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Abstract— We investigate both theoretically and experimen-
tally the stability of CSMA-based wireless mesh networks, where
a network is said to be stable if and only if the queue of each
relay node remains (almost surely) finite. We identify two key
factors that impact stability: the network size and the so-called
“stealing effect”, a consequence of the hidden node problem
and non-zero propagation delays. We consider the case of a
greedy source and prove, by using Foster’s theorem, that 3-hop
networks are stable, but only if the stealing effect is accounted
for. On the other hand, we prove that 4-hop networks are always
unstable (even with the stealing effect) and show by simulations
that instability extends to more complex linear and non-linear
topologies. We devise a stabilization strategy that throttles the
source and prove that there exists a finite, non-zero rate at which
the source can transmit while keeping the system stable. We run
real experiments on a testbed composed of IEEE 802.11 nodes,
which show the contrasting behavior of 3-hop and 4-hop networks
and the effectiveness of our stabilization strategy.

I. INTRODUCTION

A major challenge in multihop wireless networks is to
devise efficient decentralized Medium Access Control (MAC)
protocols. This is particularly relevant for Wireless Mesh Net-
works (WMNs) that promise to deliver ubiquitous, high speed
Internet access at low cost. Quite a few of these prototypes
have been deployed by both academia and the industry; they
eliminate the expensive wired connections in the backbone by
having their architecture composed of: an Access Part (AP)
to deliver access to the users and a backbone to forward the
traffic to/from a Wired Access Point (WAP) to the AP through
multiple Transit Access Points (TAPs).

This paper deals with the backbone part of a WMN,
whose multihop nature requires distributed solutions for the
scheduling problem in order to work in practice. Most current
MAC protocols use Carrier-Sense Multiple Access (CSMA),
and its most popular implementation IEEE 802.11 [4], to solve
the scheduling problem in a distributed manner. However,
these protocols were initially designed for single-hop commu-
nication and therefore are not adapted to multihop scenarios,
where multiple links have to cooperate to efficiently transport
a single flow from its source to its destination. As a result, the
buffer may overflow, leading to very poor throughput and large
delays [11]. It is therefore critical to rigorously characterize
the behavior of CSMA-like protocols in multihop scenarios
and propose possible improvements when appropriate.

We focus our analytical investigation on one-dimensional
backbone mesh networks, made of K + 1 nodes 0, 1, . . . ,K.

Node 0 is the WAP that we assume to be saturated (it always
has traffic to send). The K other nodes are the TAPs, with
nodes 1, . . . ,K − 1 relaying traffic until the last node K.
The transmission/receiving range is limited to the nearest
neighbor transmissions; the interference range is limited to the
second nearest neighbors. Such networks have been analyzed
by [11, 19], when all the TAPs are bufferless, and with CSMA
protocols modified accordingly to avoid or handle losses. We
consider, instead, unmodified CSMA protocols, and TAPs with
a large buffer (which is usually the case) that we approximate
to be infinite in our model. The network is then lossless, but
we are now confronted with a stability problem, as the buffer
queues (and thus delays) may become infinite. As shown in
this paper, even for linear topologies a rigorous analysis is far
from trivial. Fortunately, simulations show that our analytical
insights extend to more general topologies.

We prove that the network is stable or unstable, depending
on its size and a phenomenon referred to as a stealing
effect that results from the hidden node problem and non-
zero propagation delays. The likelihood of this phenomenon
is captured by the stealing effect probability 0 ≤ p ≤ 1, a
parameter explained in detail in Section IV.C. The stealing
effect is absent (i.e., p = 0) only in the unrealistic case where
RTS/CTS control messages are instantaneous. It becomes more
significant when RTS/CTS are disabled. Quite surprisingly, the
stealing effect plays a stabilizing role on the network.

After reviewing the related work in Section II, we provide
experimental evidence of the different behavior in terms of
stability of wireless IEEE 802.11b mesh networks in Sec-
tion III, when K = 3 or K = 4. Multihop 802.11 networks
are known to suffer from unfairness and starvation (see [12,
15, 21, 22]), but to the best of our knowledge, the (in)stability
of multihop 802.11 networks has not be demonstrated either
experimentally or analytically to date.

In Section IV, we introduce a discrete Markov chain model
to capture this phenomenon. We demonstrate in Section V
that if K = 3, then the network is stable if and only if the
stealing effect is present (p > 0). When K > 3 however,
the network is always unstable, as proven in Section VI for
K = 4, and presumably so as well for larger K, as shown
in Section VII with a formal proof for the case p = 0. Our
analytical findings therefore support the ad-hoc observation
that, with current hardware, it does not make sense to run
mesh networks more than 3-hop long [2].



We therefore propose in Section VIII a stabilization strategy
that keeps the network stable by throttling the source. This
strategy is implementable in existing MAC cards by assigning
to the WAP a larger minimum contention window than to the
TAPs. The ratio between the values of the minimum contention
windows is captured in our model by a throttling factor 0 ≤
q ≤ 1, defined in Section VIII. We compute in the same section
bounds on the threshold value of q ensuring stability.

The (in)stability of wireless mesh networks also arises in
more general topologies, as ns-2 simulations show in Sec-
tion IX. Finally, we summarize the results in Section X.

II. RELATED WORK

The unarguable success of the IEEE 802.11 [4] protocol
in WiFi communications has lead to the current develop-
ment of a new draft focusing on multihop networks such as
WMNs, 802.11s [8, 10]. However, until the release of 802.11s,
802.11b/g remains the standard and it is therefore essential to
understand its behavior. Towards this goal, previous works [6,
10, 20] present drawbacks of the current protocol in a multihop
environment. In [15], Garetto et al. present a model to derive
the throughput of flows in a multihop networks. Furthermore,
Ng et al. identify the existence of an optimal offered load
and propose source rate limiting at the application layer as
a solution [20]. Our approach differs in the sense that we
introduce an analytical model that focuses on buffer stability
and therefore gives insight into the existence of a maximal
feasible load. Furthermore our stabilization strategy uses solely
the MAC layer and therefore does not impose any limiting
requirement on the client side.

Tackling the congestion problem at the transport layer, e.g.
TCP, is studied in [21, 22]. Shi et al. focus on inter-flow
competition by studying the starvation occurring when a one-
hop flow competes with a two-hop flow and propose a counter-
starvation technique that solves the problem. Similarly Rang-
wala et al. propose an other rate-control protocol achieving
better fairness and efficiency than TCP. Our works differs as
we focus on the link competition taking place within a single
flow and study the factors leading to transitions from stability
to instability. Thus, rather than relying on the transport layer,
we throttle congestion at the MAC (link) layer (in the OSI
model, this functionality of the link layer is referred to as
flow control [16]). Analytical and simulation results showing
that a hop-by-hop congestion algorithm outperforms an end-
to-end version are presented in [25]. Their findings reinforce
the need to implement congestion control at the MAC layer.

The work in [18] studies the system stability of random
access protocols in single-hop settings. Our work goes further
by analyzing the multihop scenario where the buffer states of
successive queues are dependent.

The distributed scheduling problem, which aims at ensuring
stability and maximal throughput, has witnessed growing
interest in the research community. The seminal work [23]
introduces a back-pressure algorithm that uses global network
buffer information to derive an optimal routing/scheduling
policy and achieve stability and maximal throughput. Several
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Fig. 1. Linear topology of a WMN backbone.

extensions of this work have been conducted, e.g., [26] reduces
the number of queues maintained at each node to enhance
scalability. Further work on throughput and fairness guarantee
can be found in [9], where Chapokar et al. introduce a
distributed scheduling strategy that attains a guaranteed ratio
of the maximal throughput. A more complete review of the
stability problem in scheduling is presented in [24], where the
tradeoff between complexity, utility and delay is discussed in
depth. Finally a scheduling policy based on the buffer queue
length is presented and studied analytically in [17]. These
works propose conceptual scheduling solutions that keep the
network stable, but which depart from 802.11 protocols to
various extents, and for which no practical implementation
exists to date. Our work differs from this previous body of
work, as we focus on the stability of existing CSMA protocols,
e.g. 802.11. To the best of our knowledge, we are the first to
identify the key factors (network size and stealing effect) that
affect the network stability. Furthermore, following our ana-
lytical study, we develop a practical stabilization strategy and
validate experimentally our results with off-the-shelf hardware.

III. EXPERIMENTAL ANALYSIS

We show, through measurements on a testbed, an unex-
pected behavior of 802.11 multihop networks, which is the
striking difference in stability between 3- and 4-hop networks.

A. Scenario

We consider a linear topology motivated by the backbone of
WMNs, where each node hears only its direct neighbors (cf.
Figure 1). A common scenario in these networks occurs when
the gateway, the WAP, needs to send packets to an end-user
that is beyond its direct coverage range. To achieve this goal,
the packets transit through the wireless backbone, forwarded
by multiple TAPs. As the backbone part is a key element of
any WMN, we are interested in optimizing its performance as
far as throughput and delay are concerned.

B. System description

Our testbed is composed of two laptops that act as the source
and sink of the traffic and five wireless routers that act as the
WAP (node 0) and TAPi (node i with 1 ≤ i ≤ 4).

Each laptop runs on Linux with the software Iperf [1] used
to generate saturated UDP traffic with payload size of 1470
bytes. Each laptop is then connected through a wired cable to
either the WAP or the last TAP (i.e., node 4).

The wireless routers are Asus WL-500gP running the ver-
sion Kamikaze 7.07 of the OpenWRT firmware [3]. We change
the mini-PCI WiFi cards to Atheros cards in order to benefit
from the flexibility of the MadWifi driver [5]. This allows the
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Fig. 2. Experimental results for the buffer evolution of each relay node in
3- and 4-hop topologies. A time slot corresponds to an event when the buffer
size is recorded, that is every time a packet arrives at a node.

modifications of the driver source code to perform both buffer
monitoring and the modification of the contention window. We
then set the routers to run in ad-hoc mode on channel 13 of
802.11b at the data rate of 1Mb/s and without RTS/CTS. To
avoid interference from neighboring networks, we perform our
measurements in the basement of the BC building at EPFL,
where no other wireless networks could be sensed. Finally,
we set our topology to match our theoretical study: direct
neighbors can communicate together but nodes separated by
two hops or more cannot hear each other.

C. Measurement results

The major finding is the drastically different stability be-
havior of 3-hop and 4-hop topologies that can appear to be
counter-intuitive. Figure 2 shows that the 3-hop topology is
stable, but the 4-hop network is unstable. Furthermore, the 4-
hop instability is due to node 1, whose queue length exhibits
a transient behavior, i.e., which indefinitely grows until it
reaches the hardware limit (50 packets).

IV. MODEL

A. MAC layer description

In order to understand the experimental stability results
obtained in Section III, we introduce an analytical model that
is inspired from the behavior of CSMA/CA protocols (e.g.,
802.11-like protocols) with some necessary simplifications
for the sake of tractability. We emphasize that, given the
mathematical assumptions, our analysis is exact.

The first common assumption [9, 13, 18, 23, 26] is that of a
slotted discrete time axis, that is, each transmission takes one
time slot and all the transmissions occurring during a given slot
start and finish at the same time. We consider a greedy source
model, i.e., the WAP (gateway) always has new packets ready
for transmission. Assuming a K-hop system, the packets flow
from the WAP to TAPK , via TAP1, TAP2, . . ., TAPK−1
(see Figure 1). TAPs do not generate packets of their own.
Each TAP is equipped with an infinite buffer.

We assume that the system evolves according to a two-
phase mechanism: a link competition phase and a transmission
phase. The link competition phase, whose length is assumed
to be negligible, occurs at the beginning of each slot. During
this phase, all the nodes having a non-empty buffer compete
for the channel and a pattern of successful transmissions
emerges, referred to as transmission pattern in this paper.
Given the current state of buffers, the link competition process
is assumed to be independent of competitions that happened

in previous slots. This assumption is similar to the commonly
used assumption of exponentially (memoryless) distributed
backoffs. During this phase, non-empty nodes are sequentially
chosen at random and added to the transmission pattern
if and only if they do not interfere with already selected
communications (with the notable exception of the stealing
effect described below). The final pattern is obtained when no
more nodes can be added without interfering with the others

The second phase of the model is fairly straightforward
as it consists in applying the transmission pattern from the
previous phase in order to update the buffer status of the
system. This buffer status information is of utmost importance
for our analysis because it is the parameter that indicates
whether the network remains stable (no buffer explodes) or
suffers congestion (one or more buffers build up).

B. Discrete Markov Chain Model

We now formalize the model just described mathematically.
All packets are generated by the WAP (node 0), and are for-
warded to the last TAP (node K) by successive transmissions
via the intermediate nodes (TAPs) 1 to K − 1. A time step
n ∈ N corresponds to the successful transmission of a packet
from some node i to its neighbor i + 1, or if K is large
enough, of a set of packets from different non interfering nodes
i, j, . . . to nodes i+1, j +1, . . ., provided these transmissions
overlap in time (the transmitters and receivers must therefore
not interfere with each other). We assume that node 0 always
has packets to transmit (infinite queue), and that node K
consumes immediately the packets, as it is the exit point of
the backbone (its queue is always 0).

We are interested in the evolution of the queue sizes bi of
relaying nodes 1 ≤ i ≤ K − 1 over time, and therefore we
adopt as a state variable of the system at time n the vector

~b(n) = [b1(n) b2(n) . . . bK−1(n)]T ,

with T denoting transposition. We also introduce a set of K
auxiliary binary variables zi, 0 ≤ i ≤ K − 1, representing
the ith link activity at time slot n: zi(n) = 1 if a packet
was successfully transmitted from node i to node i+1 during
the nth time slot, and zi(n) = 0 otherwise. Observing that
bi(n+1) = bi(n)+zi−1(n)−zi(n), we can recast the dynamics
of the system as

~b(n + 1) = ~b(n) + A ∗ ~z(n) (1)

where

~z(n) = [z0(n) z1(n) z2(n) . . . zK−1(n)]T

A =













1 −1 0 . . . 0

0 1 −1 0
...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1













.

Finally, the activity of a link zi depends on the queue sizes of
all the nodes, which we cast as zi = gi(~b) for some random
function gi(·) of the queue size vector, or in vector form as

~z(n) = g(~b(n)). (2)

3



The specification of g = [g0, . . . , gK−1]T is the less straight-
forward part of the model, as it requires to enter in some
additional details of the CSMA/CA protocols, which we differ
for the next sections. We will first expose it in Section V for
a K = 3 hops network, and then move to the larger networks
with K = 4 and K ≥ 5 in the next two sections, as the
specification of g comes with some level of complexity as
K gets larger. Nevertheless, we can already mention here two
simple constraints that g must verify: (i) node i cannot transmit
if its buffer is empty, and therefore zi = gi(~b) = 0 if bi = 0;
(ii) nodes that successfully transmit in the same time slot must
be at least 2 hops apart, as otherwise packet from node i would
collide at node i + 1 with the packet from node i + 2. Hence

zizi+k = 0 for k ∈ {−2,−1, 1, 2}. (3)

We observe that (1) and (2) make the model a discrete-time,
irreducible Markov chain. The (in)stability of the network
coincides with its (non-)ergodicity.

C. Stealing effect phenomenon

The stealing effect phenomenon is a result of the well-
known hidden node problem occurring in multihop topologies.
Indeed, the existence of directional flow in the backbone of
mesh networks, from WAP (node 0) to TAPK (node K) may
induce unfairness in a way that does not arise in single-hop
scenarios. When node i first enters the link competition phase,
node i+2 may be unaware of this transmission attempt. Node
i+2 may therefore start a concurrent transmission as it senses
the medium to be idle. As a collision occurs at node i + 1,
node i will experience an unsuccessful transmission while the
transmission from node i + 2 will succeed. We refer to this
unfairness artifact as the stealing effect.

Definition 1 (Stealing effect): The stealing effect occurs
when a downstream node i + 2 successfully captures the
channel from an upstream node i, even though it accesses
the medium later. We define p to be the probability of the
occurrence of the stealing effect.
In IEEE 802.11, the stealing effect corresponds to the event
where node i + 2 captures the channel even though it has
a larger backoff value than node i. The probability of this
event depends on the specific protocol implementation. If the
optional RTS/CTS handshake is disabled, then p → 1. If
RTS/CTS is enabled, then p is typically much smaller, but
still non-zero because RTS messages may collide [22]. Indeed,
the transmission time of a control message (e.g., the RTS
transmission time at the 1Mb/s basic rate is 352µs) is non-
negligible compared to the duration of a backoff slot (20µs).

In our model, the stealing effect is captured by having the
function g(·) in (2) depending on p. As revealed by our anal-
ysis, a positive and somewhat counterintuitive consequence of
the stealing effect is the promotion of a laminar packet flow,
namely, a smooth propagation of packets. Indeed, by favoring
downstream links over upstream ones, it creates a form of
virtual back-pressure that prevents packets from being pushed
too quickly into the network.

(1+p)/3

(1-p)/31/3(1-p)/2

(1+p)/2

1/21/21
b1

b2

B

C
D

A

Fig. 3. Random walk in Z2 modeling the 3-hop network.

D. Stability definition

A buffer is stable when its occupancy does not tend to
increase forever. More formally, we adopt the usual definitions
of stability (see e.g. Section 2.2 of [7]).

Definition 2 (Stability): A buffer is stable when its evolu-
tion is ergodic (it goes back to zero a.s. in finite time). A
network is stable when the queues of all forwarding nodes
(i.e., all TAPs) are stable.

V. 3-HOP NETWORKS

Let us first analyze the 3-hop topology, which remains
relatively simple because only one link can be active at a
given time slot. Indeed, the only three possible transmission
patterns ~z are [1 0 0]T , [0 1 0]T and [0 0 1]T . We can now
complete the description of the function g(·), before analyzing
the ergodicity of the Markov chain.

A. System evolution

The role of the stochastic function g(·) is to map a buffer
status ~b to a transmission pattern ~z with a certain probability.

First, in the case of an idealized CSMA/CA model without
the stealing effect (p = 0), all non-empty nodes have exactly
the same probability of being scheduled. That is, if only node
0 and node 1 (or, respectively, node 2) have a packet to send,
both patterns [1 0 0]T and [0 1 0]T (resp., [0 0 1]T ) happen
with probability 1/2. Similarly, when all three nodes have a
packet to send, each of the three possible transmission patterns
happens with probability 1/3.

More generally, when we include the stealing effect, we
capture the bias towards downstream links that are two hops
away. When only node 0 and node 1 compete for the channel,
nothing is changed and the probability of success remains 1/2
as they are only separated by one single hop. However, when
node 0 and node 2 compete together, there is a probability p
that node 2 steals the channel.

This leads us to define function g(·) differently for each
region of Z2 as shown in Figure 3. First, in region A =
{b1(n) = 0, b2(n) = 0}, g([b1(n) b2(n)]T ) = [1 0 0]T . In
region B = {b1(n) > 0, b2(n) = 0} we have that

g([b1(n) b2(n)]T ) =

{

[1 0 0]T with probability 1/2
[0 1 0]T with probability 1/2.

In region C = {b1(n) = 0, b2(n) > 0},

g([b1(n) b2(n)]T ) =

{

[1 0 0]T with probability (1 − p)/2
[0 0 1]T with probability (1 + p)/2.
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Fig. 4. Buffer evolution for 3-hop with different p values.

Finally, in region D = {b1(n) > 0, b2(n) > 0}, all three
nodes compete, and node 2 can still steal the channel from
node 0, hence

g([b1(n) b2(n)]T ) =











[1 0 0]T with probability (1 − p)/3
[0 1 0]T with probability 1/3
[0 0 1]T with probability (1 + p)/3.

B. Stability analysis
The buffer evolution from (1) is a random walk in Z2,

as depicted in Figure 3. Theorem 1 shows the stabilizing
influence of the stealing effect.

Theorem 1: A 3-hop network is unstable for the case p = 0
and it is stable for all 0 < p ≤ 1.

Proof: The instability of the case p = 0 is readily
proved with the Non-ergodicity theorem ( [14], p. 30) using
the Lyapunov function

h(b1, b2) = b1, (4)

and setting the constants c = d = 1 in that theorem.
Next we prove the stability of the cases 0 < p ≤ 1 by using

Foster’s theorem ( [14], p. 29) with the Lyapunov function

h(b1, b2) = b2
1 + b2

2 − b1b2,

the finite set F = {0 ≤ b1, b2 < 5/p}, and the notations

µb1,b2(n) = E
[

h(~b(n + 1)) | h(~b(n)) = h(b1, b2)
]

εb1,b2(n) = µb1,b2(n) − h(b1, b2),

where εb1,b2(n) can be interpreted as the drift of the random
walk at time n. Then we verify Foster’s theorem for all the
three regions of Z2 \ F . After some computations, we find
that for Region B \F , εb1,0(n) = 2− b1(n)/2 < 0. Likewise,
for region C \ F , we get ε0,b2(n) = 1 − (3 + p)b2(n)/2 <
0. Finally, for region D \ F , we have εb1,b2(n) = 5/3 −
p(b1(n) + b2(n))/3 < 0. Consequently, the two conditions
of the theorem are satisfied and stability is proved.

Finally, we present in Figure 4 the effect of p on the buffer
evolution through a simulation of our model. We also mention,
that our theoretical results give insight to monitor the buffer
of node 1 in order to assess the stability of the system (the
function of (4) only considers buffer b1 to prove instability).
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Fig. 5. Decision tree to obtain ~z = g(~b) for the 4-hop model.

VI. 4-HOP NETWORKS

The 4-hop system is relatively similar to the 3-hop except
that the function g(·) becomes more complex to derive. Indeed
the five possible patterns ~z are now [1 0 0 0]T , [0 1 0 0]T ,
[0 0 1 0]T , [0 0 0 1]T and [1 0 0 1]T

A. System evolution

The drastic difference when moving to 4-hop topologies is
that nodes that can transmit concurrently will reinforce each
other and will increase their transmission probability [11, 12].

This inter-dependence makes the determination of g(·)
less straightforward than in the 3-hop case. We capture this
complexity by a decision tree, depicted in Figure 5, which
maps all the sequential events that can occur for the selection
of the transmission pattern (state in bold in Figure 5).

Before describing the exact mechanisms behind our decision
tree, we introduce some necessary notations. First, we define
the iteration step m that represents the step between two
sequential events (an event corresponds to either the inclusion
of a node in the transmission pattern or the removal of a node
from the competition). As shown in Figure 5, the decision-tree
process ends in two iterations (m ∈ {0, 1, 2}) and this is due
to the fact that at most two links can be active concurrently
in the transmission pattern of a 4-hop network.
Secondly, we introduce the two indicator vectors ~δ(n) and ~Sm.
The four entries δi(n) = 1{bi(n)>0} indicate which buffers
are occupied (δi(n) = 1) or empty (δi(n) = 0). The vector
~Sm = [Sm

0 . . . Sm
3 ]T , which is obtained through an iterative

process, indicates the set of nodes that are still in competition
for the channel at the iteration step m. Initially, all the nodes
having a non-empty buffer compete for the channel at step 0
and therefore ~S0 = ~δ(n). Then the indicator vector at step m,
~Sm, is obtained by removing from ~Sm−1 the node that was
selected at the iteration step m and its direct neighbors. For
example, if we start from the fully-occupied case ~S0 = ~1 and
follow the path where node 1 is selected (z1 is set to 1), the
nodes 0, 1 and 2 are removed from the competition and the
new indicator vector becomes ~S1 = [0 0 0 1]T for this path.

The exact probabilities of each link of the decision tree are
denoted in Figure 5. The intuition behind these probabilities
is that at step m all nodes i that are still competing for the
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Fig. 6. Random walk in Z3 for a 4-hop network.

channel (i.e., Sm
i = 1) have an equal probability of being

selected for transmission. Furthermore, if zi−2 is already set
to 1 at step m, the selected node i has a probability p of
successfully stealing the channel, in which case zi−2 is set to
0 and zi is set to 1 instead. Otherwise, zi is set to 0.

The computation of the different transmission patterns prob-
ability (i.e., the determination of the function g(·)) is obtained
by summing up the path probability of each of the paths lead-
ing to one of the five possible transmission patterns (state in
bold in Figure 5). In other words, the probability of the pattern
[1 0 0 0]T (resp., [0 1 0 0]T ) is the probability of having z0
(resp. z1) set to 1 at step 0, multiplied by the probability of
keeping this selection at step 1 (i.e., no additional active link
or stealing effect). Similarly, the probability of the pattern
[0 0 1 0]T (resp., [0 0 0 1]T ) is obtained by adding: (i) the
probability of having z2 (resp. z3) set to 1 at step 0, multiplied
by the probability of having this selection maintained at step 1
and (ii) the probability of having z0 (resp. z1) set to 1 at step
0, multiplied by the probability of having the stealing effect
at step 1. Finally, the probability of the pattern [1 0 0 1]T is
obtained by adding: (i) the probability of having z0 set to 1
at step 0 multiplied by the probability of having z3 set to 1 at
step 1 and (ii) the probability of having z3 set to 1 at step 0
multiplied by the probability of having z0 set to 1 at step 1.
Similarly to Figure 3, Figure 6 summarizes the transmission
patterns probability (i.e., g(·)) for each of the 8 regions A =
{0, 0, 0}, . . . ,H = {b1(n) > 0, b2(n) > 0, b3(n) > 0} of Z3.

B. Stability analysis

Similarly to the 3-hop network, we model the buffer
evolution by the random walk in Z3 depicted in Figure 6.
However, contrary to 3-hop case, the 4-hop case presents a
structural factor that makes the system unstable either with
or without the stealing effect as stated in Theorem 2.

Theorem 2: A 4-hop network is unstable for all 0 ≤ p ≤ 1.

Proof: Starting with p 6= 1, we introduce the Lyapunov
function

h(b1, b2, b3) = b1 +
p

1 + p
b3, (5)

the constants c = 3, d = 1, ε = (1 − p)/36 and

k(i) =







3 if i ∈ region B
2 if i ∈ region D
1 otherwise

, (6)

Furthermore we introduce the notation

µk,b1,b2,b3(n) = E[h(~b(n + k))|h(~b(n) = h(b1, b2, b3))]
εk,b1,b2,b3(n) = µk,b1,b2,b3(n) − h(b1, b2, b3),

where εk,b1,b2,b3(n) is the drift of the k-step random walk, and
verify condition 2 of the Transience theorem ( [14], p. 31) in
Table I.

Region ε-value
A ∩ Sc ε1,0,0,0 = 1 ≥ ε
B ∩ Sc ε3,b1,0,0 = 1−p

36 ≥ ε
C ∩ Sc ε1,0,b2,0 = 1−p

2 + 1+p
2

p
1+p = 1

2 ≥ ε.

D ∩ Sc ε2,b1,b2,0 = 1−p
24 + p2

12 ≥ ε for b2 > 1
ε2,b1,1,0 = 1−p

18 ≥ ε
E ∩ Sc ε1,0,0,b3 = 1

1+p ≥ ε
F ∩ Sc ε1,b1,0,b3 = 1−p

6(1+p) ≥ ε

G ∩ Sc ε1,0,b2,b3 = 4+p+p2

6(1+p) ≥ ε

H ∩ Sc ε1,b1,b2,b3 = p2+1
8(1+p) ≥ ε

TABLE I

PROOF OF CONDITION 2 OF THE TRANSIENCE THEOREM FOR p 6= 1.

Consequently, as conditions 1 and 3 are trivially satisfied,
the system is unstable for p 6= 1.

A similar methodology is used for p = 1 beside the change
in Lyapunov function. Indeed, function (5) suffers a zero-drift
(ε1,b1,0,b3(n) = 0) in the region F∩Sc for p = 1. Furthermore,
we have from Figure 6 that from region F (with b3 = x) we
need at least x-steps to leave F . As this violates condition 1
of the Transience theorem, the function (5) is unsuited and we
therefore use a Lyapunov function strictly increasing in F

h(b1, b2, b3) = b1. (7)

Then, even though the methodology of the proof remains the
same, we use a computer-assisted proof due to the relatively
high number of steps k needed to satisfy condition 2 of the
Transience theorem . We finally prove instability for p = 1
by applying the Transience theorem with parameters: c = 19
(note that this reduces the proof to regions B, D, F and H),
d = 1, ε = 0.003 and

k(i) =







17 if i ∈ region B
15 if i ∈ region D
1 if i ∈ region F or H .

(8)

Finally, we present in Figure 7 the simulation results show-
ing instability independently of the p value. These results are
fundamental for real networks as they reveal the tendency of
CSMA to naturally produce instability for 4-hop topologies.
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Fig. 7. Buffer evolution for 4-hop with different p values.

VII. GENERAL K-HOP NETWORKS

The transition from stability (for p > 0) to instability occurs
between K = 3 to K = 4 hops, as we just proved in the
two previous sections. We conjecture that the system remains
unstable for larger topologies as well, and we prove it for
p = 0.

The description of function g(·) for a general K > 3
is obtained by directly extending the algorithm parsing the
decision tree, described in the previous section. Following the
same methodology as in Section VI, we confirm either by
simulation (K = 5) or theoretically (K = 6) that the network
remains unstable for larger topologies for all 0 ≤ p ≤ 1.
Moreover, in the case without the stealing effect (p = 0), we
can easily prove the network instability for K = 2, and we
just did it in the previous sections for K = 3, 4. When p = 0,
the instability of a K-hop topology for any K > 4 follows
then from the following lemma.

Lemma 1 (K-hop instability): If p = 0, a sufficient condi-
tion for a linear K-hop network to satisfy the conditions of the
Non-ergodicity theorem ( [14], p. 30) and thus to be unstable
is that both the (K −1) and (K −3) hop networks satisfy the
conditions of the Non-ergodicity theorem.

Proof: Let us denote the next step expectation of a K-
hop network by µK

i (n) = E[h(~b(n + 1)) | h(~b(n)) = h(~i)].
Here h(~b) = b1 and therefore we can write

µK(n) = αµK
0 (n) + (1 − α)µK

1 (n) (9)

where α = P(zK−1(n) = 0) and

µK
0 (n) = E [b1(n + 1) | b1(n) = b1, zK−1(n) = 0]

= µK−1(n)
µK

1 (n) = E [b1(n + 1) | b1(n) = b1, zK−1(n) = 1]
= E [b1(n + 1) | b1(n) = b1, zK−3(n) = zK−2(n) = 0]
= µK−3(n)

where we have used (3) and the independence of bi(n +
1) − bi(n), 1 ≤ i ≤ K − 3, from bK−2(n) and bK−1(n),
conditionally to zK−3(n) = zK−2(n) = 0. Therefore (9)
becomes

µK(n) = αµK−1(n) + (1 − α)µK−3(n),

which implies that µK(n) verifies the inequalities of the Non-
ergodicity theorem if µK−1(n) and µK−3(n) do.
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Fig. 8. Buffer evolution for 4-hop with different p and q values.

This structural instability of the MAC layer for linear
topologies is of utmost importance for the design of future
wireless mesh networks. Indeed, buffer instability means delay
and packet drops. These artifacts are undesirable and a mech-
anism to prevent instability should be designed. Fortunately,
some simple stabilization strategies are implementable with
off-the-shelf hardware, as described in the next section.

VIII. STABILIZATION STRATEGY

A. Source throttling

In the previous sections, we showed that system instability
is caused by the node next to the source (i.e., node 1). The
main reason for this problem is that, over the long run, node
0 is given more chance than node 1 to successfully transmit,
thus resulting into a buffer build up at node 1.

Our MAC layer solution, called penalty strategy, works
by reducing the odds of channel access by node 0. This
strategy, besides its useful stabilization property, is easily
implementable with off-the-shelf hardware. For instance, the
odds of channel access for an IEEE 802.11 node can be
affected using the minimum contention window parameter
(CWmin). In particular, the higher CWmin, the lower the
odds of channel access. Therefore our penalty strategy can
be deployed by setting node 0 with a higher CWmin than the
other nodes.

B. Penalty model

We model the penalty strategy by introducing a throttling
factor q ∈ [0, 1] that shows the degree at which the input rate
is throttled at the source. That is, q = 1 means the input rate
is not constrained and then node 0 is not penalized (similar to
our previous model). On the opposite, q = 0 means node 0 is
completely starved and the input rate is null.

A useful analogy to this strategy is a water pipe with the
tap aperture being q. The higher the value of q, the higher the
inflow into the network, but also the more likely that the flow
will be turbulent. Mapping this back to our system, we deduce
that there exists a throttling factor threshold q∗ below which
the system is stable.
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Fig. 9. Experimental results for the buffer evolution for the 4-hop topologies
with different throttling factors q (we recall q = 1 is unstable).

The impact of the throttling factor is captured in our analyt-
ical model by choosing node 0 with probability qSm

0

qSm
0 +

P

j>0 Sm
j

whereas node i 6= 0 is selected with probability Sm
i

qSm
0 +

P

j>0 Sm
j

.
For instance, consider a K-hop network where at a given

time slot only nodes 0 and 1 have packets to transmit: then
node 0 wins with probability q/(1 + q) and node 1 wins with
complementary probability 1/(1 + q).

C. Theoretical analysis

We next analyze 3-hop and 4-hop networks, implementing
the penalization strategy.

Starting with the previously unstable 3-hop case (p = 0),
we prove the stabilization effect of the throttling factor and
the existence of the threshold q∗ = 1 by applying a similar
methodology than in Section V.B. That is, using the function

h(b1, b2) = b2
1 + b2

2,

and the finite set

F =
{

0 ≤ b1 <
3 + q

2(1 − q)

}

⋂

{

0 ≤ b2 <
1 + q

2

}

,

we verify Foster’s theorem ( [14], p. 29) and therefore prove
the stability of the 3-hop case for all q < 1.

Next, we consider 4-hop topologies. We observe that the
stealing effect has an important impact on stability. Indeed, as
depicted on Figure 8, the threshold q∗ is highly dependent on
the stealing effect probability p. The higher p, the higher q∗.

We derive theoretical bounds on q∗ as follows. First, we
obtain a lower-bound through a stability argument. The proof
is obtained by a generalized version of Foster’s theorem
(Theorem 2.2.2, [14]) that uses k-step expectation instead of 1-
step expectation. We apply it with the function h = b1+b2+b3,
taking k = 18.
The upper-bound is similarly obtained by the non-ergodicity
theorem ( [14], p. 30) with the function h = b1 + p

1+pb3 and
the parameter k = 15.
Following this procedure for p = 0, we obtain 0.37 < q∗ ≤
0.884. Similarly, when p = 1, we find 0.76 < q∗ ≤ 0.964. It
should be noticed that the bounds on q∗ could be made tighter
by either investigating different Lyapunov functions or by
increasing the value k (i.e., increasing the number of steps of
the k-steps expectation at the expense of higher computational
cost). However the current bounds already validate some
results of Figure 8. For instance, q = 0.75 < 0.76 is stable
for p = 1 and q = 0.9 > 0.884 is unstable for p = 0.

Mean throughput Standard deviation
3-hop with q = 1 240.5 kb/s 15.8
4-hop with q = 1 146.0 kb/s 16.7

4-hop with q = 1/2 157.5 kb/s 16.3
4-hop with q = 1/4 141.5 kb/s 14.5
4-hop with q = 1/8 143.3 kb/s 17.4
4-hop with q = 1/16 108.7 kb/s 11.8
4-hop with q = 1/32 96.9 kb/s 11.1
4-hop with q = 1/64 81.8 kb/s 13.4

TABLE II

MEAN THROUGHPUT AND STANDARD DEVIATION FOR NETWORKS OF

DIFFERENT SIZES AND FOR DIFFERENT THROTTLING FACTORS q.

D. Experimental analysis

We test our stabilization strategy on our experimental
testbed described in Section III. We implement the factor q
in our testbed by setting a different value of CWmin at the
WAP (Node 0) than at the other nodes. Thus, to implement
q = 1/2, we use CWmin = 26 for the WAP and CWmin = 25

for all the other nodes. Note that our hardware forced us to set
the contention window as a power of 2. The results of Figure 9
confirm experimentally the efficiency of the throttling factor
in stabilizing the network. Indeed, a value of q = 1/2 suffices
to change the network behavior from unstable to stable.

Table II presents mean throughput statistics for different
network sizes and values of q. The results are obtained by
running experiments for 400 s and measuring throughput over
non-overlapping 5 s intervals. Each entry in the table thus
represents an average of 80 samples. Corresponding standard
deviations are also provided. We make the following observa-
tions. First, there is a significant throughput gap between 3-hop
and 4-hop networks, which can be attributed to the distributed
nature of 802.11 that does not always make best spatial reuse
of the channel. Secondly, for the case of 4-hop networks, the
mean throughput decreases with q, but only when q becomes
very small (i.e., q = 1/16 or smaller). Up to that point, the
overhead caused by using a larger contention window for the
WAP is not too significant.

IX. SIMULATIONS ON MULTI-FLOWS TOPOLOGIES

Up to this point in the paper, we focused on single flow
linear topologies as they are the building block of more general
mesh topologies. However, to show that the stability problem
also arises in more complex topologies, we present in this
section the simulation results obtained with the ns-2 simulator.

We analyze the two multi-flows topologies depicted in
Figure 10, where scenario 1 sees two concurrent flows and
scenario 2 sees three. Furthermore, we set the simulator to use
the standard parameters of 802.11 ad-hoc networks (RTS/CTS
disabled, Tx range: 250 m, Cs range: 550 m) and let the
simulations run for respectively 1100 s and 1600 s.

The two performance metrics we focus on are: (i) end-
to-end delay (low delays means that the network is stable,
whereas high delay is a symptom of saturated buffers) and (ii)
throughput. Figure 11 ignores the first 100 s of the simulation
and shows the average performance achieved by the network
as a function of the throttling factor q. We compute the
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Fig. 10. Illustration of the two topologies tested by simulation.

throughput by measuring the average on disjoint 50 seconds
intervals, thus obtaining 20 (30) measurement points. Then
we plot the median value with the 95%-confidence intervals.
We note that for both scenarios standard 802.11 (i.e. q = 1)
performs poorly as expected, with high variance in throughput
and high end-to-end delays. Furthermore, using an appropriate
throttling factor that is larger than for the single-flow case
(here q = 1/128), performance are significantly improved by
achieving both negligible delay and higher global throughput
due to a lower packet loss rate (as no buffer overflows in stable
regime).

X. CONCLUSION

In this paper, we address the problem of network stability
in CSMA-based linear wireless mesh network and provide
three main contributions. First, we identify two key factors
impacting the stability: the network size and an artifact that
we called stealing effect. Second, we prove analytically and
show experimentally that 3-hop networks are stable when
we account for the stealing effect, but 4-hop networks (and
presumably larger topologies) are not. Third, we devise and
prove the effectiveness of a stabilization strategy that throttles
the source at the MAC layer, preventing packets to be injected
too quickly into the network. We note that this strategy
penalizes only the source when other nodes also have packets
to transmit. This desirable property allows to ensure both
stability and high throughput. Our analysis and experiments
have shown that selecting a value CWmin four to eight times
larger at the source than at the relay nodes (i.e., q = 1/4 or
q = 1/8) in the 4-hop case effectively achieves these goals.
We also show that multi-flow networks can also be stabilized
by using higher values of q. We will thus study in future work
techniques to adapt q according to the network environment.
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