and Tsitsiklis [25], a congestion-
dependent pricing policy is the set of rules which determines
the price advertised by the SP at any given time, depending
on the current state. We denote the pricing policy as u, and
it is defined for the states within the range of the capacity
limit C, i.e. 0 ≤ x + y < C. The prices at each state are
chosen from an interval U = [0, umax] where a definition of
umax is provided below. We discretize U with a step size ∆u
in order to obtain a finite control space. Then, the number of
possible prices becomes |U| = bumax/∆uc + 1. From now
on, we will use the discrete version of U. If a PU call arrives
and finds all the channels busy, then the system preempts an
SU call given that an SU call is present in the system. The
preemption mechanism is active only when all channels are
busy. Whenever an SU call is preempted, the SP pays a cost
K per preempted call, which is greater than the maximum
price that can be chosen from U. A call is blocked only if
an arriving user finds all channels busy and preemption is not
possible. For PUs, this corresponds to the case when all the
calls in the system belong to PUs. For an incoming SU to be
blocked, it is sufficient to have all C channels busy. A blocked
call receives a busy signal and is dropped. Blocking calls of
any class is free of charge.

Arrival rates: PU calls arrive according to a Poisson
process with a constant rate λ1 > 0. SU calls, however, arrive
according to a Poisson process and pay a fee u(x, y) upon
arrival when the state is (x, y). The average arrival rate of
SUs at state (x, y) is related to the price u(x, y) via a demand
function λ2(u(x, y)) ≥ 0. We denote the maximum average
arrival rate over all prices by λ2,max. We will use the following
assumptions in all of our formulations:

Assumption 1 There exists a price umax for which λ2(u) = 0
when u ≥ umax.

Assumption 2 λ2(u) is a strictly decreasing function of u
over the interval [0, umax].

Assumption 2 implies that the inverse function of λ2(u)
exists and that the maximum possible arrival rate of SUs

corresponds to the lowest possible price, i.e. λ2,max = λ2(0).
This assumption is only needed for the proof of Theorem IV.2.

The objective of the SP is to maximize the average profit
collected from SUs per unit time. The corresponding optimal
pricing policy is denoted u∗.

IV. MODEL ANALYSIS AND CHARACTERIZATION OF THE
OPTIMAL PRICING POLICY

In this section, we first provide an expression for the average
profit rate of SUs given a policy u. Then, we present a finite
horizon discounted return maximization problem formulation
to compute the optimal pricing policy. Afterwards, we deter-
mine the structure of the optimal pricing policy that maximizes
the discounted profit and extend our findings to the infinite
horizon.

A. Formulation of the Profit Maximization Problem

In this section, we first introduce state space definitions and
then develop a formula to calculate the average profit rate
collected from SUs.

We start the formulation by defining state spaces. The entire
state space is denoted as follows:

S = {(x, y) | x+ y ≤ C , x, y ≥ 0} .

Let S1 ⊂ S be the sub-space of states where all the channels
are busy and at least one SU call is present in the system.
According to our system description, S1 denotes the states at
which an SU can be preempted and is formally defined as the
following:

S1 = {(x, y) | x+ y = C , x ≥ 0 , y > 0} .

Lastly, we define S2 ⊂ S which corresponds to all states
where an SU arrival may enter the system, i.e.,

S2 = {(x, y) | x+ y < C , x, y ≥ 0} .

We denote πu(x, y) to be the steady state probability that
the system is in state (x, y) under the pricing policy u. Note
that u represents an arbitrary pricing policy that may not be
necessarily optimal. The average profit rate under policy u, is
expressed as follows:

Ju =
∑

(x,y)∈S2

λ2(u(x, y)) u(x, y) πu(x, y)−Kλ1
∑

(x,y)∈S1

πu(x, y).

(1)

The first term in Eq. (1) represents the cumulative average
revenue collected from SUs. Since a reward is collected upon
arrival, we multiply the reward with the arrival rate of SUs
of the current state. Then, the resulting term is scaled with
the steady state probability of the corresponding state. We
repeat the same procedure for all states in S2 and add all
of them up. The second term stands for the average cost rate
due to preempted SU calls. We find the sum of steady state
probabilities of the preemptive states. Then, we multiply this
term with K and λ1. Subtracting the total average cost rate
from the total average revenue rate gives overall average profit
rate of the system at state (x, y) and under the pricing policy
u.
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The optimal pricing policy u∗ is the policy which max-
imizes Eq. (1) and it yields optimal profit J∗. Finding the
optimal price decisions at every state using the given equation
is a multifaceted optimization problem. To solve this problem,
we will formulate it as a stochastic dynamic programming
(DP) problem [4] which determines the optimal pricing policy
of the system.

B. Characteristics of the Optimal Pricing Policy

In this section, we introduce a theorem which states that the
optimal pricing policy depends only on the total occupancy.
To demonstrate this, we first present a finite horizon expected
discounted return DP formulation. We obtain some properties
of the finite horizon discounted profit and use these results to
characterize the optimal pricing policy of the original system.
First, we present some concepts such as discounting and
uniformization.

Discounting: Our system has an exponential discount rate
with parameter α ≥ 0 which implies that the reward gained in
the present is more valuable than future rewards. The discount
rate is considered to be the rate by which the process vanishes
as explained in Walrand’s work [32].

In order to implement the DP formulation, we need to find
the discrete-time equivalent of the continuous-time Markov
chain model of the system using a technique called uniformiza-
tion [18].

Uniformization: Our current model is a continuous-time
MDP. To convert the system to its discrete-time equivalent,
we apply a uniformization method whereby every rate coming
out of a state is normalized by the maximum transition rate
possible [4, Vol. II, p. 258]. The maximum transition rate is
given by v = λ1+λ2,max+Cµ+α. Without loss of generality,
we set v = 1. We scale every rate of the continuous-time
MDP with v which gives the probability of every transition.
The events and the corresponding probabilities of a system at
state (x, y) and price u are as follows:

• a PU arrival occurs with a probability of λ1/v = λ1
• an SU arrival occurs with a probability of λ2(u)/v =
λ2(u)

• a PU departure occurs with a probability of xµ/v = xµ
• an SU departure occurs with a probability of yµ/v = yµ
• the process stays at the same state (x, y) with probability

(1− (λ1 +λ2(u)+xµ+yµ+α)/v) = (1−λ1−λ2(u)−
xµ− yµ− α)

• the process vanishes with a probability of α/v = α.

Criterion: We aim to maximize the total expected dis-
counted profit of the SP over a finite horizon. We are interested
in finding an optimal pricing policy u∗ which achieves this
goal. Note that, for the sake of simplicity, we use the same
notation for the optimal pricing policy in both the average
return and discounted cases. The optimal policy itself is
obviously different in each case, but the structure remains the
same as detailed in the sequel.

In the DP formulation, we reverse the time index and define
n as the number of observation points left until the end of the
time horizon. The price decision for an SU at state (x, y) and

time period n is defined as u. We define the profit function at
this point.

Definition IV.1 Vn(x, y) is the maximal expected discounted
profit for the system in the current state (x, y) at time period
n.

The corresponding finite horizon DP optimality equations
are as follows:

For n = 0:

V0(x, y) = 0 for x, y ≥ 0

For n ≥ 1:

Vn(x, y) = max
u∈U

{
λ1Vn−1(x+ 1, y)1{x+ y < C} (2)

+ λ1(Vn−1(x+ 1, y − 1)−K)

· 1{x+ y = C}1{y > 0} (3)
+ λ1Vn−1(x, y)1{x+ y = C}1{y = 0} (4)
+ λ2(u)(Vn−1(x, y + 1) + u)1{x+ y < C} (5)
+ xµVn−1(x− 1, y) (6)
+ yµVn−1(x, y − 1) (7)
+ (1− λ1 − λ2(u)− xµ− yµ− α)

· Vn−1(x, y)1{x+ y < C} (8)

+ (1− λ1 − Cµ− α)Vn−1(x, y)1{x+ y = C}
}
.

(9)

Note that if the process vanishes (which happens with
probability α), then the reward is 0.

We set Vn(−1, y) = Vn(0, y) and Vn(x,−1) = Vn(x, 0)
when required. The value of u that maximizes discounted
profit is denoted u = u∗n(x, y) which is the optimal pricing
decision of state (x, y) at time period n.

The first three terms in the DP formulation corresponds to
the arrival of a PU and includes three distinct cases. Term (2)
corresponds to the first possible case for a PU arrival. The
indicator function denotes that the system is not full yet and
there is no preemption. In term (3), there is a PU arrival again.
However, all channels are occupied and there is at least one
SU in the system. Thus, the incoming PU call preempts an SU
which causes a reduction in the number of SU calls and an
increase in the number of PUs. The SP is charged a cost K as
a result of preemption. Term (4) corresponds to the case when
all C channels are occupied but there are no SUs to preempt.
In other words, all C users consist of PUs. Hence, preemption
is not possible, the incoming PU is blocked and the system
stays at the same state.

Next, in term (5), there is an SU arrival and there are idle
channels available for its use. Terms (6) and (7) correspond
to successful departures of PUs and SUs respectively. Finally,
the last terms (8) and (9) are for the cases when the system
remains at the same state. The former is for the case when
there are idle channels and the latter is for the case when
there are no idle channels.
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Note that the maximization is over u in the DP equations.
Hence, we can rearrange the terms such that the max{·}
function only includes the terms with the variable u. Then, an
alternative expression for the DP equations is the following:
For n = 0:

V0(x, y) = 0 for x, y ≥ 0

For n ≥ 1:

Vn(x, y) = max
u∈U

{
λ2(u)(Vn−1(x, y + 1)

− Vn−1(x, y) + u)1{x+ y < C}
}

(10)

+ λ1Vn−1(x+ 1, y)1{x+ y < C}
+ λ1(Vn−1(x+ 1, y − 1)−K)

· 1{x+ y = C}1{y > 0}
+ λ1Vn−1(x, y)1{x+ y = C}1{y = 0}
+ xµVn−1(x− 1, y)

+ yµVn−1(x, y − 1)

+ (1− λ1 − xµ− yµ− α)Vn−1(x, y).

Our analysis is based on the difference between two systems
where the first one has one more SU than the second one.
The former starts in state (x, y + 1) whereas the latter starts
in state (x, y) at time period n. Vn(x, y + 1) − Vn(x, y)
corresponds to the net benefit of an additional SU when there
are n periods left in the horizon which is defined as the value
of an additional SU [31]. The following lemma demonstrates
that the value of an additional SU is a function of (x + y)
which implies that it is a function of the total number of users
in the system.

Lemma IV.1 The value of an additional SU at time period n
is a function of the total occupancy for every (x, y) such that
x+ y + 1 ≤ C, i.e.

Vn(x, y + 1)− Vn(x, y) = fn(x+ y), (11)

where fn(·) is recursively defined for each n as:

fn(k) = max
u1∈U
{min
u2∈U
{f̃n(k, u1, u2)}} and f0(·) = 0, (12)

and

f̃n(k, u1, u2) =



λ2(u1)(fn−1(k + 1) + u1)
−λ2(u2)(fn−1(k) + u2)
+λ1fn−1(k + 1)
+kµfn−1(k − 1)
+(1− λ1 − (k + 1)µ− α)fn−1(k), k < C − 1

−λ2(u2)(fn−1(C − 1) + u2)
+(C − 1)µfn−1(C − 2)
+(1− λ1 − Cµ− α)fn−1(C − 1)−Kλ1,

k = C − 1.

The proof of Lemma IV.1 is included in the Appendix
and utilizes an induction technique. The following theorem
establishes the relationship between the optimal pricing policy
and the total occupancy.

Theorem IV.1 The optimal price in state (x, y) at time period
n depends only on the total number of users in the system, i.e.

u∗n(x, y) = gn(x+ y), (13)

where gn(·) is recursively defined for each n > 0 as:

gn(k) = argmax
u∈U

{λ2(u)(fn(k) + u)} for 0 ≤ k ≤ C − 1.

(14)

Theorem IV.1 provides a drastic simplification in the deter-
mination of the optimal pricing policy. In Theorem IV.1, we
have proven that the optimal pricing policy depends only on
the total occupancy which illustrates an interesting result. The
optimal pricing policy is a function of only the total occupancy
although the profit function does not depend only on the total
occupancy. The reason is that the optimal pricing policy is not
determined by the profit function itself; rather it depends on
the value of an additional SU. The proof of Theorem IV.1 is
given in the Appendix and it directly follows from Lemma
IV.1.

The following corollary brings insight to the interpretation
of the optimal pricing policy. It points out that the value of
an additional SU is the same for the states with identical total
number of users if the pricing policy depends only on the total
occupancy.

Corollary IV.1 For all n ≥ 0 and for all pairs of (x, y)
satisfying x+ y + 2 ≤ C:

Vn(x+1, y+1)−Vn(x+1, y)=Vn(x, y+2)− Vn(x, y+1).
(15)

Corollary IV.1 follows from Theorem IV.1 and can be
obtained by direct substitution of the DP equations and Eq.
(11) for x+ y ≤ C − 2.

C. Extension to Infinite Horizon

So far, we have proven our results by working on the finite
horizon discounted profit to be able to use induction on n. In
this section, we discuss the applicability of our results to the
infinite horizon average return problems.

All conclusions apply to the infinite horizon α-discounted
case by taking the limit n → ∞. The limiting value exists
by Proposition 3.1 in [28, p. 36] because the state-space is
countable, the action space is finite, and the absolute values of
rewards and costs are bounded. In the induction argument, the
results are shown to hold for all values of n in the horizon.
Hence, we calculate the infinite horizon α-discounted profit
using the relation:

V (x, y) = lim
n→∞

Vn(x, y),

where u∗(x, y) is the corresponding optimal decision at state
(x, y). Furthermore, the price control space and the state space
are finite and state (0,0) is accessible from every other state
regardless of the pricing policy. Then, all results also apply to
the average return case (see [28], pages 95-98). The average
profit can be computed considering the case α→ 0. Although
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the properties of the optimal pricing policy still hold, we
need to formulate a new problem structure including relative
rewards and an average profit.

D. Infinite Horizon Average Return DP Formulation of the
Simplified System

In the previous section, we have shown that the optimal
pricing policy depends only on the total occupancy. In order
to derive additional properties of the optimal pricing policy,
we formulate an infinite horizon average return problem by
considering this simplification. We carry out our analysis
starting from the continuous-time model.

Although the optimal pricing policy of our system is only
determined by the total occupancy, the profit function itself
does not depend only on the total occupancy which can be
observed from the DP equations. Hence, we cannot completely
reduce our system to a one-dimensional (1D) Markov chain.
In this section, instead of using the original system, we
utilize an auxiliary system in the derivations of the infinite
horizon average return formulation of the original system. The
auxiliary system is chosen such that it has the same optimal
pricing policy as the original system. However, both its profit
function and optimal pricing policy depend only on the total
occupancy which allows to reduce it to a 1D Markov chain.

The model description of the auxiliary system is the same
as the original system with one exception: the system imposes
a cost K when all channels are busy and a PU arrival occurs,
regardless of the presence of SUs in the system. Namely, the
auxiliary system is exactly the same as the original system
other than the fact that a cost equal to the preemption cost
occurs if a PU gets blocked because of other PUs in the
system.

The average profit rate of the auxiliary system under the
policy u is denoted Qu and is the following:

Qu =
∑

(x,y)∈S2

λ2(u(x, y)) u(x, y) πu(x, y)

−Kλ1
∑
x+y=c

πu(x, y)

=
∑

(x,y)∈S2

λ2(u(x, y)) u(x, y) πu(x, y)

−Kλ1
∑

(x,y)∈S1

πu(x, y)−Kλ1πu(C, 0)

=
∑

(x,y)∈S2

λ2(u(x, y)) u(x, y) πu(x, y)

−Kλ1
∑

(x,y)∈S1

πu(x, y)−Kλ1E(λ1/µ,C), (16)

where E(λ1/µ,C) is the blocking probability of a PU, which
is given by the well-known Erlang-B formula:

E(λ1/µ,C) =
(λ1/µ)

C

C!∑C
n=0

(λ1/µ)n

n!

. (17)

Since the system is preemptive (i.e., PUs always have
higher priority over SUs), a PU is blocked if and only if all
the channels are occupied by PUs. Therefore, the blocking

probability of PUs does not depend on the pricing policy u
on SUs.

By comparing Eq. (1) and Eq. (16), the relationship between
the profit functions Qu and Ju is given by:

Ju = Qu +Kλ1E(λ1/µ,C). (18)

Thus, for any policy u, Ju and Qu differ by the constant
Kλ1E(λ1/µ,C). Consequently, the policy that maximizes Qu

is the same as the policy that maximizes Ju in the average
return case.

In the simplified model which considers the total occupancy
to determine the optimal policy, we define new system pa-
rameters to describe the system. Let 0 ≤ i ≤ C denote the
occupancy levels of the auxiliary system which is the sum
of PUs and SUs in the system, i.e. i = x + y. Our system
parameters are the same as before: We still have Poisson
arrivals and exponentially distributed call durations with mean
µ−1. Thus, we still consider a continuous-time birth-death
Markov Process. The only modification is that we replace the
definition of state (x, y) with i.

Prices are chosen from the discrete set U which is defined
earlier. Price advertised to SUs at the total occupancy level
i is u(i). The arrival rate of SUs is a function of the price
denoted by λ2(u(i)). Then, the total arrival rate to any state i
is computed as follows:

λ(u(i)) = λ1 + λ2(u(i)).

At this point, we provide an average return DP formu-
lation of the auxiliary system using Bellman’s equations
[4] in order to obtain the optimal price vector u∗ ,
(u∗(0), u∗(1), ..., u∗(C−1)), which provides the optimal price
at each occupancy level of the original system as well.

We model the auxiliary system as a 1D MDP when the total
occupancies are considered as the states. The 1D continuous-
time Markov chain of the auxiliary system is illustrated in
Fig. 1. Qu, the average profit rate of the auxiliary system
under policy u, is as follows:

Qu =

C−1∑
i=0

λ2(u(i)) u(i) πu(i)−Kλ1πu(C). (19)

Under the same optimal pricing policy, the relationship
between the optimal average profit functions Q∗ and J∗ is
unchanged and given in Eq. (18).

Next, we formulate the average return DP problem for the
auxiliary system. The use of Bellman’s equations is possible
in this system, since all the states in the Markov chain are
recurrent [4]. However, we need to convert the continuous-
time Markov chain to its discrete-time equivalent. As before,
we use uniformization to achieve it. We normalize every rate
coming out of each state by the maximum rate possible, which
is v′ = λ1 + λ2,max +Cµ. Without loss of generality, we set
v′ = 1. The corresponding Bellman’s equations are as follows:
• i = 0, 1, ..., C − 1

Q∗ + h(i) = max
u∈U

[λ2(u)u+ h(i+ 1)λ(u) (20)

+ h(i− 1)iµ+ h(i)(1− λ(u)− iµ)]
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Fig. 1: 1D continuous-time Markov chain representation of the auxiliary system

• i = C

Q∗ + h(C) = −λ1K + h(C − 1)Cµ+ h(C)(1− Cµ). (21)

The optimal prices and the optimal average profit are
determined by solving the equations (20) and (21). We set
h(C) = 0, so h(i) is the relative reward earned at state i
with respect to h(C). Over the infinite horizon, h(i) gives
the difference of the total rewards of two processes where the
former starts from state i and the latter starts from state C.
In practice, the optimal prices can be computed by solving
Bellman’s equations using policy iteration [4, Vol. II, p.
227]. While the worst-case complexity of policy iteration is
O(|U|C), this procedure converges quickly even with a large
number of channels as shown in Section IV-F.

In Eq. (20), the first term at the right-hand side gives
the reward collected upon an SU arrival. The second term
corresponds to an arrival from both classes and the third term
gives a departure from any class. Finally, the last term is for the
cases when the system stays at the same state. The Bellman’s
equation for the last state is different from the rest because
there is no pricing at i = C. The first term on the right-hand
side of Eq. (21) is the cost incurred when a PU arrives, finds
all channels busy and gets blocked. The optimal pricing policy
maximizes the right-hand side of Eq. (20).

Using the average profit function we have obtained in this
section, we will discuss some monotonicity properties of the
system in the next section.

E. Monotonicity Properties of the Optimal Pricing Policy

In this section, we emphasize some monotonicity properties
of the simplified system. The proofs of these properties follow
similar lines as the works of Paschalidis and Tsitsiklis [25]
and Mutlu [20], and are given in the Appendix. The main
differences are that our system is preemptive and has a
different cost structure.

The following two lemmas demonstrate that the relative
reward function is a decreasing and concave in the total
occupancy.

Lemma IV.2 As total occupancy increases, the value of rel-
ative reward decreases i.e.,

h(i+ 1)− h(i) ≤ 0 for 0 ≤ i < C.

Lemma IV.3 The relative rewards are concave in occupancy
i.e.,

h(i)− h(i− 1) ≥ h(i+ 1)− h(i) for 0 < i < C.

Optimal price of SUs is 2.5

#PUs

#SUs

Optimal price of SUs is 3
Optimal price of SUs is 4

Fig. 2: The optimal pricing policy of SUs in the system of
Example IV.1, with inelastic PUs. The advertised price is
constant on diagonal states on which the total occupancy is
the same.

Theorem IV.2 As total occupancy increases, the optimal
prices increase as well i.e.,

u∗(i+ 1) ≥ u∗(i) for 0 ≤ i < C − 1.

Now that we have specified the properties of the optimal
pricing policy, we present an example to illustrate the results
of Theorem IV.1 and Theorem IV.2.

Example IV.1 In this example, we set C = 7, µ = 1, λ1 = 3,
K = 10, ∆u = 0.5, U = [0, 4] and the demand function
is λ2(u) = (4 − u)+ where (·)+ = max(·, 0). The resulting
optimal pricing policy is illustrated in Fig. 2. We observe that
the states with the same occupancy have the same optimal
pricing decision. Furthermore, the optimal prices increase
with the total occupancy.

F. Numerical Results

We present numerical results to illustrate the performance
of the optimal pricing policy, in terms of average profit and
running times, in systems with large number of channels
and large sets of possible prices. We provide a comparison
with the optimal static pricing policy (i.e., the same price is
advertised regardless of the occupancy state of the system),
which is known to perform well in systems where all classes
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C tOP
run (sec) tSPrun (sec) JOP JSP

100 0.302 0.001 9.671 3.518
150 0.545 0.001 18.209 14.632
200 0.603 0.001 22.583 21.365
250 0.753 0.001 24.243 23.921

TABLE I: Running times of the optimal pricing policy tOP
run

and of the optimal static pricing policy tSPrun , and average
profits of the optimal pricing policy JOP and of the optimal
static pricing policy JSP . System parameters: λ1 = 0.78C,
K = 100, λ2(u) = (10− u)+ for u ≥ 0 and ∆u = 10−4.

∆u tOP
run (sec) tSPrun (sec) JOP JSP

0.0001 0.5508 0.0010 18.2090 14.6327
0.002 0.3777 0.0009 18.2090 14.6327
0.001 0.2478 0.0006 18.2090 14.6327
0.02 0.2274 0.0006 18.2090 14.6327
0.01 0.1534 0.0006 17.8833 14.6327

TABLE II: Running times and average profits of the optimal
pricing policy and the optimal static pricing policy for different
price granularity ∆u and C = 150 channels. Other system
parameters are as in Table I.

of users are price-sensitive [25]. The code for both policies
is implemented in MATLAB and run on an Intel Core i7 PC,
with a processor speed of 2.30 GHz, 8 GB of RAM, and 64-bit
Windows 10 OS.

Table I shows results for a secondary demand that is linearly
decreasing with price. The set of possible prices U ranges
from 0 to 10 with a granularity of ∆u = 10−4. Hence, the
cardinality of the set of prices is |U| = 105+1. The table shows
that the optimal pricing policy can be efficiently computed
(i.e., within less than one second even for C = 250 channels).
While the optimal static pricing policy can be computed faster,
the average profit of the optimal pricing policy is significantly
higher in certain cases. For instance, with C = 100 channels,
the average profit of the optimal pricing policy is about three
times higher than that of the optimal static pricing policy.

Table II shows the effect of changing the price granularity,
for C = 150 channels. We observe that using lower granularity
yields the same profit performance (but faster execution time)
up to ∆u = 10−2, at which point the profit of the optimal
pricing policy starts to degrade.

V. SPECIAL CASES

In this section, we examine some special cases of the
optimal pricing policy we have characterized. First, we extend
our results to the optimal admission control of SUs in a two-
class network. Next, we consider optimal pricing with QoS-
sensitive SUs and generalize our results to such settings. Last,
we show that if both PUs and SUs are price-sensitive, then
the structure of the optimal pricing policy changes.

A. Optimal Admission Control Policy of SUs

In admission control, the SP either accepts a user upon
arrival or rejects it by following an admission control policy

a. If an SU call is accepted, a constant reward of R > 0
is collected per call and the corresponding arrival rate is
λ2(R). If a call is rejected, the SP sets the price to umax,
hence the arrival rate of SUs λ2(umax) drops to 0. We
consider admission control as a special case of pricing which
includes two possible prices in the control set. There is a
mapping between the pricing decision and admission control
decision at state (x, y). We define a new control parameter
a(x, y) which is a restricted binary version of u(x, y) (i.e.
a(x, y) ∈ {0, 1}). a(x, y) is the admission control decision of
an arriving SU when the current state is (x, y). The admission
control set is the following:

a(x, y) =

{
1 for accept with reward R
0 for reject with reward 0. (22)

The corresponding demand function λ2(a(x, y)) is defined
as follows:

λ2(a(x, y)) =

{
λ2(R) for a = 1
0 for a = 0.

(23)

The following corollary applies theorems IV.1 and IV.2 to
the optimal admission control problem.

Corollary V.1 The optimal admission control policy a∗ of
SUs is of threshold type and it depends only on the total
number of users in the system. Thus, there exists an optimal
occupancy threshold T ∗ for a system at state (x, y) such that
0 ≤ x + y < T ∗. If the total occupancy is less than T ∗, an
incoming SU call is accepted. Otherwise, it is rejected.

Note that the same result is obtained in the work of Turhan
et al. [30] and we have corroborated its results by using a
different technique.

B. Optimal Pricing with QoS-sensitive SUs

The secondary demand may not only affected by the ad-
vertised price, but also by the perceived quality of service
(QoS). In particular, if SUs experience a high level of forced
termination, then their demand may decrease. We extend here
our results to handle such cases.

Denote by PT the probability that an SU call terminates
prematurely due to preemption, and assume the secondary
demand takes the form λ2(u, PT ). We next establish an
iterative prcoedure to compute PT and the optimal pricing
policy u∗. We use the same notation as that introduced in
Section IV-D.

The forced termination probability PT corresponds to the
ratio of the average rate at which SU calls are preempted to the
average rate at which SU calls enter the system. The average
rate of SU preemptions is given by the product of the arrival
rate of PUs λ1 and the probability that the system is full and
contains at least one SU, which is πu(C)−E(λ1/µ,C) (recall
that πu(C) is the probability that all C channels are occupied
while E(λ1/µ,C) is the probability that all C channels are
occupied by PUs only).
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Optimal price of SUs is 2.5
Optimal price of SUs is 3
Optimal price of SUs is 3.5

#PUs

#SUs

Fig. 3: The optimal pricing policy of SUs in the system of
Example V.2, with price-sensitive PUs. The advertised price
is not constant on the diagonal states.

The average rate at which SU calls enter the system is∑C−1
i=0 λ2(u(i), PT )πu(i). Hence,

PT =
λ1(πu(C)− E(λ1/µ,C))∑C−1

i=0 λ2(u(i), PT )πu(i)
. (24)

Equation (24) can be solved using successive substitutions:
1) Start with an initial estimate of PT , say PT = 0.
2) Fix the secondary demand λ2(u, PT ).
3) Compute the optimal pricing policy u∗ by solving Bell-

man’s equations (20) and (21).
4) Determine the stationary probabilities πu∗(i) of the 1D

Markov chain (see Fig. 1).
5) Use the right-hand side of Equation (24) to obtain a new

estimate of PT .
6) Return to 2) and repeat the procedure until the difference

between the last two estimates of PT is smaller than some
accuracy parameter ε.

Example V.1 Let C = 7, µ = 1, λ1 = 3, K = 10,
∆u = 0.5, U = [0, 4] and the demand function be λ2(u) =
(4− u)+× (1−αPT )+ where α = 10 and (·)+ = max(·, 0).
Using the iterative procedure with ε = 10−6, we get u∗ =
(2, 2, 2.5, 2.5, 2.5, 3, 4) and PT = 0.0731. The procedure
converges after 10 iterations.

C. Discussion of the Optimal Pricing with Price-sensitive PUs

Assume that every definition and parameter in the original
system model stays the same except the PU arrival rates. In
the original model, PUs have inelastic Poisson arrival rates
with mean λ1. We consider a variant of the original system
where the PUs are sensitive to price and a price û(x, y) is
advertised to PUs at state (x, y). Furthermore, the PUs have
a demand function λ1(û), which follows Assumptions 1 and
2. We aim to determine the optimal pricing policies of both

Optimal price of SUs is 2.5
Optimal price of SUs is 3
Optimal price of SUs is 3.5
Optimal price of SUs is 4

#PUs

#SUs

Fig. 4: The optimal pricing policy of SUs in the system of
Example V.3

PUs and SUs that maximize the overall profit by solving a
joint maximization problem. That is, at every state (x, y), there
exists an optimal price for SUs and another optimal price for
PUs. The next example demonstrates that Theorem IV.1 does
not anymore apply to the optimal pricing policy of SUs.

Example V.2 Set C = 7, µ = 1, K = 7, ∆u = 0.5, ∆û = 1
and the demand functions for PUs and SUs are λ1(û) = (10−
û)+ and λ2(u) = (4 − u)+. The resulting optimal pricing
policy is demonstrated in Fig. 3. For x + y = 4, we have
different optimal pricing decisions for different states.

Next, consider a system where the price optimization is
conducted separately for PUs and SUs. That is, we first
optimize the prices of PUs ignoring the existence of SUs.
We formulate a 1D profit maximization DP problem for
a system that includes only PUs similar to the one class
profit maximization problem introduced by Paschalidis and
Tsitsiklis [25]. We denote the optimal pricing policy of PUs
in this system by ũ∗ , (ũ∗(0), ũ∗(1), ..., ũ∗(C − 1)), which
maximizes the long-run average profit of the system obtained
solely from the PUs. Similar to the original problem, we
substitute the optimal PU arrival rates corresponding to the
optimal prices of PUs to the 2D Markov chain and determine
the optimal pricing policy of SUs. Note that, in the original
problem, the arrival rate of PUs at every total occupancy level
is constant whereas for this case, the demand varies with
the total occupancy level. The aim is to observe whether the
optimal pricing policy of SUs obeys Theorem IV.1 and IV.2.
Example V.3 demonstrates that even in that case, the optimal
pricing policy of SUs is not a function of total occupancy and
Theorem IV.1 does not apply.

Example V.3 We have C = 7, µ = 1, K = 7, ∆u = 0.5,
∆ũ = 1 and the demand functions for PUs and SUs are
λ1(ũ) = (10 − ũ)+ and λ2(u) = (4 − u)+. The optimal
pricing policy of PUs is ũ∗ = (5, 5, 5, 5, 4, 4, 3). Each entry
in ũ∗ corresponds to the optimal price of PUs for a given
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total occupancy level. The resulting optimal pricing policy of
SUs after substituting λ1(ũ∗) values is demonstrated in Fig.
4. For x + y = 3 and x + y = 5, we have different optimal
pricing decisions for different states.

VI. OPTIMAL PRICING IN NON-PREEMPTIVE SYSTEMS

In this section, by applying the techniques developed for the
preemptive loss systems, we formally prove that the optimal
admission control and pricing policies in non-preemptive loss
systems are the same as the ones in a preemptive loss system.
In fact, Ramjee et al. [27] and Mutlu et al. [21] assume that the
total occupancy is sufficient to describe the state of the system
instead of keeping track of each class separately. Specifically,
Ramjee et al. [27] includes a footnote stating “One could
possibly enhance the state description by keeping track of
new calls and handoff calls separately, rather than the total
occupancy alone. However, this new state descriptor is not
expected to change any of the conclusions of the paper given
the memoryless nature of the arrival process.”

We next explain how to obtain such structural results for
optimal pricing in a non-preemptive loss system, using the
model introduced in Mutlu et al. [21]. This model considers
a loss network with the same arrivals and capacity constraint
as described in this paper, however the nature of the loss
system is non-preemptive. Under a non-preemptive system, a
PU arrival no longer causes the provider to drop a SU from
the system. Rather, when a PU arrives and finds the system
full, it is blocked. The model of Mutlu et al. differs from
our paper in that it has no associated preemption cost but
instead imposes a cost K on the provider per each blocked
PU. Under the described model, the DP optimality equations
for the finite horizon discounted problem become:

For n = 0:

V0(x, y) = 0 for x, y ≥ 0.

For n ≥ 1:

Vn(x, y) = max
u∈U

{
λ1Vn−1(x+ 1, y)1{x+ y < C}

+ λ1(Vn−1(x, y)−K)1{x+ y = C} (25)
+ λ2(u)(Vn−1(x, y + 1) + u)1{x+ y < C}
+ xµVn−1(x− 1, y)

+ yµVn−1(x, y − 1)

+ (1− λ1 − λ2(u)− xµ− yµ− α)Vn−1(x, y)

· 1{x+ y < C}

+ (1− λ1 − Cµ− α)Vn−1(x, y)1{x+ y = C}
}
.

Compared to the formulation for the preemptive case, the
only difference is the replacement of Eq. (3) and Eq. (4) by
Eq. (25). As one can readily observe from above, Vn(x, y)
depends only on the total occupancy x+ y, a result which we
formalize with the following lemma:

Lemma VI.1 In a non-preemptive loss system, the value of
Vn(x, y) only depends on the total occupancy such that:

Vn(x, y) = qn(x+ y), (26)

where qn(·) is recursively defined for each n as:

qn(k) = max
u∈U
{q̃n(k, u)} and q0(·) = 0,

and

q̃n(k, u) =



λ1qn−1(k + 1)1{k < C}
+λ1(qn−1(k)−K)1{k = C}
+λ2(u)(qn−1(k + 1) + u)1{k < C}
+kµqn−1(k − 1)
+ (1− λ1 − λ2(u)− kµ− α) qn−1(k)1{k < C}
+ (1− λ1 − Cµ− α) qn−1(k)1{k = C},

The proof of Lemma VI.1 is included in the Appendix.
In the next theorem, we utilize the result of Lemma VI.1

to demonstrate that the optimal pricing policy that maximizes
the average profit rate of the non-preemptive system is the
same as the pricing policy that maximizes profit rate of the
1D auxillary system described in Section IV-D.

Theorem VI.1 The optimal policy u∗ that maximizes the
average profit for a preemptive loss system is also optimal
for a non-preemptive loss system.

The proof of Theorem VI.1 is provided in the Appendix.
Having proven that the optimal pricing policy u∗ is the same
for preemptive and non-preemptive loss systems, one can
readily extend the results obtained in Mutlu et al. [21] and
Mutlu et al. [22] for occupancy-based pricing policies in non-
preemptive loss systems to preemptive systems.

Specifically, in the work by Mutlu et al. [21], it was demon-
strated that a threshold-type pricing policy performs very close
to the optimal pricing policy u∗. The main advantage of the
threshold pricing policy is that it is sufficiently described by
only two parameters: a threshold value and a single price.
Building on this threshold type policy, Mutlu et al. [22]
provides an online dynamic measurement algorithm that helps
to determine the optimal threshold and price values. Since
Theorem VI.1 states that the optimal pricing policy is the
same for preemptive and non-preemptive systems, the thresh-
old pricing policy and the applicable online measurement
techniques described in Mutlu et al. [21] and Mutlu et al. [22]
can also be applied to preemptive loss models.

VII. CONCLUSIONS

In a system of inelastic PUs and price-sensitive SUs, we
analytically proved that the optimal pricing policy of SUs
depends only on the total number of users in the system. The
technique to prove this result, stated in Lemma IV.1, is novel
and of independent interest in solving other types of dynamic
programming problems.

We discussed how our results generalize previous ones
from Turhan et al. [30] on optimal admission control in
preemptive systems and carry over to non-preemptive loss
systems. Yet, we also showed that our structural results do
not carry over for systems with price-sensitive PUs. Our results
have a wide range of applications in both revenue management
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and admission control, not necessarily restricted to that of
bandwidth allocation in wireless networks.

As future work, it should be possible to extend our results
beyond Poisson arrivals. For example, the work of Ali et
al. [2] demonstrates that state-dependent threshold control is
also optimal in loss networks with arrivals generated by a
finite number of sources (also known as the Engset Model)
to which we expect our pricing policies can be applied.
Other interesting open problems include analyzing systems
where SUs are queued rather than evicted, considering call
length distributions of PUs and SUs that are not necessarily
exponential and identical, and extending the results to multi-
hop configurations with spatial reuse.
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APPENDIX

Proof of Lemma IV.1. We prove this result by induction
on n. Although the DP equations of Vn(x, y) depend on the
value of y due to the indicator functions when x+ y = C, we
prove that this is not the case for the value of an additional
SU. We start the induction from the end of the horizon n = 0,
i.e. V0(x, y + 1)− V0(x, y) = 0. Thus, Lemma IV.1 holds for
n = 0 by definition.
Induction step: Assume that for any n > 0 the following
holds:

Vn(x, y + 1)− Vn(x, y) = fn(x+ y)

= max
u1∈U
{ min
u2∈U
{ f̃n(x+ y, u1, u2)}}.

(27)

We show that the value of an additional SU at time period
n+ 1 is a function of (x+ y) only as well, i.e.

Vn+1(x, y + 1)− Vn+1(x, y)

= fn+1(x+ y) = max
u1∈U
{ min
u2∈U
{ f̃n+1(x+ y, u1, u2)}}.

(28)

We need to consider two distinct cases. In the first case,
x + y < C − 1 hence, both (x, y + 1) and (x, y) are
non-preemptive states as there are idle channels. In the
second case, we consider x+ y = C − 1 where (x, y + 1) is
a preemptive state since all channels are busy and there is at
least one SU in the system. However, (x, y) is non-preemptive
again as the system has an idle channel. We analyze these
cases separately because the corresponding DP equations are
different.

Case 1. x+ y < C − 1

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U

{
λ2(u1)(Vn(x, y + 2)− Vn(x, y + 1) + u1)

}
+ λ1Vn(x+ 1, y + 1)

+ xµVn(x− 1, y + 1)

+ (y + 1)µVn(x, y)

+ (1− λ1 − xµ− (y + 1)µ− α)Vn(x, y + 1)

−max
u2∈U

{
λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)

}
− λ1Vn(x+ 1, y)

− xµVn(x− 1, y)

− yµVn(x, y − 1)

− (1− λ1 − xµ− yµ− α)Vn(x, y).

We rearrange the terms such that the terms with the same
factor are grouped together which yields the following expres-
sion for Vn+1(x, y + 1)− Vn+1(x, y):

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U

{
min
u2∈U

{
λ2(u1)(Vn(x, y + 2)− Vn(x, y + 1) + u1)

− λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)

+ λ1(Vn(x+ 1, y + 1)− Vn(x+ 1, y))

+ xµ(Vn(x− 1, y + 1)− Vn(x− 1, y))

− (y + 1)µ(Vn(x, y + 1)− Vn(x, y))

+ yµ(Vn(x, y)− Vn(x, y − 1))

+ (1− λ1 − xµ− α) (Vn(x, y + 1)− Vn(x, y))
}}
.

We substitute Eq. (27) to the above expression and we obtain
the following:

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U

{
min
u2∈U

{
λ2(u1)(fn(x+ y + 1) + u1)

− λ2(u2)(fn(x+ y) + u2)

+ λ1fn(x+ y + 1)

+ xµfn(x+ y − 1) (29)
− (y + 1)µfn(x+ y) (30)
+ yµfn(x+ y − 1) (31)

+ (1− λ1 − xµ− α) fn(x+ y)
}}
. (32)

First, we merge terms (29) and (31) into a single term. Then,
we repeat the same procedure for the terms (30) and (32).

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U

{
min
u2∈U

{
λ2(u1)(fn(x+ y + 1) + u1)

− λ2(u2)(fn(x+ y) + u2)

+ λ1fn(x+ y + 1)

+ (x+ y)µfn(x+ y − 1)

+ (1− λ1 − (x+ y + 1)µ− α) fn(x+ y)
}}

= max
u1∈U

{
min
u2∈U

{
f̃n+1(x+ y, u1, u2)

}}
= fn+1(x+ y),

which proves the induction for this case.

Case 2. x+ y = C − 1

Vn+1(x, y + 1)− Vn+1(x, y)

= λ1(Vn(x+ 1, y)−K)

+ xµVn(x− 1, y + 1)

+ (y + 1)µVn(x, y)

+ (1− λ1 − xµ− (y + 1)µ− α)Vn(x, y + 1)

−max
u2∈U

{
λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)

}
− λ1Vn(x+ 1, y)

− xµVn(x− 1, y)

− yµVn(x, y − 1)

− (1− λ1 − xµ− yµ− α)Vn(x, y).
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Similar to Case 1, we rearrange the terms which results in
the following expression for Vn+1(x, y + 1)− Vn+1(x, y):

Vn+1(x, y + 1)− Vn+1(x, y)

= min
u2∈U

{
− λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)−Kλ1

+ λ1(Vn(x+ 1, y)− Vn(x+ 1, y)) (33)
+ xµ(Vn(x− 1, y + 1)− Vn(x− 1, y))

− (y + 1)µ(Vn(x, y + 1)− Vn(x, y))

+ yµ(Vn(x, y)− Vn(x, y − 1))

+ (1− λ1 − xµ− α) (Vn(x, y + 1)− Vn(x, y))
}
.

Note that term (33) is zero and vanishes. We substitute Eq.
(27) to the above expression.

Vn+1(x, y + 1)− Vn+1(x, y)

= min
u2∈U

{
− λ2(u2)(fn(x+ y) + u2)−Kλ1

+ xµfn(x+ y − 1) (34)
− (y + 1)µfn(x+ y) (35)
+ yµfn(x+ y − 1) (36)

+ (1− λ1 − xµ− α) fn(x+ y)
}
. (37)

We first merge terms (34) and (36) into a single term and
repeat it for the pair (35) and (37). Finally, we substitute x+
y = C − 1 which is already given for Case 2. We obtain the
following expression for Vn+1(x, y + 1)− Vn+1(x, y):

Vn+1(x, y + 1)− Vn+1(x, y)

= min
u2∈U

{
− λ2(u2)(fn(C − 1) + u2)−Kλ1

+ (C − 1)µfn(C − 2)

+ (1− λ1 − Cµ− α) fn(C − 1)
}

= min
u2∈U

{
f̃n+1(C − 1, u1, u2)

}
= fn+1(C − 1),

which concludes the proof of Case 2.
Combining the two cases we have examined, the induction

hypothesis given in Eq. (28) is correct and we have proven
that Vn(x, y + 1)− Vn(x, y) depends only on (x+ y) for all
values of n. �

Proof of Theorem IV.1. The optimal price u∗n(x, y) maxi-
mizes the right-hand side of the DP equations. If we discard
the terms that do not include the price variable u, we deduce
that u∗n(x, y) maximizes only the term given in Eq. (10), i.e.
for x+ y ≤ C − 1 we have the following:

u∗n(x, y) = argmax
u∈U

{
λ2(u)(Vn−1(x, y+1)−Vn−1(x, y)+u)}

}
.

(38)
From Lemma IV.1, we know that Vn−1(x, y + 1) −

Vn−1(x, y) = fn(x + y). When we substitute it to Eq. (38),
we obtain the following:

u∗n(x, y) = argmax
u∈U

{
λ2(u)(fn(x+ y) + u)

}
= gn(x+ y),

which gives the desired result. �

Proof of Lemma IV.2. Let System A and System B be
two coupled systems except for an additional user in System
A. System A starts from state i+ 1 and System B starts from
state i. Statistically, all inter-arrival times and arrival processes
are the same for those two systems. Assume that all actual
arrivals are identical and common users other than the extra
user in System A depart at the same time instants. At each
time instant, System B follows the optimal pricing policy and
System A imitates all actions of System B. Under this setting,
we consider two cases: First, the additional user in System
A successfully leaves the system before the total number of
users in System A reaches C. Then, System A and System
B have the same reward. Second, System A has C users and
System B has C−1 users. Then, either a PU or an SU arrival
occurs at both systems. If an SU arrival occurs, System A
blocks the incoming user whereas System B accepts the user
by earning a reward. System A has less reward than System
B for this case. If a PU arrival occurs, System A blocks the
incoming user with a cost or preempts an SU if there exist
any. On the other hand, System B accepts the user. System
B does not earn a reward but System A is penalized either
because of preemption or blocking. In all possible cases, the
total reward of System B is always greater than or equal to
the total reward of System A. �

Proof of Lemma IV.3. We consider two copies of a system.
System A starts at state i−1 and System B starts at state i and
they have the same users except for the extra user in System
B. The common users depart from the systems at the same
time instants. System A always follows the optimal pricing
policy whereas System B employs different pricing policies
before and after a time juncture n. n is the time period at
which System B moves to state i+ 1 or the additional user in
System B departs from the system depending on which event
happens first. Before n, System B imitates whatever System A
does, i.e. advertises the same prices. After n, System B follows
the optimal pricing policy. We investigate these two cases and
the corresponding rewards. In the first case, before System B
reaches state i+ 1, the additional user in System B leaves. In
this case, System A and System B will be in the same state.
They will advertise the same prices and will end up with the
same average rewards over the infinite horizon. In the second
case, with probability 0 ≤ p ≤ 1, System B reaches state i+1
before the additional user departs. Then, System A will be in
state i as both systems experience the same arrivals. After this
point, both systems enforce the optimal pricing policy. System
B has an additional average reward of p(h(i+1)−h(i)) more
than System A.

Due to the nature of optimal pricing policies, the difference
between the total average rewards of two systems would be no
smaller than this value if System B had followed the optimal
pricing policy from the beginning. As a result:

h(i)− h(i− 1) ≥ p(h(i+ 1)− h(i)).

From Lemma IV.2 and p ≤ 1, we can write:

h(i)− h(i− 1) ≥ h(i+ 1)− h(i),

which concludes the proof. �
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Lemma IV.2 and Lemma IV.3 lead to the following theorem
on the relationship between the total occupancy and the
optimal pricing policy.

Proof of Theorem IV.2. Throughout this proof, we consider
the price as a function of the demand. By Assumption 1
and Assumption 2, we are guaranteed that the inverse of the
demand function exists. We denote the price at state i as
u(λ2(i)). Revisiting the DP equation Eq. (20) for i < C,
we find the optimal demand by maximizing the right-hand
side of Eq. (20). We discard the terms that are irrelevant to
maximization and maximize the following sum:

λ2(i)u(λ2(i)) + (h(i+ 1)− h(i))︸ ︷︷ ︸
q(i)

λ2(i).

We set q(i) = h(i + 1) − h(i). Now, we elaborate on the
relation between λ∗2(i) and λ∗2(i − 1) which are the optimal
demand decisions of two neighbor states i and i− 1. Due to
Lemma IV.3, we need to consider two possible cases. First,
if q(i) = q(i − 1), we have λ∗2(i) = λ∗2(i − 1). Second, if
q(i) < q(i − 1), from the optimality of λ∗2(i) for state i, it
must outperform λ∗2(i− 1). Then, we have the following:

λ∗2(i)u(λ∗2(i)) + q(i)λ∗2(i) ≥λ∗2(i− 1)u(λ∗2(i− 1))

+ q(i)λ∗2(i− 1). (39)

In addition, as λ∗2(i−1) is optimal for state i−1, we have:

λ∗2(i−1)u(λ∗2(i−1))+q(i−1)λ∗2(i− 1)≥λ∗2(i)u(λ∗2(i))

+ q(i− 1)λ∗2(i).
(40)

Combining Eq. (39) and Eq. (40) yields:

(λ∗2(i)− λ∗2(i− 1))(h(i+ 1) + h(i− 1)− 2h(i)) ≥ 0. (41)

The term (h(i+ 1) + h(i− 1)− 2h(i)) ≤ 0 due to Lemma
IV.3. Hence, (λ∗2(i)− λ∗2(i− 1)) must be negative or zero as
well. Then, we have λ∗2(i) ≤ λ∗2(i − 1). Since λ2(u(i)) is a
decreasing function of u(i), we have u∗(i) ≥ u∗(i− 1). �

Proof of Lemma VI.1. We prove this result by induction on
n. We start the induction from the end of the horizon n = 0,
i.e. V0(x, y) = 0. Thus, Lemma VI.1 holds for n = 0 by
definition.

Induction step: Assume that for any n > 0 the following
holds:

Vn(x, y) = qn(x+ y) = max
u∈U

{q̃n(x+ y, u)}. (42)

We need to show that Vn+1(x, y) = qn+1(x + y) =
max
u∈U

{q̃n+1(x + y, u)}. Using the DP equations provided

for the non-preemptive systems we write:

Vn+1(x, y) = max
u∈U

{
λ1Vn(x+ 1, y)1{x+ y < C}

+ λ1(Vn(x, y)−K)1{x+ y = C}
+ λ2(u)(Vn(x, y + 1) + u)1{x+ y < C}
+ xµVn(x− 1, y)

+ yµVn(x, y − 1)

+ (1− λ1 − λ2(u)− xµ− yµ− α)Vn(x, y)

· 1{x+ y < C}

+ (1− λ1 − Cµ− α)Vn(x, y)1{x+ y = C}
}
.

We substitute Eq. (42) to the above expression and we obtain
the following:

Vn+1(x, y) = max
u∈U

{
λ1qn(x+ y + 1)1{x+ y < C}

+ λ1(qn(x+ y)−K)1{x+ y = C}
+ λ2(u)(qn(x+ y + 1) + u)1{x+ y < C}
+ xµqn(x+ y − 1) (43)
+ yµqn(x+ y − 1) (44)
+ (1− λ1 − λ2(u)− xµ− yµ− α) qn(x+ y)

· 1{x+ y < C}

+ (1− λ1 − Cµ− α) qn(x+ y)1{x+ y = C}
}
.

We collect terms (43) and (44) into a single term.

Vn+1(x, y) = max
u∈U

{
λ1qn(x+ y + 1)1{x+ y < C}

+ λ1(qn(x+ y)−K)1{x+ y = C}
+ λ2(u)(qn(x+ y + 1) + u)1{x+ y < C}
+ (x+ y)µqn(x+ y − 1)

+ (1− λ1 − λ2(u)− xµ− yµ− α) qn(x+ y)

· 1{x+ y < C}

+ (1− λ1 − Cµ− α) qn(x+ y)1{x+ y = C}
}

= max
u∈U

{
q̃n+1(x+ y, u)

}
(45)

= qn+1(x+ y). (46)

which proves the induction. �
Proof of Theorem VI.1 We will prove the theorem in two

parts. First, we will show that for the purpose of finding the
optimal pricing policy of the non-preemptive system, we can
use a 1D Markov Chain. Next, we will show that the average
profit rate of the non-preemptive system differs from the
average profit rate of a preemptive loss system by a constant,
which leads to our theorem statement.

We will follow the same argument as provided in the proof
of Theorem IV.1 to show that the optimal price only depends
on the total system occupancy. Observe that the part of the
DP optimality equations that depends on the optimal price
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u∗(x, y) for a non-preemptive system is the following:

u∗n(x, y) = argmax
u∈U

{
λ2(u)(Vn−1(x, y+1)−Vn−1(x, y)+u)

}
.

(47)
From Lemma VI.1, we know that Vn(x, y) = qn(x+y). When
we substitute it to Eq. (38), we obtain the following:

u∗n(x, y) = argmax
u∈U

{
λ2(u)(qn(x+ y + 1)− qn(x+ y) + u)

}
.

Therefore, the optimal pricing policy of a non-preemptive
system only depends on the total system occupancy x + y.
This result means that to find the optimal policy for a non-
preemptive loss systems we can use a 1D Markov chain, where
the state i is given by the total occupancy x+y. Further, define
the arrival rates and call durations as given in section IV-D. Let
Q′u denote the average profit rate of non-preemptive system
under policy u.

Q′u =

C−1∑
i=0

λ2(u(i)) u(i) πu(i)−Kλ1πu(C). (48)

The relationship between the average profit of a preemptive
loss system Ju and the auxillary systems described in Subsec-
tion IV-D was given by:

Ju = Qu +Kλ1E(λ1/µ,C). (49)

By comparing Eq. (19) and Eq. (48), we conclude that Qu =
Q′u, which leads to:

Ju = Q′u +Kλ1E(λ1/µ,C). (50)

Hence, any policy that maximizes the average profit Ju of a
preemptive system also maximizes the average profit Q′u of a
non-preemptive system. �


