
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

A R T I C L E T Y P E

Out-Of-Band Transaction Pool Sync for Large Dynamic
Blockchain Networks

Novak Boskov Xingyu Chen Sevval Simsek Ari Trachtenberg David Starobinski

Department of Electrical and Computer
Engineering, Boston University, Boston,
Massachusetts, United States

Correspondence
Corresponding author Novak Boskov,

Email: boskov@bu.edu

Present address
Novak Boskov is with Nokia Bell Labs, Murray

Hill, New Jersey, United States.

Abstract
Synchronization of transaction pools (mempools) has shown potential for improving the performance and
block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed
in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation
protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and
independently) of the block propagation channel. In the process, we formalize the synchronization problem
within a graph theoretic framework and introduce a novel algorithm (SREP - Set Reconciliation-Enhanced

Propagation) with quantifiable guarantees. We analyze the algorithm’s performance for various realistic
network topologies, and show that it converges on static connected graphs in a time bounded by the diameter
of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number
of nodes. We confirm our analytical findings through extensive simulations that include comparisons with
MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable
bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync).

K E Y W O R D S

Blockchains, Overlay networks, Peer-to-peer computing

1 INTRODUCTION

Block propagation represents a fundamental aspect in many blockchains, such as Bitcoin and Ethereum, in which nodes forward
newly created blocks to their neighbors and maintain memory pools of unconfirmed transactions. Historically, block propagation
has been performed by sending all the transactions belonging to the block alongside the block’s metadata. Often, a substantial
number of the block’s transactions had already been present on the receiving end before transmission, resulting in unnecessarily
high bandwidth overhead. To cope with such overhead, more advanced block propagation protocols such as CompactBlock 1,
Xtreme Thin Blocks2, Graphene3, Gauze4, and Dino5 have been introduced.

At the same time, it has recently been demonstrated through in-situ measurements in live blockchains, including Bitcoin,
that the performance of these advanced block propagation protocols can significantly degrade when transaction pools go out of
sync6,7,8,9,10,11. One approach to prevent such performance degradation is to have neighboring nodes regularly synchronize their
pools of unconfirmed transactions. Toward this end, the recent work7 proposes a heuristic, called MempoolSync, that has shown
the potential to reduce the average block propagation delay by 50% in the Bitcoin network under realistic conditions. However,
MempoolSync does not provide any quantifiable guarantees on overall communication or delay performance.

In this work, we study the problem of transaction pool synchronization (sync) from a fundamental, graph-theoretic perspective,
which allows us to analyze synchronization performance metrics in various network topologies. Our main contributions are as
follows:

• We introduce a novel transaction pool sync algorithm, called SREP, which functions in an assistive capacity outside of the
existing block propagation protocols.

Abbreviations: SREP, Set Reconciliation-Enhanced Propagation; CPI, Characteristic Polynomial Interpolation;

International Journal of Network Management 2023;00:1–22 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1

2 Boskov ET AL.

• We analyze the performance of SREP in general static network topologies, including more realistic “small-world” networks.
• We analyze the performance of SREP in even more realistic dynamic networks, where connections between nodes disappear

and reappear over time.
• We develop a simulation approach based on transaction pool data from measurement campaigns, and confirm our analytical

findings therein.
• We show that SREP can have significantly lower bandwidth overhead than MempoolSync.

The rest of this paper is organized as follows. In Section 2, we provide some background and a brief summary of related work.
In Section 3, we introduce SREP. In Section 4, we analyze the properties of SREP in large-scale networks. In Section 5, we
extend our analysis to dynamic networks. We validate our analytical findings through simulations in Section 6, and compare
SREP with a transaction pool synchronization approach from the literature in Section 6.3. Finally, we conclude with proposals
for future work in Section 7.

2 BACKGROUND AND RELATED WORK

Our SREP algorithm explicitly tackles the problem of distributed network-wide synchronization of unconfirmed transactions —
transaction pools12. To achieve its goals, SREP relies on communication-efficient solutions to the set reconciliation problem13,
which seeks to identify the differences between two remote data sets SA and SB with minimum communication. Communication-
efficient solutions to this problem are able to solve it by exchanging messages of size proportional to the number of mutual
differences

SA ⊕ SB = (SA \ SB) ∪ (SB \ SA).

In fact, there has been several communication-efficient set reconciliation algorithms proposed in the literature including
Characteristic Polynomial Interpolation14 (CPI), BCH codes15, and Invertible Bloom Lookup Tables (IBLT)16,17,18. The
algorithm CPI incurs a communication cost equal to the number of mutual differences plus a small constant (even for very
large sets!), which makes it nearly optimal in communication14. On the other hand, IBLT-based solutions typically offer better
computational complexity at the cost of increasing their communication cost. To further reduce this communication overhead,
Lázaro and Matuz18 have recently proposed an IBLT-based solution that brings the communication cost closer to that of CPI
while keeping the computational complexity low. The latest IBLT construction of Lázaro and Matuz18 is based on Eppstein et
al.17 and has both communication complexity and computation (decoding) complexity that are linear in the number of mutual
differences.

When it comes to our analytical model and simulations, we make use of the findings from the blockchain topology-discovering
literature. In particular, Wang et al.19 and Gao et al.20 independently verified that the Ethereum network exhibits the “small-
world” property. Recently, Shahsavari et al.21 used a random graph model to simulate the Bitcoin network and Ma et al.22

proposed a topology generation based on the Watts-Strogatz23 random graph model to capture the Bitcoin network in their
CBlockSim simulator. To analyze SREP’s performance in dynamic (temporal) networks24, we consider a network model that can
be viewed as a specialization of Kuhn-Oshman’s evolving graphs25.

3 THE SREP ALGORITHM

We propose a novel distributed algorithm for network-wide transaction pool synchronization called SREP (Set Reconciliation-
Enhanced Propagation). The core building block of SREP is a concept that we denote as primal sync — a set reconciliation
protocol with communication complexity linear in the number of symmetric differences (e.g., CPI14 or IBLT18). Given the local
transaction pool as a set of globally unique identifiers26, SREP invokes one primal sync per each neighbor in parallel.

One way to support many parallel invocations of primal syncs is to create one transaction pool replica per each neighbor. Then
run primal syncs in parallel using the corresponding replicas to avoid write collisions. Upon the completion of all parallel tasks,
we can reuse the primal sync to incorporate new elements into the local transaction pool. We describe SREP in Algorithm 1
using Sn to denote the transaction pool at node n, din to denote the differences between Si and Sn that reside in Si, and Sync to
denote a primal sync. As an illustration, in Fig. 1, we depict one iteration of SREP’s main loop (line 2), assuming that each node
n holds only one transaction whose hash is also n.

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 3

0

14

3 2

0

14

3 2

S0 = {0,2}
(1.) Create replicas for each neighbor (3.) Local Sync

S1 = {1,2,4}

S2 = {0,1,2,4}S3 = {3}

0

14

3 2

S0 = {0}

S1 = {1}

S2 = {2}

S4 = {1,2,3,4}

S3 = {3,4}

S0
2 = {0}

S4 = {4}

S4
1 = {4}

S4
2 = {4}

S4
3 = {4}

S1
2 = {1}

S1
4 = {1}

S3
4 = {3}

S2
0 = {2}

S2
1 = {2}

S2
4 = {2}

0

14

3 2

S0
2 = {0,2}

S4
3 = {4,3}

S1
2 = {1,2}

S1
4 = {1,4}

S3
4 = {3,4}

S2
0 = {2,0}

S2
1 = {2,1}

S2
4 = {2,4}

Initial state (2.) Exchange differences

S4
2 = {4,2}

S4
1 = {4,1}

F I G U R E 1 One iteration of SREP on a tractably small network.

Algorithm 1 SREP Algorithm.

Input: Network G = (V , E) as adjacency list.
1: At each node n ∈ {0, |V | – 1}
2: loop
3: for i ∈ G[n] do ▷ Network Sync with all neighbors
4: Si

n ← Sn

5: Do in parallel ▷ Syncing with neighbors is non-blocking
6: Begin
7: din ← Sync (Si

n, Si)
8: Si

n ← Si
n ∪ din

9: End
10: for i ∈ G[n] do ▷ Local Sync
11: Si

n \ Sn ← Sync (Sn, Si
n)

12: Sn ← Sn ∪ (Si
n \ Sn)

3.1 Avoiding Full Replication

SREP from Algorithm 1 has a significant memory overhead caused by transaction pool replication for each neighbor. However,
certain primal syncs allow us to implement SREP without replication, thus mitigating this memory overhead. In particular,
multiple set reconciliation algorithms mentioned in Section 2 use data set sketches to perform synchronization and modify the
underlying data sets only at the end of the protocol.

For instance, CPI reads from the set only once, at the beginning of the protocol, and writes to it only once at the end of the
protocol. Suppose that we choose CPI as the primal sync in SREP. Then we can construct the characteristic polynomial13 of Sn

as the very first step in each iteration (after line 2 in Algorithm 1). Instead of using the neighbor replicas, we can now use the
same characteristic polynomial in all neighbor threads. As no thread will modify the polynomial, the procedure is thread-safe
and the threads can now write directly to the underlying set. For this purpose, the neighbor threads can utilize a write lock to
coordinate the concurrent writes to the underlying data set. Upon completion of the network sync, each thread first acquires the
write lock, updates the underlying data set, and releases the lock. The order in which the threads acquire the lock does not matter,
because the set union operation is commutative and associative. As we now avoid replication, the local synchronization step can
be safely eliminated altogether.

Note that this implementation improvement does not change the functional properties of SREP. That is, each thread still
operates on its own version of the sketch and will update its sketch only at the beginning of the subsequent iteration. Hence, a
difference that arrives in iteration i via some neighbor thread will only get acknowledged by other threads in iteration i + 1. For
that reason, we use the notion of “replicas” in the subsequent analysis.

4 Boskov ET AL.

G = (V , E) Network of |E| edges and |V | nodes

Sn Transaction pool at node n ∈ {0..|V | – 1}

dij = Si \ Sj Differences between i and j that reside in i

deg Average node degree

tn Time node n spends to synchronize with all its neighbors once

Tx% Time until x% of G is synchronized

Σx% Number of primal sync invocations

Cx% Overall communication cost

T A B L E 1 Summary of notation.

4 PERFORMANCE ANALYSIS IN STATIC NETWORKS

Several aspects affect the performance of SREP, including the network topology and the statistics of transaction pools. To aid
our analysis, we first define an explicit network model, and then analyze SREP in a step-by-step fashion. In each stage of our
analysis, we describe a SREP variant with the corresponding set of simplifying assumptions and analyze its performance. By
successively relaxing these assumptions, we arrive at the final version of SREP.
Definition 1: The communication cost C of a transaction pool synchronization algorithm is the size of the messages it transmits
over the network.

As transaction pools typically hold transaction identifiers with fixed size, we express the communication cost as the size
of messages divided by that fixed size. We use Tx%, Σx%, and Cx% to denote time, total number of primal sync invocations,
and total communication cost until x% of transaction pools in the network are equal. When x = 100, we say that full network
synchronization is achieved — the ultimate goal of SREP. Throughout the analysis, we assume that the total actual time taken by
a primal sync is dominated by the transmission time27. Table 1 summarizes the notation we use in this work.

4.1 Network Model

Our network model consists of a topology (i.e., the underlying graph connecting nodes in the network) and the states of
transaction pools residing at the nodes of the network.

4.1.1 Topology

Watts-Strogatz23 random graphs allow us to describe a wide range of realistic blockchain network topologies reasonably
well20,19,28,22. A typical set of parameters to Watts-Strogats model are the number of nodes in the network |V |, average node
degree deg, and rewire probability p23.

For instance, each Bitcoin node selects 8 random neighbors upon joining the network29,30,31, which has been shown to yield an
unstructured random graph21. We can capture this in the Watts-Strogatz model by setting deg = 8 and p = 1. Ethereum’s neighbor
selection mechanism, on the other hand, relies on a Camellia distributed hash table (DHT)32, and yields a network with more
structure20. Notwithstanding this, multiple recent measurement results have independently confirmed that the generated network
exhibits the “small world” property and fits the Watts-Strogatz model20,19,28. That is, the average shortest path between any two
nodes can be reasonably approximated by O

(
logdeg|V |

)
, and the diameter of the network is small33, as illustrated in Fig. 2.

4.1.2 Transaction Pools

Besides the graph topology, our network model also captures the states of transaction pools across the network. In particular, we
define the pool assignment A as a collection of sets S0..S|V |–1 where set Si represents the transaction pool at node i. We model the
statistical properties of A through the following pool parameters:

• S: sizes distribution. A discrete random variable describing the sizes of transaction pools Si for i ∈ {0...|V | – 1},
• sizes: sizes vector. A |V |-size vector where elements are drawn from S,

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 5

0 500 1000 1500 2000 2500 3000
Netwrok size (|V|)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Average path length

f(|V|) = 1
2 * log(|V|) + 0.6

Diameter

F I G U R E 2 The small world property in random graphs generated through Watts-Strogatz model with k = deg = 19 and rewire probability p = 0.24.

• P: differences distribution. A discrete random variable describing the sizes of mutual differences between the pairs of
transaction pools (i.e., |Si ⊕ Sj|),
• M: mutual differences matrix. A |V |× |V | upper triangular matrix of mutual differences. For the given topology G = (V , E),

the elements of the matrix are defined as:

mij =

{
|Si ⊕ Sj| when (i, j) ∈ E and i < j,

0 otherwise.

Non-zero elements are drawn from P .
• U : universe. A discrete random variable from which we draw transaction IDs. We choose U{0, u} to be a uniform random

variable for some u ≥ |V |.

4.2 Elementary SREP (E-SREP)

The starting point for our build up of SREP is called elementary SREP (Algorithm 2). We summarize its simplifying assumptions
as follows:

(A1) All nodes have global view of the network.
(A2) Initially, the transaction pools at each node contain only one element (transaction) that is unique across all network nodes

(e.g., index of the node). Strictly speaking, we set the pool parameters as: S = 1, P = 2 , and u≫ |V |.
(A3) No new transactions arrive to the network after the initialization.
(A4) In one iteration of elementary SREP (line 1), nodes take turns to perform their synchronization duties such that no two

nodes invoke primal sync at the same time. For instance, nodes with smaller indices go first. An iteration ends when all
nodes have invoked synchronization once for all their neighbors.

(A5) Nodes synchronize with their neighbors sequentially. For instance, the neighbors with smaller indices get synchronized first
(line 3).

(A6) All synchronizations are two-way (lines 7 and 8), meaning that the differences are exchanged in both directions.
(A7) All synchronizations take equally long.

In the context of E-SREP, the following special case is particularly significant for the analysis.
Lemma 1: For E-SREP over a complete graph G = (V , E), the communication cost to sync the entire network is

C100%(G) = |V | · (|V | – 1).

6 Boskov ET AL.

Algorithm 2 Elementary SREP.

Input: Network G = (V , E) as adjacency list.
1: while network is not fully synchronized do
2: for n← 0 to |V | – 1 do
3: neighbors← sort(G[n])
4: for i ∈ neighbors do
5: din ← Sync (Sn, Si)
6: dni ← Sync (Si, Sn)
7: Sn ← Sn ∪ din

8: Si ← Si ∪ dni

4.3 Elementary Parallel SREP (EP-SREP)

The main aim of the elementary parallel SREP is to relax (A1), (A4) and (A5). Instead of invoking synchronization in order,
EP-SREP invokes synchronization for all neighbors at once (i.e., Algorithm 1). In addition to that, we also relax (A7). The
synchronization between nodes u and v now takes time equal to the number of their mutual differences (i.e., |duv ∪ dvu|). As
discussed earlier in Section 2, this is a reasonable assumption to make. For instance, Eppstein et al. proposed a primal sync with
both communication and time complexities that are linear in the number of mutual differences17,18.
Theorem 1: In EP-SREP and for any connected network G = (V , E), we have the following bounds on the overall communication
cost until the network is fully synchronized:

|V | · (|V | – 1) ≤ C100% < |V | · (|V |2 – 1).

Proof: The lower bound is obtained similarly as in Lemma 1. The least amount of communication to achieve full synchroniza-
tion is equivalent to each node sending its element to all the other nodes directly. On the other hand, we get the upper bound by
observing that there cannot be more than |V |2 · (|V | – 1) redundant element transmissions on top of the lower bound. Redundant
transmissions happen when a node receives an element via multiple replicas in the same iteration. To count all redundant trans-
missions, we observe that, in each iteration, each node either receives some new elements or does not receive any. In the latter
case, obviously, no redundant transmissions happen. Otherwise, if there are some new elements received, the following holds:
(1) there will be no more than |V | new elements arriving at the node across all iterations, as there is only that much elements in the
network, and (2) for each element, there cannot be more than |V | – 1 redundant transmissions, as there cannot be more than that
much replicas at any node. Thus, there cannot be more than |V |2 · (|V | – 1) redundant transmissions at all nodes in all iterations.■

As in Watts-Strogatz networks we have deg replicas at each node on average, the same counting argument from above applies
in the following form.
Corollary 1: For EP-SREP in Watts-Strogatz networks:

C100% < |V | · (|V | · deg + |V | – 1).

On the other hand, to infer the upper bound on the time that EP-SREP needs to complete a full sync (T100%), we rely on
following definition.
Definition 2: Ix%(G) is the maximal number of EP-SREP iterations (line 2 in Algorithm 1) at any node to achieve x% network
synchronization.
Theorem 2: In EP-SREP and for any connected network G = (V , E), with the shortest path between nodes u and v denoted as
dist(u, v), the maximum number of iterations required for a full network synchronization is equal to the diameter of the network:

I100%(G) = max
u,v∈V

dist(u, v).

Proof: By the definition of full synchronization, all elements need to reach every other node. Without a loss of generality,
suppose that we follow the propagation of some element i ∈ V during the execution of EP-SREP. Since the graph is connected,
in each iteration of EP-SREP, i will progress exactly one step further through the network. The number of iterations required to

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 7

2 10 20 30 40 50 60 70 80 90 10070
Average network degree (deg)

0

25

50

75

100

125

R
ed

un
da

nt
 T

ra
ns

m
is

si
on

s (
x

10
3)

Complete graph
(no redundant transmissions)

Lemma 2

F I G U R E 3 Amount of redundant transmissions in EP-SREP over a network of 100 nodes (p = 0.24).

synchronize the entire network is then equivalent to the maximum distance between any two nodes in the network (i.e., diameter).
■
Lemma 2: In EP-SREP over complete graphs G = (E, V):

I100%(G) = 1 and C100% = |V | · (|V | – 1).

The former holds as the diameter of complete graphs is 1. The latter is a consequence of the former; as no element traverses
more than one edge, there cannot be any redundant transmissions.
Corollary 2: For EP-SREP and Watts-Strogatz networks, the maximal number of iterations at any node to synchronize the entire
network (I100%) is logarithmic in the size of the network.

Counting the number of nodes that have heard about an element n ∈ V in iteration i of EP-SREP over a Watts-Strogatz
network, we get the following sum:

1 + deg + deg
2

+ . . . + deg
i
.

By equating it to |V |, we can express i, the number of iterations until all nodes have heard of n, as a logarithmic function of |V |33.
Practically speaking, EP-SREP will complete in logarithmically small number of iterations (≈ 4 logdeg(10))) for the blockchain
networks of realistic sizes (e.g., Bitcoin and Ethereum30,31).
Theorem 3: In general graphs G = (V , E), the following holds for EP-SREP:

T100% ≤ I100%(G) ·max
i∈V

ti < I100%(G) · |V |,

Σ100% ≤ I100%(G) · |E|.

Proof: Since synchronizations happen in parallel, the overall elapsed time is proportional to the number of iterations. Any
sync invocation at any node will take strictly less than |V |, as no two data sets can differ in more than |V | – 1 elements (each data
set keeps exactly one element at the beginning). Since in each iteration nodes sync with all their neighbors and each sync is
two-way by (A6), there will be no more than |E| syncs in each iteration. ■

The deg Dilemma

Due to the counting argument from Theorem 1, the upper bound on overall communication cost is not tight; there must be at
least some elements that will not generate redundant transmissions in any connected network. On top of that, the topology
of the network plays a complex role in generating redundant transmissions. Intuitively speaking, the impact of deg in Watts-
Strogatz networks is twofold, and conflicting: (1) the larger deg, the larger the average number of replicas per node, which may
cause redundant transmissions, and (2) the larger deg, the shorter the average pair-wise shortest path among the nodes in the
network, which makes each element traverse less intermediate nodes to reach the entire network, thus reducing the probability of
redundant transmissions. We plot this non-monotonic effect that deg has on the amount of redundant transmissions in Fig. 3 for
a tractably small network. Up to a point, the first effect (replicas count) prevails and drives the overall communication cost up.

8 Boskov ET AL.

After that point, the second effect (path shortening) prevails and drives the overall communication cost down all the way to the
point when the network becomes a complete graph and there is no redundant transmissions at all.

4.4 Multi-element SREP

The final stage in building SREP is multi-element SREP. We build it by relaxing (A2) — transaction pools can now initially contain
multiple elements. In terms of our network model, this means that our S (sizes distribution) and P (differences distribution) are
no more constant. Thus, SREP is a generalization of EP-SREP.
Definition 3: Function f : (G, A) 7→ Z maps a pair of a topology G and a pool assignment A to a non-negative integer via first
constructing the corresponding mutual differences matrix M, then computing

∑
mij.

Definition 4: Function g : (G, A) 7→ (G, A(next)) maps a pair of a topology G and a pool assignment A to the same topology G
and a transformed pool assignment A(next). We define the transaction pools in the transformed pools assignment A(next) as:

S(next)i = Si ∪ (
⋃

j∈G[i]

Sj).

We use
⋃

j∈G[i] Sj to denote the union of all transaction pools Sj corresponding to the neighbors of node i in the previous
iteration.
Definition 5: For some function h, we write h(n)(x) to denote the composition of function h with itself n times, starting with
argument x:

h(n)(x) = h ◦ h · · · h︸ ︷︷ ︸
n

(x).

Definition 6: A(n) is the assignment resulting from n compositions of g with itself starting with the initial pool assignment that
we denote as A = A(0).
Lemma 3: For a network model (G, A) where G is a connected graph and A the initial pool assignment, the number of SREP
iterations to achieve the full network synchronization I100%(G, A) is given as a solution to the following equation:

f (g(I100%(G,A))(G, A)) = 0.

Note that by Definition 4, g exactly corresponds to one iteration of SREP. That is, the transformed pool assignment A(next)

reflects the state of the transaction pools after an iteration of SREP at all nodes in the network. Composing g with itself n times
corresponds to repeating an iteration of SREP at all nodes n times. By a similar argument as in Theorem 2, all elements will reach
all nodes after some number of iterations. Since this implies that no two sets have any differences, M will be an all-zeros matrix.
That is, (f ◦ g(n))(G, A) has at least one zero. Thus, the number of times we need to compose g with itself until f (G, A(n)) = 0
gives us the maximal number of SREP iterations to achieve full network synchronization.
Theorem 4: For a connected graph G = (V , E) and an initial pool assignment A, the number of SREP iterations to achieve the
full network synchronization is bounded by the diameter of the network:

I100%(G, A) ≤ max
u,v∈V

dist(u, v).

Proof: As SREP is a generalization of EP-SREP, the argument here is similar to that of Theorem 2. To achieve the full network
synchronization, elements need to traverse at most the diameter of G. As opposed to EP-SREP, in SREP each element may
initially appear at more than one node, dictated by the differences distribution P . Thus the diameter is an upper bound on SREP
iterations. ■
Lemma 4: For a connected graph G = (V , E) and initial pool assignment A with the corresponding mutual differences matrix M,
the communication cost of SREP is:

C100%(G, A) =
I100%(G,A)∑

i=0

f (G, A(i))

< I100%(G, A) ·max{f (G, A), . . . , f (G, A(I100%(G,A)))}.

In the i-th iteration of SREP, we transmit exactly as many elements as there are in the differences matrix that corresponds to
A(i). Given I100%(G, A) from Lemma 3, we get the overall communication cost of SREP.

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 9

0

14

3 2

0

14

3 2

0

14

3 2

S3 = {0, 3, 4}

0

14

3 2

S0 = {0, 3, 4}

S1 = {1, 2}

S2 = {1, 2}

S4 = {0, 2, 3}

Underlying Graph n = 0 n = 1 n = 2

S3 = {0, 1, 2, 3, 4} = S2

S0 = {0, 3, 4}

S1 = {1, 2}
S4 = {0, 2, 3, 4}

S3 = {0, 1, 2, 3, 4} = S2

S0 = {0, 1, 2, 3, 4}

S1 = {0, 1, 2, 3, 4}
S4 = {0, 1, 2, 3, 4}

S0 = {0}

S1 = {1}

S2 = {2}S3 = {3}

S4 = {4}

F I G U R E 4 SREP over a time-varying graph. Red dashed edges are absent in the corresponding time intervals.

Lemma 5: In SREP over a connected network G = (V , E) with the given initial pool assignment A and the maximum difference
among any two pools d:

T100% ≤ I100%(G, A) ·max
i∈V

ti = I100%(G, A) · O(d),

Σ100% ≤ I100%(G, A) · |E|.

The argument is similar to that of Theorem 3. .
Finally, note that the assumptions in our analysis such as (A3) — no new transactions arrive after SREP starts, are artificial in

that they simplify our analysis, but they do not constrain SREP in practice. The properties such as the overall communication
cost (C100%) and time (T100%) to sync the entire network relate to the transactions that have arrived before SREP begins.

5 PERFORMANCE ANALYSIS IN DYNAMIC NETWORKS

Blockchain networks often involve non-persistent connections among nodes7. Therefore, in this section we analyze the
performance of SREP in dynamic (time-varying) networks, particularly focusing on the total time to synchronize (T100%). Due to
the time-varying nature of dynamic networks, T100% is now a random variable. Hence, we are interested in statistics related to
this random variable, such as the expectation (mean) E[T100%].

We distinguish between two types of dynamic networks: slowly-varying and rapidly-varying. The case of slowly-varying
networks is more straightforward. In such networks, edges remain active for long periods of time relative to the time needed
to synchronize an entire network. Therefore, these networks appear static from the perspective of SREP. In other words, the
analysis from Section 4 applies as long as the network is connected.

In rapidly-varying networks, edges appear and disappear throughout the entire synchronization process. Therefore, the degree
of nodes may change over time and the analysis from Section 4 does not directly apply. The rest of this section focuses on the
analysis of such rapidly-varying networks. We first formally define our model of time-varying graph and analyze the special case
of a time-varying linear topology (simply referred to as a line). By the same token as in the proof of Theorem 4, our analysis
assumes EP-SREP, meaning that each transaction pool initially holds only one element (e.g., the one whose identifier equals the
index of the node). We show an example in Fig. 4. Next, we leverage the analysis for linear topologies to provide bounds for
general time-varying graphs. A summary of notation relevant to this section appears in Table 2.

5.1 Network Model

To analyze the performance of SREP in dynamic networks, we use the transaction pools model from Section 4.1.2. However,
instead of using a static topology as in Section 4.1.1, we consider connected time-varying graphs defined as follows.
Definition 7: A connected time-varying graph is a discrete-time graph G = (V , E) where in each time slot t = {0, 1, 2, . . .}, each
edge in the graph is active (up) with some probability pcon, independently of other edges and other time slots. If an edge is active
during a certain time-slot, the two vertices connected to the edge can fully synchronize their pools. Note that we assume that the
underlying graph G = (V , E) is connected (that is, a path exists between any two vertices when all the edges are active).

10 Boskov ET AL.

n = |V | Number of nodes in the network

si
Element possessed by Si at the beginning of
synchronization

T linen
100% Time to sync a n-nodes time-varying line

τj→i
Time for transaction pool Si to acquire ele-
ment sj

τvi
Time for node vi to acquire all elements in an
n-nodes network

T A B L E 2 Summary of notation for dynamic networks.

Note that by Definition 7, the time until a connection is established between two adjacent nodes in the underlying graph follows
a geometric random distribution with parameter pcon. Such time includes the time slot when connection is established, so the
minimum value of these geometric distributed random variables is one time slot. As edges appear and disappear independently,
these connection times are independent and identically distributed (i.i.d.) random variables over different edges and different
time slots.

5.2 SREP in Linear Time-Varying Topologies

Consider a time-varying line composed of n nodes denoted as v1...vn. For any pair of nodes vi, vj in a time-varying line, an
element that reaches one node from the other node must have already reached all the nodes that lie in between vi and vj. We
formalize this observation in the following lemma.
Lemma 6: For a time-varying line the following holds for all i, j, and k, such that i ≤ j < k, and all elements sj:

si ∈ Sk =⇒ sj ∈ Sk.

Let τvi denote the time till node vi acquires all elements in an n-nodes network.
Lemma 7: For a n-node time-varying line denoted as v1...vn, the time to synchronize is

T linen
100% = max(τv1 , τvn).

Proof: Using Lemma 6, by the time sn ∈ S1, v1 has acquired all the elements. Analogously, by time τv1 , node vi has acquired all
the elements from the nodes with higher indices:

{si, .., sn} ⊂ Si, for all i s.t. 1 ≤ i ≤ n.

Similarly, by τvn , node vi has acquired all the elements from the nodes with lower indices :

{s1, .., si} ⊂ Si, for all i s.t. 1 ≤ i ≤ n.

Thus, by time max(τv1 , τvn) all nodes have acquired all the elements. ■
Consider node vm that is in the middle of an n-node time-varying line, such that m = n

2 for even n and m = n+1
2 for odd n. The

following lemma states that node vm will be synchronized once it gets the elements from node v1 and node vn. The time that it
takes is the maximum between the times for transaction pool Sm to get element s1 (denoted τ1→m) and the time to get element sn

(denoted τn→m). This lemma will be used in the next subsection to provide a tight bound on the expected time to synchronize a
line.
Lemma 8: The time to synchronize node vm is

τvm = max(τ1→m, τn→m). (1)

Proof: At time τ1→m, node vm has already acquired s1. By Lemma 6, any elements residing in any Sj such that 1 ≤ j < m will
also reside in Sm by time τ1→m. Similarly, at time τn→m all elements residing in any Sj such that m < j ≤ n will reside in Sm as
well. This means that at time max(τ1→m, τn→m), transaction pool Sm has acquired all elements s1, ..sn. Therefore, τvm is bounded

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 11

from above by max(τ1→m, τn→m). On the other hand, τvm cannot be less than max(τ1→m, τn→m) because that would mean that vm

would not have acquired either s1 or sn. Therefore, this is the lower bound as well. ■
The results in the next subsection will rely on a concept known as stochastic ordering34. Specifically, consider two random

variables Y and Z. We say that Y is stochastically smaller or equal to Z, denoted Y ≤st Z, if for all x ∈ (–∞,∞) we have
Pr(Y > x) ≤ Pr(Z > x). A direct consequence of this definition is the following lemma34:
Lemma 9: If two random variables X and Y satisfies the stochastic order Y ≤st Z, then

E[Y] ≤ E[Z].

5.3 Expected Time to Sync Time-Varying Lines

We now turn to the analysis of the synchronization time in a time-varying line. We first consider the middle node and then extend
the result to all the nodes on the line.

The next theorem shows that the expected time to synchronize the middle node of an n-node time-varying line is O(n).
Theorem 5: Consider a n-node time-varying line, then E[τvm] = O(n).

Proof: In a n-node time-varying line, element s1 will propagate to the middle node vm as follows: first the element is stuck in
vertex v1 till a time slot when the edge between v1 and v2 is active. Then the process between v2 and v3 and so on till vertex
vm–1 and vertex vm. The time for an edge to become active is a geometric random variable (see Definition 7), independent of
other events. Hence, the time slots that s1 is stuck follows the sum of m – 1 independent geometric random variables which
corresponds to a negative-binomial distribution with parameters γ = m – 1 and p = pcon starting from m – 1, denoted as:

τ1→m – (m – 1) ∼ NB(m – 1, pcon). (2)

Similarly, τn→m is a negative-binomial random variable starting from n – m, that is

τn→m – (n – m) ∼ NB(n – m, pcon). (3)

Furthermore τn→m and τn→m are independent because they use a different set of independently appearing edges.
Using Lemma 8, τvm is the maximum between the two independent random variables, which implies that τvm is stochastically

smaller than the sum of τ1→m and τn→m. Therefore, by Lemma 9 we have:

E[τvm] ≤ E[τ1→m] + E[τn→m].

From Eq. (2) and Eq. (3), we have:

E[τvm] ≤ E[τ1→m] + E[τn→m]

=
(m – 1)(1 – pcon)

pcon
+ (m – 1)

+
(n – m)(1 – pcon)

pcon
+ (n – m)

=
n – 1
pcon

(4)

Therefore, τvm is O(n). ■
Next, we derive an analytical expression for the expected time to synchronize the middle node vm in a n-node time-varying

line. The expression depends on whether n is odd or even:

• If n is odd, set m = n+1
2 . As a result, both τ1→m and τn→m conform to negative-binomial distributions with parameters

γ = n–1
2 and p = pcon starting from m – 1. Their cumulative distribution can be expressed in terms of the regularized

incomplete beta function35:

Pr(X ≤ x) = Ipcon (
n – 1

2
, x – m + 2), (5)

12 Boskov ET AL.

where the regularized incomplete beta function is defined as:

Ix(a, b) =

∫ x
0 ta–1(1 – t)b–1 dt∫ 1
0 ta–1(1 – t)b–1 dt

.

Using Eq. (1), we can express expectation of τvm in terms of the maximum of two negative binomial random variables:

E[τvm] = E[max(τ1→m, τn→m)] (6)

Because τ1→m and τn→m are independent, we can express the cumulative distribution function of max(τ1→m, τn→m) using
Eq. (5):

Pr(max(τ1→m, τn→m) ≤ x)

= Pr(τ1→m ≤ x) · Pr(τn→m ≤ x)

= (Ipcon (
n – 1

2
, x – m + 2))2.

(7)

Combining cumulative distribution function from Eq. (7) with Eq. (6), we express E[τvm] as:

E[τvm] =
∫ ∞

0
(1 – (Ipcon (

n – 1
2

, x –
n – 3

2
))2) dx. (8)

• If n is even, we set m = n
2 . Now τ1→m and τn→m conform to the negative binomial distribution with different parameters

γ1→m = n
2 – 1 and γn→m = n

2 , and the same p = pcon. τ1→m starts from n
2 – 1. τn→m starts from n

2 .
Similar to Eq. (7) cumulative distribution function of max(τ1→m, τn→m) can be given from Eq. (5):

Pr(max(τ1→m, τn→m) ≤ x)

= Pr(τ1→m ≤ x) · Pr(τn→m ≤ x)

= Ipcon (
n
2

– 1, x –
n
2

+ 2) · Ipcon (
n
2

, x –
n
2

+ 1).

(9)

From Eq. (9):

E[τvm] =∫ ∞

0
(1 – Ipcon (

n
2

– 1, x –
n
2

+ 2)

· Ipcon (
n
2

, x –
n
2

+ 1)) dx.

(10)

The next theorem provides a bound on the expected time to synchronize a time-varying line. In Section 6.5, we will numerically
show that this bound is quite tight.
Theorem 6: For a n-nodes time-varying line, the expected time to synchronize is:

E[T linen
100%] ≤ 2 ∗ E[τvm], (11)

where E[τvm] is given by Eq. (8) when n is odd and by Eq. (10) when n is even.
Proof: Using Lemma 8, by time τvm , both s1 and sn have already been propagated to Sm. It is either that one element arrived

before the other or they reached Sm at the same time. Without loss of generality, we assume that τ1→m ≤ τn→m.
By the time τvm , elements s1, ..., sm have reached all nodes on the shorter side of vm (i.e., v1, .., vm–1) and for some j such that

m ≤ j ≤ n, we have:
{s1, .., sn} ⊂ Sj.

Some other vj′ such that j < j′ ≤ n have not yet acquired s1. It is easy to see that the time that has left until the full sync is
reached is:

T linek
100% – τvm = max(τj→n, τm→1) (12)

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 13

Because edges between v1 and vm do not overlap with edges between vj and vn, we have that τj→n and τm→1 are two
independent random variables conforming to negative-binomial distribution NB(γ, p) with different γ parameters. Note that
τ1→m and τm→1 are not identical but they follow the same distribution, that is

Pr(τ1→m > x) = Pr(τm→1 > x) (13)

Note also that τn→m and τj→n are both negative-random random variables but with different parameters:

τn→m ∼ NB(n – m, pcon)

τj→n ∼ NB(n – j, pcon)
(14)

Since n – j ≤ n – m, we establish stochastic ordering between the two random variables from Eq. (14):

Pr(τj→n > x) ≤ Pr(τn→m > x)

=⇒ τj→n ≤st τn→m
(15)

Combining Eq. (13) and Eq. (15), we compare the cumulative distribution functions of max(τ1→m, τn→m) and max(τj→n, τm→1):

Pr(max(τj→n, τm→1) > x)

≤ Pr(max(τ1→m, τn→m) > x)
(16)

Hence, by Lemma 8 we have:

E[max(τj→n, τm→1)] ≤ E[max(τ1→m, τn→m)]

≤ E[τvm]
(17)

We then use Eq. (17) and Eq. (12):

E[T linen
100%] = E[τvm] + E[max(τj→n, τm→1)]

≤ 2E[τvm]
(18)

Finally, we combine Eq. (18), Eq. (8), and Eq. (10), to get the expression from Eq. (11). ■
As a corollary of Theorem 5 and Theorem 6, we get that the expected time to sync a n-node time-varying line is O(n).

5.4 SREP in General Time-Varying Topologies

We now generalize our analysis for time-varying line to time-varying graphs from Definition 7. For the purpose of analysis, we
define the minimum spanning tree in time-varying graphs.
Definition 8: A spanning tree of time-varying graph G = (V , E) is a spanning tree in its underlying graph.
Definition 9: Given time-varying graph G = (V , E) with the corresponding time to synchronize T100%, time T tree

100% is the time to
synchronize its spanning tree.

Next, we bound the expected time to sync a time-varying graph using its spanning tree.
Lemma 10: Expected time to sync a time-varying spanning tree is the upper bound on the expected time to sync the corresponding
time-varying graph:

E[T100%] ≤ E[T tree
100%].

Proof: By the definition of full sync, the total time to sync a time-varying graph is the maximum among syncing all its nodes:

T100% = max(τv1 , τv2 , .., τvn). (19)

For any node vi, such that 1 ≤ i ≤ n, τvi is bounded by the longest time for an element to reach transaction pool Si:

τvi = max(τ1→i, τ2→i, .., τn→i). (20)

14 Boskov ET AL.

Note that the spanning tree has n – 1 edges, which is no more than the corresponding graph. Hence, the time for any element
to reach node vi in spanning tree (τ ′), is stochastically larger than or equal to what it is in the corresponding graph (τ). In other
words, for all 1 ≤ i ≤ n, the following holds:

Pr(τ1→i > x) ≤ Pr(τ ′1→i > x)

=⇒ τ1→i ≤st τ
′
1→i.

(21)

Combining Eq. (21) and Eq. (20), we establish the stochastic order between τvi and τ ′vi
:

τvi ≤st τ
′
vi

. (22)

We conclude the proof combining Eq. (19) and Eq. (22):

T100% ≤st T tree
100% =⇒ E[T100%] ≤ E[T tree

100%].

■
Theorem 7: The expected time to sync n-nodes time-varying graph is bounded from above by the expected time to sync a
n-nodes time-varying line.

E[T100%] ≤ E[T linen
100%]. (23)

Proof: Consider the spanning tree of the time-varying graph and find a random node v∗m that splits the tree in two. Left subtree
has nl nodes, right subtree has nr nodes. Meaning, nl + nr = n – 1.

We denote the time for v∗m to acquire all the elements from the left and right subtrees as τleft and τright, respectively.
Then, the time for v∗m to complete synchronization is:

τv∗m = max(τleft, τright). (24)

Note that τleft and τright use different edges, therefore they are independent random variables. τleft is bounded by the maximum
time for any elements in the left subtree to reach v∗m. The longest distance between a node in the left subtree and the split
node v∗m is nl. Note that longest distance appeares only when the subtrees are structured into time-varying lines. Therefore,
τleft is stochastically smaller than τ1→nl+1 in a time-varying line. Analogously, τright is stochastically smaller than τ1→nr+1 in a
time-varying line. In other words, it takes the longest in expectation to sync both the left and the right sides of the spanning tree
when they are lines. Hence, we have:

E[T tree
100%] ≤ E[T linen

100%].

Using Lemma 10, we get the expression from Eq. (23) . ■

6 SIMULATIONS

To validate our analytical findings about SREP, we construct an event-based simulator called SREPSim36 that shares the topology
generation procedure with CBlockSim of Ma et al.22 and adds the other parameters of our network model described in Section 4.1.

In the rest of this section, we first describe a method to parameterize our network model. Then, we use such parameterized
model to validate the main analytical properties of SREP in static graphs. We then compare the overall communication cost
of SREP with a similar approach from the literature. Additionally, we present a SREPSim optimization that allows for easy
SREP communication cost calculations over large-scale static networks. Finally, we validate the analytical properties of SREP in
time-varying graphs.

6.1 Configuring Network Model Parameters

Unlike the simulation approaches from the literature (e.g., SimBlock 37), our network model can seamlessly integrate real-world
transaction pool data. For instance, the empirical distributions of S and P can be generated for some small subset of all nodes in

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 15

20000 30000 40000 50000 60000 70000 80000
Set sizes

0.0

0.2

0.4

0.6

0.8

1.0

Si
ze

s d
is

tri
bu

tio
n

(
)

Type
Measurements
Maxwell

0 2000 4000 6000 8000
Mutual Differences

0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
s d

is
tri

bu
tio

n
(

)

Type
Measurements
Hyperbolic

F I G U R E 5 Empirical distributions of transaction pool sizes S for two adjacent Bitcoin nodes (left) and their mutual
differences P (right). Best distribution fits in red (using Error Sum of Squares).

the network using the measurement software such as log-to-file of Imtiaz et al.38,39. This software instruments adjacent Bitcoin
nodes and periodically serializes the snapshots of their transaction pools. From these transaction pool snapshots, we can measure
transaction pool sizes and their mutual differences to construct the empirical distributions for S and P .

For the purpose of this work, we have conducted a 3-day long measurement campaign on two time-synchronized Bitcoin
nodes and requested the transaction pool snapshots each minute. Fig. 5 depicts the results that we obtained. Roughly speaking,
the set sizes fit the Maxwell distribution reasonably well, while the number of mutual differences fits the Hyperbolic distribution.
Next, given the empirical distribution of S , we need to configure the rest of our network model’s pool parameters‡. Ultimately,
we need to construct a pool assignment A that conforms to the differences distribution P .

In SREPSim, we construct such assignments through Procedure 1. For the given network topology G = (V , E) and the sizes
distribution S , we need to configure the parameter ψ such that the resulting assignment A produces a differences distribution that
resembles P . As shown in Fig. 6, ψ = 0.35 works reasonably well with our empirical sizes distribution. Note that by increasing
ψ, we can decrease the average similarity among the transaction pools (i.e., increase the number of their mutual differences).

Procedure 1 Network parameterization in SREPSim.

Input: Network G = (V , E).
Input: Sizes distribution S.
Input: Parameter ψ.
Output: Pool assignment A.
1: u← ⌈ ψ E[S] ⌉
2: U{0, u – 1} ▷ Instantiate uniform distribution
3: sizes← sample |V | elements from S
4: A← []
5: for i← 0 to |V | – 1 do
6: Si ← sample sizes[i] elements from U
7: A.append(Si)

6.2 SREP Properties Validation

The main analytical properties that we want to validate through simulations are SREP’s communication cost to achieve full
network sync (C100%) and the time required to achieve this state (T100%). In particular, we want to show how these two quantities
change as a function of the network topology and the measure of difference among the transaction pools.

‡ Direct usage of P is also possible but perhaps harder.

16 Boskov ET AL.

0 2000 4000 6000 8000 10000 12000
Mutual Differences

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Source
Measurements
Generated, = 0.35
Generated, = 0.50
Generated, = 0.60

F I G U R E 6 Empirical differences distribution for two adjacent Bitcoin nodes versus the differences distribution generated
by Procedure 1 for various ψ. Watts-Strogatz network with 100 nodes (deg = 19 and p = 0.24).

2 4 6 8
Average Node Degree (deg)

1

2

3

4

5

A
ve

ra
ge

 M
ax

im
al

 It
er

at
io

ns
 (I

10
0%

)

I100%

0

50

100

150

Av
er

ag
e

N
et

w
or

k
D

ia
m

et
er

143.0

12.3 8.0 6.9

Diameter

F I G U R E 7 Maximal number of SREP iterations at any node (I100%) bounded by the network diameter for Watts-Strogatz
graphs with 1000 nodes (p = 0.24). 95% confidence intervals.

In Fig. 7, we plot the maximal number of SREP iterations I100% and the network diameter as functions of the average network
degree deg. In Fig. 8, we plot the communication cost and time to full network sync as a function of deg. The main observation
is that the overall communication increases with the average node degree as a consequence of using more replicas per node,
which increases the number of redundant transmissions (see Fig. 3). On the other hand, the time to achieve full network sync
does not exhibit such a trend. Since primal syncs run in parallel, it is the maximal number of differences among any two nodes
in the network that dominates the total time to sync the network (see Lemma 5).

6.3 Comparison with MempoolSync

MempoolSync of Imtiaz et al. is a transaction pool synchronization protocol that can improve the average transaction propagation
delay by 50% in the event of churn in the Bitcoin network7. Here we describe this protocol and compare its communication
efficiency with our newly proposed SREP through simulations.

As pointed out in7, the main reason for slow block propagation times is a large number of missing transactions in the transaction
pools of the block-receiving nodes. This effect occurs in the legacy block propagation protocols such as CompactBlock 1 and the
more recent improvements such as Graphene3,6. Thus, the goal of MempoolSync is to supply the nodes with potentially missing
transactions, and it does so through an ancestor score-based heuristics40. The protocol uses a small constant DefTXtoSync as
the default number of transaction hashes that the transmitting node will select from its transaction pool in descending order of
ancestor score. The transmitting node will send exactly DefTXtoSync selected transaction hashes unless one of the following
holds:

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 17

2 4 6 8
0

1

2

3

4

C 1
00

%

2 4 6 8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T 1
00

%

Average Node Degree (deg)

F I G U R E 8 Relative communication cost (C100%) and time to fully synchronize the network (T100%). Network with 1000 nodes (p = 0.24).

100 200 300 400 500 600
Network Size (|V|)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
un

ic
at

io
n

C
os

t

SREP
MempoolSync (Y = 0.1)
MempoolSync (Y = 0.2)
MempoolSync (Y = 0.3)

F I G U R E 9 Normalized overall communication cost of SREP (C100%) and MempoolSync as a function of network size. Data
from Section 6.1. DefTXtoSync = 1000. Y is the MempoolSync heuristic constant.

1) Transmitting node’s transaction pool is much larger than DefTXtoSync (e.g., 10 times). In this case, the node will send
Y × DefTXtoSync top rated transactions, where Y is a constant between 0 and 1, or

2) Transmitting node’s transaction pool is smaller than DefTXtoSync. In this case, the node will send its entire transaction
pool. Because DefTXtoSync is a small constant, this is a quite rare event. It occurs only when the node has just joined
the Bitcoin network or has just propagated a large block that triggered a massive transaction pool cleanup7.

In Fig. 9, we compare the overall communication costs of MempoolSync and SREP. For SREP, we plot the communication
cost to sync the entire network (C100%). For MempoolSync, we plot the communication cost that MempoolSync incurs until SREP
would achieve a full sync.

Note that this kind of comparison gives an advantage to MempoolSync. While SREP’s C100% implies that the network is fully
synced, MempoolSync’s communication cost does not. In fact, MempoolSync has no guarantees about the communication (or
time) needed to sync the entire network. Note also that MempoolSync uses Bitcoin internals to calculate the ancestor score of
the transactions and later uses this score to determine which transactions to transmit. As opposed to MempoolSync, SREP is a
general approach that does not rely on any Bitcoin internals and can be seamlessly integrated into other blockchains that keep
transaction pools.

18 Boskov ET AL.

deg ψ Diameter
average

I100%
average

C100% (GB)
average

4
0.355

16
2.5 1.214397

0.5 3.0 3.165879
0.6 3.1 4.801665

8
0.355

9
1.7 2.428649

0.5 2.0 6.317304
0.6 2.0 9.569259

12
0.355

7
1.0 3.642738

0.5 1.5 9.485572
0.6 2.0 14.347242

16
0.355

6
1.0 4.876714

0.5 1.0 12.649385
0.6 1.0 19.135943

20
0.355

5
1.0 6.065679

0.5 1.0 15.804836
0.6 1.0 23.886079

24
0.355

5
1.0 7.294909

0.5 1.0 18.966694
0.6 1.0 28.672272

28
0.355

5
1.0 8.465624

0.5 1.0 22.156316
0.6 1.0 33.446278

T A B L E 3 SREP over a 10,000 nodes network. p = 0.24.

6.4 Communication Cost in Large-Scale Networks

Event-based simulators such as SREPSim may consume prohibitive amounts of memory and take a long time to complete
simulations when the simulated network is large22. To address this issue, we designed a SREPSim module that computes SREP’s
performance metrics analytically. In particular, we implement the functions from Definitions 3 and 4, and rely on the results
from Lemma 4 to compute C100% and I100%. We describe the SREPSim’s analytical module in Procedure 2. Using this module,
we can easily compute the desired performance metrics for the networks of realistic sizes (e.g., Bitcoin and Ethereum)30,31.

In Table 3, we summarize the results for a 10,000 nodes network with various average node degrees (deg) and the measure of
similarity among transaction pools (ψ). As we report the communication cost, we assume that the transaction pools represent
each transaction as a 32-byte long globally unique hash26. All simulations complete in tens of minutes.

6.5 Sync Time in Time-Varying Networks

Here we validate our analytical findings about connected time-varying graphs. Following the order of our analysis, we first
simulate time-varying lines and then proceed to graphs. For the purpose of simulation, we extend SREPSim’s topology
generation module with connected time-varying graphs from Definition 7. To get the initial underlying graphs, we rely on a
topology generation procedure similar to the one mentioned at the beginning of this section. We assign connection probabilities
independently to each edge to get the final connected time-varying graph.

In Fig. 10, we plot the time to sync time-varying lines against the predicted upper bound. Each simulation is repeated 1000
times and the 95% confidence intervals are reported. To better illustrate the dynamics of the network, we set the connection
probability as low as pcon = 0.05, which means that the average wait time for an edge to get active is 20 time slots. Our
simulations confirm the O(n) upper bound predicted by Theorem 5 and Theorem 6.

In Fig. 11, we analyze the effect of connection probability pcon to the sync time. We vary pcon over {0.05, 0.1, 0.15} and
consider time-varying lines ranging from 2 to 20 nodes. As in the previous experiments, we repeat each simulation 1000 times
and report 95% confidence intervals. Higher connection probabilities mean that the wait times for connections to get active
are smaller, which makes the network change more rapidly. Note that our analytical results from Theorem 6 get tighter as the
network changes more rapidly.

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 19

Procedure 2 SREPSim’s analytical module.

Input: Network G = (V , E).
Input: Initial pool assignment A as S0..S|V |–1.
Output: Overall network communication cost C100%.
Output: Maximal number of iterations I100%.
1: function CALCULATEM(A)
2: M ← zeros(|V |× |V |) ▷ Zero matrix
3: for i← 0 to |V | – 1 do
4: for j← i + 1 to |V | – 1 do
5: if i ∈ G[j] then ▷ i neighbor of j
6: M[i][j]← |Si ⊕ Sj|

7: C100% ← 0
8: I100% ← 0
9: M ← CalculateM(A)
10: while

∑
mij > 0 do

11: for i← 0 to |V | – 1 do
12: S′

i ← Si ▷ New assignment
13: for j ∈ G[i] do
14: S′

i ← S′
i ∪ Sj

15: C100% = C100% +
∑

mij

16: I100% ← I100% + 1
17: A← A′

18: M ← CalculateM(A)

5 10 15 20 25 30 35 40
Network Size

0

200

400

600

800

Ti
m

e

Bound
Simulation

F I G U R E 10 Time to sync time-varying lines. Analytical upper bound versus simulations. Connection probability pcon = 0.05.

In Fig. 12, we plot the sync time in time-varying graphs and time-varying lines with the same number of nodes. For each
network size, we generate 1000 time-varying graphs and report the mean time among all 1000 graphs with the corresponding
95% confidence intervals. As predicted by Theorem 7, the time to sync n-node time-varying lines is no better than the time
to sync n-node time-varying graphs. As the graph gets larger, the difference in the number of connections in the graph and its
corresponding spanning tree gets larger, which widens the gap between our analysis from the proof of Theorem 7 and simulations.
In Fig. 13, we plot, on a logarithmic scale, the sync time in time-varying graphs of sizes ranging from 50 to 400 nodes.

20 Boskov ET AL.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Network Size

0

100

200

300

400

Ti
m

e

pcon=0.05(Bound)
pcon=0.1(Bound)
pcon=0.15(Bound)
pcon=0.05(Simulation)
pcon=0.1(Simulation)
pcon=0.15(Simulation)

F I G U R E 11 Time to sync time-varying lines for pcon ranging over {0.05, 0.1, 0.15}. Analytical upper bound versus simulations for each pcon.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Network Size

0

100

200

300

400

Ti
m

e

Bound
Simulation(graph)
Simulation(line)

F I G U R E 12 Time to sync time-varying graphs and lines with equal number of nodes. Analysis versus simulations. Connection probability pcon = 0.05.

50 100 150 200 250 300 350 400
Network Size

100

1000

10000

lo
g(

Ti
m

e)

Bound
Simulation(graph)

F I G U R E 13 Time to sync larger time-varying graphs. Analysis versus simulations. Connection probability pcon = 0.05.

7 CONCLUSION

In this work, we have developed and analyzed SREP, an independent protocol that assists block propagation in large-scale
blockchains. This new protocol synchronizes transaction pools of nodes in the blockchain network using communication-efficient
set reconciliation approaches from the literature. However, rather than inserting itself directly into the block propagation process,
as previous works have done, SREP operates in a distributed manner outside the block propagation channels of the network.

Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks 21

As a result, it is easier to formally analyze its performance, and, indeed, we have shown that it completes in time bounded
by the network diameter (or logarithmic in the network size for “small-world” networks, which reasonably model large-scale
blockchains). In time-varying networks with constant edge connection probability, SREP completes in expected time that is
linear in the size of the network.

We have also validated our analytical findings against a novel event-based simulator that we have developed. We run the
simulator on real-world transaction pool statistics drawn from our own measurement campaign. In our simulations, SREP incurs
only tens of gigabytes of overall bandwidth overhead to synchronize networks with ten thousand nodes, which is several times
better than the current approach in the literature.

For future work, we propose to consider multi-party set reconciliation41,42 in the context of transaction pool sync. Though
the main benefit may be further reduction in overall communication cost, it is not clear whether an advantage over pairwise
approaches can be achieved when an average pairwise intersection is large compared to the total intersection (∩iSi)41. We also
propose considering very frequently changing time-varying graphs with high probabilities of primal sync interruption. In such
scenarios, particularly interesting are primal syncs that support partial and prioritized synchronization43. We further propose
analyzing the benefits of SREP-like protocols in synchronizing unconfirmed transactions in directed acyclic graph-based44

distributed ledger technologies.
Finally, we emphasize some implementation aspects. Given that the nodes in the blockchain network may not keep track of

the overall network size, it may be necessary to use techniques from the network measurement research45,20,19,28 to develop a
network size estimate. Alternatively, one may consider applying a combination of linear sketches and network coding similar
as Mitzenmacher and Pagh41 to ascertain the convergence of the sync without requiring a network size estimate. Another
implementation concern is the potential arrival of new blocks during the sync. In this case, one can utilize efficient probabilistic
filers46,47 to avoid reintroducing transactions that were included in the recently arrived blocks. Lastly, we note that one can
choose between several available implementations of primal syncs depending on the memory and compute constraints of the
blockchain nodes. For a fine-grained performance analysis of primal syncs and their implementations, we refer the reader to our
previous work27.

REFERENCES
1. Matt Corallo . Compact Block Relay Protocol. https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki; 2016. (Accessed 2022-12-02).
2. Peter Tschipper . BUIP010 Xtreme Thinblocks. https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/; 2016. (Accessed 2022-12-

02).
3. Ozisik AP, Andresen G, Levine BN, Tapp D, Bissias G, Katkuri S. Graphene: Efficient Interactive Set Reconciliation Applied to Blockchain

Propagation. In: SIGCOMM ’19. Association for Computing Machinery 2019; New York, NY, USA:303–317
4. Ding X, Zhao L, Luo L, Xie J, Guo D, Li J. Gauze: Enabling Communication-Friendly Block Synchronization with Cuckoo Filter. Frontiers of

Computer Science. 2022;17(3):173403. doi: 10.1007/s11704-022-1685-5
5. Hu Z, Xiao Z. Dino: A Block Transmission Protocol with Low Bandwidth Consumption and Propagation Latency. In: IEEE. 2022:1319-1328
6. Imtiaz MA, Starobinski D, Trachtenberg A. Empirical Comparison of Block Relay Protocols. IEEE Transactions on Network and Service

Management. 2022:1-1. doi: 10.1109/TNSM.2022.3195976
7. Imtiaz MA, Starobinski D, Trachtenberg A, Younis N. Churn in the Bitcoin Network. IEEE Transactions on Network and Service Management.

2021;18(2):1598-1615. doi: 10.1109/TNSM.2021.3050428
8. Imtiaz MA, Starobinski D, Trachtenberg A, Younis N. Churn in the Bitcoin Network: Characterization and Impact. In: IEEE. 2019:431-439
9. Motlagh SG, Mišić J, Mišić VB. Impact of Node Churn in the Bitcoin Network. IEEE Transactions on Network Science and Engineering.

2020;7(3):2104-2113. doi: 10.1109/TNSE.2020.2974739
10. Mišić J, Mišić VB, Chang X. On the Benefits of Compact Blocks in Bitcoin. In: IEEE. 2020:1-6
11. Zhao C, Wang T, Zhang S, Liew SC. HCB: Enabling Compact Block in Ethereum Network with Secondary Pool and Transaction Prediction.

https://arxiv.org/abs/2212.13367; 2022.
12. Xiao Y, Zhang N, Lou W, Hou YT. A Survey of Distributed Consensus Protocols for Blockchain Networks. IEEE Communications Surveys &

Tutorials. 2020;22(2):1432-1465. doi: 10.1109/COMST.2020.2969706
13. Minsky Y, Trachtenberg A. Practical set reconciliation. In: . 248. IEEE. 2002.
14. Minsky Y, Trachtenberg A, Zippel R. Set reconciliation with nearly optimal communication complexity. In: IEEE. 2001:232-. doi:

https://doi.org/10.1109/ISIT.2001.936095
15. Dodis Y, Reyzin L, Smith A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin C, Camenisch JL.,

eds. Advances in Cryptology - EUROCRYPT 2004IACR. Springer Berlin Heidelberg 2004; Berlin, Heidelberg:523–540. ISBN: 978-3-540-24676-3.
16. Goodrich MT, Mitzenmacher M. Invertible bloom lookup tables. In: IEEE. 2011:792-799. doi: https://doi.org/10.1109/Allerton.2011.6120248
17. Eppstein D, Goodrich MT, Uyeda F, Varghese G. What’s the Difference? Efficient Set Reconciliation without Prior Context. In: SIGCOMM ’11.

ACM. Association for Computing Machinery 2011; New York, NY, USA:218–229. doi: https://doi.org/10.1145/2018436.2018462
18. Lázaro F, Matuz B. A Rate-Compatible Solution to the Set Reconciliation Problem. IEEE Transactions on Communications. 2023;71(10):5769-5782.

doi: 10.1109/TCOMM.2023.3296630
19. Wang T, Zhao C, Yang Q, Zhang S, Liew SC. Ethna: Analyzing the Underlying Peer-to-Peer Network of Ethereum Blockchain. IEEE Transactions

on Network Science and Engineering. 2021;8(3):2131-2146. doi: 10.1109/TNSE.2021.3078181
20. Gao Y, Shi J, Wang X, Tan Q, Zhao C, Yin Z. Topology Measurement and Analysis on Ethereum P2P Network. In: IEEE. 2019:1-7

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
http://dx.doi.org/10.1007/s11704-022-1685-5
http://dx.doi.org/10.1109/TNSM.2022.3195976
http://dx.doi.org/10.1109/TNSM.2021.3050428
http://dx.doi.org/10.1109/TNSE.2020.2974739
https://arxiv.org/abs/2212.13367
http://dx.doi.org/10.1109/COMST.2020.2969706
http://dx.doi.org/10.1109/TCOMM.2023.3296630
http://dx.doi.org/10.1109/TNSE.2021.3078181

22 Boskov ET AL.

21. Shahsavari Y, Zhang K, Talhi C. A Theoretical Model for Block Propagation Analysis in Bitcoin Network. IEEE Transactions on Engineering
Management. 2022;69(4):1459-1476. doi: 10.1109/TEM.2020.2989170

22. Ma X, Wu H, Xu D, Wolter K. CBlockSim: A Modular High-Performance Blockchain Simulator. In: IEEE. 2022:1-5
23. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440-442. doi: 10.1038/30918
24. Holme P, Saramäki J. Temporal networks. Physics Reports. 2012;519(3):97-125. Temporal Networksdoi:

https://doi.org/10.1016/j.physrep.2012.03.001
25. Kuhn F, Oshman R. Dynamic Networks: Models and Algorithms. SIGACT News. 2011;42(1):82–96. doi: 10.1145/1959045.1959064
26. Delgado-Segura S, Pérez-Solà C, Navarro-Arribas G, Herrera-Joancomartí J. Analysis of the Bitcoin UTXO Set. In: Zohar A, Eyal I, Teague V, et

al., eds. Financial Cryptography and Data SecuritySpringer Berlin Heidelberg. Springer Berlin Heidelberg 2019; Berlin, Heidelberg:78–91.
27. Boškov N, Trachtenberg A, Starobinski D. GenSync: A New Framework for Benchmarking and Optimizing Reconciliation of Data. IEEE

Transactions on Network and Service Management. 2022:1-1. doi: 10.1109/TNSM.2022.3164369
28. Kiffer L, Salman A, Levin D, Mislove A, Nita-Rotaru C. Under the Hood of the Ethereum Gossip Protocol. In: Springer Berlin Heidelberg.

Springer-Verlag 2021; Berlin, Heidelberg:437–456
29. Bitcoin developers . Bitcoin referential implementation. https://github.com/bitcoin/bitcoin; 2022. (Accessed 2022-12-02).
30. Delgado-Segura S, Bakshi S, Pérez-Solà C, et al. TxProbe: Discovering Bitcoin’s Network Topology Using Orphan Transactions. In: Goldberg I,

Moore T., eds. Financial Cryptography and Data SecuritySpringer Berlin Heidelberg. Springer International Publishing 2019; Cham:550–566.
31. Grundmann M, Baumstark M, Hartenstein H. On the Peer Degree Distribution of the Bitcoin P2P Network. In: IEEE. 2022:1-5
32. Maymounkov P, Mazières D. Kademlia: A Peer-to-Peer Information System Based on the XOR Metric. In: Druschel P, Kaashoek F, Rowstron A.,

eds. Peer-to-Peer SystemsSpringer Berlin Heidelberg. Springer Berlin Heidelberg 2002; Berlin, Heidelberg:53–65.
33. Chung F, Lu L. The diameter of sparse random graphs. Advances in Applied Mathematics. 2001;26(4):257–279.
34. Ross SM. Stochastic processes. John Wiley & Sons, 1995.
35. Olver F, Lozier D, Boisvert R, Clark C. The NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY, 2010.
36. Boškov N. SREPSim. http://www.github.com/nislab/SREPSim; . (Accessed 2023-02-02).
37. Banno R, Shudo K. Simulating a Blockchain Network with SimBlock. In: IEEE. 2019:3-4
38. Imtiaz MA, Starobinski D, Trachtenberg A. Characterizing Orphan Transactions in the Bitcoin Network. In: IEEE. 2020:1-9
39. Imtiaz MA, Starobinski D, Trachtenberg A. Investigating Orphan Transactions in the Bitcoin Network. IEEE Transactions on Network and Service

Management. 2021;18(2):1718-1731. doi: 10.1109/TNSM.2021.3056949
40. Bitcoin developers . Ancestor Score Sorting. https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h; 2022. (Accessed 2022-12-02).
41. Mitzenmacher M, Pagh R. Simple multi-party set reconciliation. Distributed Computing. 2018;31(6):441-453. doi: 10.1007/s00446-017-0316-0
42. Boral A, Mitzenmacher M. Multi-party set reconciliation using characteristic polynomials. In: IEEE. 2014:1182-1187
43. Jin J, Si W, Starobinski D, Trachtenberg A. Prioritized data synchronization for disruption tolerant networks. In: IEEE. 2012:1-8. doi:

https://doi.org/10.1109/MILCOM.2012.6415678
44. Dong Z, Zheng E, Choon Y, Zomaya AY. DAGBENCH: A Performance Evaluation Framework for DAG Distributed Ledgers. In: IEEE.

2019:264-271
45. Kim SK, Ma Z, Murali S, Mason J, Miller A, Bailey M. Measuring Ethereum Network Peers. In: IMC ’18. Association for Computing Machinery

2018; New York, NY, USA:91–104
46. Tarkoma S, Rothenberg CE, Lagerspetz E. Theory and Practice of Bloom Filters for Distributed Systems. IEEE Communications Surveys &

Tutorials. 2012;14(1):131-155. doi: 10.1109/SURV.2011.031611.00024
47. Fan B, Andersen DG, Kaminsky M, Mitzenmacher MD. Cuckoo Filter: Practically Better Than Bloom. In: CoNEXT ’14. Association for

Computing Machinery 2014; New York, NY, USA:75–88

http://dx.doi.org/10.1109/TEM.2020.2989170
http://dx.doi.org/10.1038/30918
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1145/1959045.1959064
http://dx.doi.org/10.1109/TNSM.2022.3164369
https://github.com/bitcoin/bitcoin
http://www.github.com/nislab/SREPSim
http://dx.doi.org/10.1109/TNSM.2021.3056949
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
http://dx.doi.org/10.1007/s00446-017-0316-0
http://dx.doi.org/10.1109/SURV.2011.031611.00024

	Out-Of-Band Transaction Pool Sync for Large Dynamic Blockchain Networks
	Abstract
	Introduction
	Background and Related Work
	The SREP Algorithm
	Avoiding Full Replication

	Performance Analysis in Static Networks
	Network Model
	Topology
	Transaction Pools

	Elementary SREP (E-SREP)
	Elementary Parallel SREP (EP-SREP)
	Multi-element SREP

	Performance Analysis in Dynamic Networks
	Network Model
	SREP in Linear Time-Varying Topologies
	Expected Time to Sync Time-Varying Lines
	SREP in General Time-Varying Topologies

	Simulations
	Configuring Network Model Parameters
	SREP Properties Validation
	Comparison with MempoolSync
	Communication Cost in Large-Scale Networks
	Sync Time in Time-Varying Networks

	Conclusion
	REFERENCES

