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Abstract

We introduce a theoretical framework to formally analyze the vulnerability
of IEEE 802.11 rate adaptation algorithms (RAAs) to selective jamming at-
tacks, and to develop countermeasures providing provable performance guar-
antees. Thus, we propose a new metric called Rate of Jamming (RoJ),
wherein a low RoJ implies that an RAA is highly vulnerable to jamming
attacks, while a high RoJ implies that the RAA is resilient. We prove that
several state-of-the-art RAAs, such as ARF and SampleRate, have a low
RoJ (i.e., 10% or lower). Next, we propose a robust RAA, called Random-
ized ARF (RARF). Using tools from renewal theory, we derive a closed-form
lower bound on the RoJ of RARF. We validate our theoretical analysis using
ns-3 simulations and show that the minimum jamming rate required against
RARF is about 33% (i.e., at least three times higher than the RoJ of other
RAAs).

Keywords: IEEE 802.11, Denial of Service, rate control.

1. Introduction

Wireless local area networks (WLANs), based on the IEEE 802.11 (Wi-Fi)
family of standards, play a major role in the current Internet infrastructure.
According to [1], over 100,000 public Wi-Fi hotspots have been deployed
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in the U.S. Furthermore, several cellular network providers, such as AT&T,
are deploying Wi-Fi hotspots to offload congestion in crowded areas (e.g.,
stadiums) [2].

IEEE 802.11 supports data transmission at multiple bit-rates. Several
rate adaptation algorithms (RAAs), also known as rate control mechanisms,
have been proposed to adapt the transmission rate and the modulation
scheme in order to maximize performance (e.g., throughput) based on current
wireless channel conditions. The networking community has put great effort
on proposing efficient RAAs [3, 4, 5, 6, 7], and several of these algorithms
have been commercialized.

Security has always been challenge to wireless services due to the broad-
cast nature of the wireless channel. A major part of attacks against Wi-Fi
consists of jamming, i.e., obstruction of the wireless medium. Commercial
off-the-shelf jamming equipment is at reach of anyone’s hands, and makes
such attacks easy to launch. For instance, [8] offers affordable Wi-Fi jam-
mers that are activated by a single button. Recent studies [9, 10, 11] reveal
that various jamming attacks described in the literature can be implemented
efficiently. Typically, a jammer aims to cause maximum damage using a min-
imum number of transmissions to avoid getting detected and to save energy.

The main motivation behind jamming is to cause Denial of Service (DoS)
[12, 13]. Jamming can be used for personal purposes (deny communication
between some parties), economic purposes (competing companies) or gov-
ernmental purposes (cyber warfare) [14]. However, causing complete DoS
generally requires jamming all data exchanges between two parties. For this
purpose, a jammer should destroy each data packet or corresponding ac-
knowledgment packet.

Reduction of Quality (RoQ) attacks can also be performed using intelli-
gent jamming patterns [12, 15, 16]. Typically, RoQ attacks exploit vulnera-
bilities above the physical layer. The result is degradation of throughput and
prolonged delays, which significantly affect the quality of service perceived
by users.

Rate control mechanisms are not designed to operate against adversarial
behavior from malicious entities. Most RAAs cannot distinguish between
packet losses due to fluctuations in channel conditions and those due to
interference. Thus, recent experimental studies [17, 18] demonstrate that
several well-known and widely deployed rate adaptation algorithms used in
802.11 WLANs are vulnerable to jamming attacks (cf. Section 2 for a detailed
discussion). However, these works are either based on different jamming
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models [18] or do not present solutions with theoretical guarantees [17].
In this paper, we investigate the vulnerabilities of state-of-the-art RAAs

to RoQ attacks. We develop a mathematical approach to derive jamming
strategies that are effective for general parameter settings. For 802.11g net-
works, we show that causing 98% throughput degradation can be achieved
by very efficient jamming attacks. Our contributions in this context are as
follows:

• We introduce a theoretical framework to formally analyze the vulner-
abilities of several existing RAAs to jamming attacks, using a perfor-
mance metric called Rate of Jamming (RoJ). The framework is based
on a jamming model, called bursty periodic jamming, under which an
adversary periodically jams the channel with a burst of packets.

• For this model, we constructively determine strategies and correspond-
ing jamming rates to keep the throughput of RAAs below the base rate
(i.e., the lowest bit-rate). For default parameter values, we derive low
jamming rates of about 9% for the early ARF algorithm and 4% for
the newer SampleRate algorithm are sufficient to achieve this goal.

• We propose a new algorithm, called Randomized ARF (RARF), as a
means to improve the resistance of RAAs to jamming attacks. We
analytically show that RARF performs comparably to ARF under no
jamming, but performs much better under targeted jamming attacks
due to its randomized nature. We derive a closed-form lower bound on
the minimum RoJ required to keep the throughput of a system that
employs RARF below the base rate. For default parameters, this value
is about 20%.

• We conduct ns-3 simulations implementing various RAAs and jamming
strategies for an IEEE 802.11g WLAN. Our simulations validate the
jamming strategies under different channel models, demonstrating that
they indeed bring the throughput of the studied RAAs close to the base
rate. Furthermore, the simulation results reveal that the RoJ of RARF
is about 33% in practice (i.e., at least three times higher than the RoJ
of other RAAs).

We stress that the main contributions of this paper are to derive close-
form analytical results on the performance of RAAs under smart jamming
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attacks and come up with a solution providing theoretical guarantees. We
do not provide experiments on a real testbed, since earlier work already
demonstrates existence of efficient jamming attacks, including smart ones,
on RAAs through experimentation [17, 18, 19].

The rest of this paper is organized as follows. In Section 2, we review
related work. Next, we introduce our theoretical model in Section 3 and
analyze the impact of bursty periodic jamming on several RAAs in Section 4.
Then, we propose and analyze a new randomized jamming-resistant approach
in Section 5. We present our ns-3 simulation results in Section 6 and conclude
the paper in Section 7. Due to space limitations, pseudo-codes of RAAs are
deferred to [20].

2. Related Work

In this section, we provide necessary background through a survey of the
related work in the literature. First, we discuss several approaches in rate
control schemes. Then, we review the related work in two main categories;
those which study the performance of RAAs under heavy congestion, and
those which experimentally demonstrate the vulnerabilities of RAAs against
jamming.

2.1. Approaches in Rate Control

The purpose of an RAA is to adaptively pick the best possible transmis-
sion rate, based on changing wireless channel conditions. Various approaches
have been proposed for rate control in IEEE 802.11 WLANs. Transmission
rate can be adjusted by estimating the channel conditions using packet losses
[4, 5, 7, 21, 22], Signal to Interference and Noise Ratio (SINR) measurements
[23, 24], or throughput estimates [3, 6].

Notable RAAs employed in 802.11a/b/g systems include ARF [4], AARF
[5], Onoe [7], SampleRate [3] and Minstrel [6], all of which have been used
in commercial off-the-shelf equipment [25, 26]. Some of these algorithms are
described in detail when their performances are analyzed in Section 4.

Rate control in 802.11n networks has also been studied. Pefkianakis et al.
[27] discover a non-monotonic relation between packet loss ratio and trans-
mission rate in 802.11n MIMO scenarios, and propose a MIMO rate control
scheme called MiRa that zigzags between single stream and double stream
modes using extensive probing. Peng et al. [28] and Xi et al. [29] propose
MIMO rate adaptation algorithms that estimate and predict the channel for
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each packet, calculate the modulation and coding scheme (MCS) that gives
the best performance at the receiver side, and send the optimum MCS back
to the sender to be used in subsequent transmissions. Both systems require
physical layer feedback from the receiver, which is allowed in 802.11n [30],
but include strong assumptions about the channel. To our knowledge, none
of the RAAs designed specifically for 802.11n systems have been implemented
on commercial off-the-shelf equipment yet [25, 26].

2.2. RAAs Under Congestion

Many proposed RAAs fail to distinguish packet losses due to channel
conditions from those due to interference. The vulnerability of RAAs to
interference has been studied in the literature and some countermeasures
have been proposed.

Chen et al. [31] investigate the performance of RAAs in heavily congested
wireless networks, where most of the packet losses are due to interference
from neighboring cells. Employing RAAs in such an environment causes the
transmission rate to decrease due to high packet loss probabilities, result-
ing in longer transmission times. In turn, such longer transmissions further
increase the packet loss ratio, thus causing a positive feedback. To over-
come this effect, the authors propose a Rate Adaptive Framing mechanism
for highly interfered networks. This mechanism, however, applies to non-
malicious interferences caused by other network nodes, rather than those
caused by a jammer.

Sheth et al. [32] design and implement mechanisms that can distinguish
between different causes of wireless anomalies at the physical layer. The
authors demonstrate that using rate fallback in the presence of excessive
noise in the channel does not remedy the problem. Thus, they propose a
scheme, called MOJO, that switches to a less noisy channel when a rise
in the noise level is detected, instead of using rate adaptation. Although
this defense mechanism might be effective under congestion scenarios, an
adversary might have the capability to switch wireless channels as well.

2.3. RAAs Under Jamming

Broustis et al. [19] investigate jamming attacks that exploit medium ac-
cess protocols in 802.11. The authors demonstrate that attacking a single
node degrades the entire WLAN performance due to a performance anomaly
caused by rate adaptation. They propose FIJI, a defense mechanism to
identify the node under attack and prevent the other nodes to be affected
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by using transmission delay measurements. In our work, we analyze RoQ
attacks that directly target RAAs rather than MAC protocols, and propose
a defense mechanism that improve the resiliency of nodes under attack.

To our knowledge, Pelechrinis et al. [18] are the first to study the effect
of jamming on the performance of RAAs. This work employs a random jam-
mer that alternates between jamming and idle periods that are uniformly
distributed. It demonstrates that, for several popular RAAs, system perfor-
mance reduces drastically under select jamming attacks, whereas fixed rate
transmission provides higher throughput. Thus, the authors propose an anti-
jamming scheme called ARES that uses rate adaptation when the jammer
is idle, and uses fixed rate transmission otherwise. ARES adjusts the carrier
sense threshold in order to avoid performing carrier sensing and backoff for
specific ranges of observed RSSI, so that packets can be received even when a
jammer transmits. The work of ARES is based on an intermittent jamming
model whereby the attacker jams during (random) periods of time that are
sufficiently long to allow detection of the jammer. In contrast, our paper con-
siders a reactive jamming model, whereby the attacker emits bursts energy
over short periods of time.

The work of Fragkiadakis et al. [33] provides lightweight intrusion detec-
tion mechanisms for wireless networks, for a network using a fixed bit rate.
In multi-rate scenarios, where packet losses may be due to transmissions at
high bit rates, a detection algorithm that associates a rise in packet loss ratio
with the presence of a jammer might not be effective.

The recent work of Noubir et al. [17] investigates the vulnerability of
several RAAs against smart (reactive) jamming attacks, and shows the ex-
istence of effective attacks to degrade system performance. A jammer sniffs
the PLCP header of each packet to retrieve the bit-rate used for the trans-
mission of that packet. Based on this rate information, the jammer instantly
decides whether to jam the packet or not. In contrast to our work, the
work in [17] does not explicitly analyze the performance of each RAA under
jamming. There is no explicit construction for the jammer model and the
authors do not provide a feasible and tested solution to address the vulnera-
bility of RAAs to jamming. While randomization is mentioned as a possible
solution in [17], no concrete algorithm or analysis is presented. An important
contribution of our paper is to devise such an algorithm and carefully ana-
lyze its properties. Furthermore, the need of interpreting packet information
for every transmission has high computational complexity. In our work, we
show that such a complex jammer is unnecessary to significantly degrade the
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performance of WLANs. Since many RAAs are deterministic, an adversary
knows how an RAA behaves without having to retrieve the bit-rate used
for each packet. Additionally, the work of [17] constructs a jamming attack
against SampleRate such that about 10% of the packet transmissions need
to be jammed in order to keep it at the base-rate. In Section 4, we propose a
jamming attack against SampleRate with a jamming ratio smaller than 5%.

In this paper, we analyze the vulnerabilities of deterministic RAAs to
periodic jamming attacks and propose judicious use of randomization to ad-
dress this problem. In other work [34], we consider the effects of more capa-
ble jamming models on randomized RAAs, and investigate the robustness of
randomization as a defense mechanism.

3. System Model

3.1. Channel Model

We assume that there exists n possible transmission rates denoted as
R1, R2, . . . , Rn, where R1 < R2 < . . . < Rn. For instance, IEEE 802.11g
standard allows transmission at n = 12 different bit-rates. Let αi denote the
long run proportion of packets transmitted at the bit-rate Ri, and φi denote
the long run proportion of packet losses at the bit-rate Ri in the presence of
a jammer. We define steady-state throughput as:

Thr =
n∑
i=1

αi (1− φi)Ri. (1)

Note that in Eq. (1) we ignore all control packets, time between backoff
retransmissions, and inter-frame spacings. Thus, our definition of throughput
corresponds to the average rate used per packet transmission.

3.2. Jamming Model

In this paper, we consider a bursty periodic jamming model. Practical im-
plementation of a similar jamming model is demonstrated by Bayraktaroglu
et al.[35]. Under such a model, a jammer is capable of jamming a consecu-
tive packets out of every T packets (note that periodicity is defined here with
respect to packets, not time). We refer to T as the jamming period and to
a as the jamming burst size. The value of a can be any positive integer, and
T must always be greater than a. This model is a special case of the (T, λ)

7



model introduced in the work of Awerbuch et al. [36] and a form of shrew
attack [16].

The jammer requires no knowledge of the real-time transmission rate or
the history of rates used. The only information available to the jammer is
the RAA implemented on the target system. Note that some algorithms
used in commercial hardware are available online (e.g., MadWifi Atheros
chipsets [25, 26]). In particular, the pseudo-code of the ARF and Sample-
Rate algorithms analyzed in our paper are publicly known. While other rate
control mechanisms may be unknown, they could be reverse engineered.

The jammer is reactive, i.e., it employs carrier sensing in order to jam the
channel only if there is an ongoing packet transmission. Note that a reactive
jammer exploits the fact that the emission of a small amount of energy is
sufficient to cause packet drops at the legitimate receiver [10, 35].

The Rate of Jamming, abbreviated RoJ , is the main metric of interest in
this work. It is defined as the ratio of number of jammed packets to the total
number of transmitted packets. Given a and T , the jamming rate is RoJ =
a/T . For each studied RAA, our goal is to find the minimum value of RoJ (or
a bound on it) to keep the throughput of the RAA below the base rateR1. For
802.11g, this corresponds to a 98% degradation in throughput under perfect
channel conditions. Although the aim of the jammer is highly aggressive, we
will demonstrate that it can be achieved with low RoJ values. A low RoJ
implies that an RAA is highly vulnerable to jamming attacks, whereas a high
RoJ implies that the RAA is resilient. Note that a constraint on RoJ leads
to the issue of choosing the optimal value of a (and corresponding value of
T ) that causes the maximum throughput degradation.

Utilization of the jamming rate metric can be justified by referring to
the extensive literature on jamming attacks. According to [12], a feasible
jamming attack should have the following properties:

• High energy efficiency;

• Low detection probability;

• High levels of DoS;

• Resistance to physical layer anti-jamming techniques.

In order to avoid detection, the jammer can employ RoQ attacks, which
reduce the system performance by applying only a limited jamming rate [15].
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The low volume of the RoQ attack makes it more difficult to effectively iden-
tify the attack. In addition, packet losses due to wireless channel conditions
and interference could further decrease the possibility of detection. Thus,
minimizing RoJ value ensures higher energy efficiency and lower probability
of detection. We stress, nevertheless, that sophisticated detection schemes
may still be capable of identifying such jammers [11, 37].

In this work, we discuss jamming strategies that work no matter what the
channel characteristics are. According to our model, the jammer does not
have any real-time knowledge of packet transmission results. The jammer
does not need to detect these packet losses to apply the proposed strategies.

4. Analysis of RAAs under Jamming

In this section, we analyze the effects of jamming on the throughput of
ARF and SampleRate. Note that several other rate adaptation algorithms,
such as AARF and Onoe, are also vulnerable to periodic jamming. Their
analysis can be found in our technical report [20]. We provide upper bounds
on the jamming rates required to keep the throughput of each algorithm
below the base rate. Our analysis applies to general parameter settings of
the RAAs, under both perfect and lossy channels. In the following, RoJRAA

denotes the jamming rate required to keep the throughput of RAA scheme
below R1, and ThrRAA denotes the resulting throughput.

4.1. Automatic Rate Fallback (ARF)

ARF is the first documented rate adaptation algorithm [4]. It keeps track
of the number of consecutive packet transmissions and failures at the current
bit-rate. If s consecutive packet transmissions are correctly acknowledged,
a probe packet is sent at the next higher rate (if available). If the probe
packet succeeds, then the next higher bit-rate is used for subsequent frame
transmissions. Otherwise, ARF returns back to the previous bit-rate. [4]
refers to a probe packet failure as an immediate fallback. On the other hand,
if f consecutive packet transmissions are not correctly acknowledged, the next
lower bit-rate (if available) is used for subsequent frames. ARF is initiated
from the lowest bit-rate possible R1. The default values of the parameters of
ARF are s = 10 and f = 2. In our analysis, we assume that both s and f
are integers greater than 1. To keep the throughput lower than or equal to
R1, a simple strategy is to jam every probe packet (i.e., one out every s+ 1
packets).
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The jamming rate and the resulting throughput value of this strategy are
provided by Proposition 1 that follows. The analysis of other (usually less
effective) strategies can be found in [20].

Proposition 1. The throughput of ARF can be kept below R1 by using a
bursty periodic jammer with jamming rate:

RoJARF =
1

s+ 1
.

Proof. We begin our proof by assuming perfect channel conditions. The
jamming strategy under consideration allows s consecutive successful trans-
missions at R1, but jams each probe packet sent at R2. For this purpose, a
jammer can set a jamming period of T = s+ 1 packets and burst size a = 1.
Since each probe packet sent at R2 is jammed, ARF is never able to switch
to R2 for further transmissions, resulting in:

• α1 =
s

s+ 1
, α2 = RoJARF =

1

s+ 1
,

• φ1 = 0, φ2 = 1 .

Using Eq. (1), we can calculate ThrARF = s(s + 1)−1R1. This jamming
strategy works also for lossy channel conditions. If any packet transmission at
R1 is lost within a jamming period, the system is not able to get s consecutive
successful transmissions and does not even attempt to transmit at R2. �

For default parameter values (i.e., s = 10 and f = 2), RoJARF ≈ 9.1%.
Next, we show that the bound of Proposition 1 is near optimal if R2 ≥

2R1. This assumption holds for most IEEE 802.11 standards, including IEEE
802.11g, IEEE 802.11n, and IEEE 802.11ac.

Proposition 2. Suppose R2 ≥ 2R1. Then the rate of jamming of the opti-
mal jamming strategy against ARF is at least 1/(s + 2) for any s ≥ 1 and
f ≥ 1.

Proof. Consider the bursty periodic jamming strategy against ARF de-
scribed in the proof of Proposition 1, which is denoted as strategy J . Strat-
egy J guarantees that (i) all successful transmissions occur only at the lowest
possible rate R1; (ii) The number of consecutive successful transmissions at
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rate R1 is maximized (i.e., no other strategy leads to more consecutive suc-
cessful transmissions at rate R1).

Now suppose there exists another jamming strategy, call it O, with lower
rate of jamming than J . Strategy O would therefore necessarily allow trans-
missions at higher bit rates. Since R2 ≥ 2R1, each successful packet trans-
mission at rate higher than R1 must be compensated by the jamming of at
least one packet. Therefore the jamming rate of strategy O must be at least
1/(s + 2) (i.e, s packets transmitted at rate R1, one packet transmitted at
rate R2, and one packet jammed). Note that a strategy achieving this lower
bound is feasible if f = 1. �

From Proposition 2, we deduce that, for default parameters, the optimal
jamming rate against ARF must be at least 8.3%.

4.2. SampleRate

SampleRate [3], an algorithm implemented on MadWifi card adapters
[38], estimates the expected per-packet transmission time at each bit-rate,
and selects the bit-rate that is predicted to achieve the highest through-
put. To get the estimates, it periodically sends packets at transmission rates
other than the current one and records the transmission times. SampleRate
switches to another bit-rate if the estimated average per-packet transmission
time at that rate is smaller than that at the current bit-rate. Furthermore,
bit-rates expected to perform worse, i.e. with minimum transmission times
higher than the average transmission time of the current bit-rate, are not
sampled. Results of transmissions that occurred over updWin (default 10)
seconds ago are discarded.

If no packets have been acknowledged at the current bit-rate, SampleRate
picks the highest bit-rate that has not had four consecutive failures. Further-
more, a rate that had four consecutive failures is blacklisted, i.e. SampleRate
does not pick it for updWin seconds. Thus, preventing any transmission at
rates higher than R1 will cause all rates but R1 to be blacklisted, keeping the
system at R1 for updWin seconds.

A possible jamming strategy to keep the throughput of SampleRate be-
low R1 is to jam every packet transmitted at a bit-rate higher than R1. The
jamming rate and the resulting throughput value of this strategy are calcu-
lated in the proof of Proposition 3. We assume the packet length is set to
pktL.
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Proposition 3. The throughput of SampleRate can be kept below R1 by a
bursty periodic jammer with jamming rate:

RoJSampleRate =
4(n− 1)pktL

4(n− 1)pktL+ updWin×R1

. (2)

Proof. We begin our proof by assuming perfect channel conditions. Since
four packet failures are necessary to blacklist any rate, one needs to jam a =
4(n− 1) packets consecutively to blacklist all bit-rates higher than R1. This
causes the system to get stuck at R1 for updWin seconds. Since the jamming
period consists of transmissions performed at rate R1 for updWin seconds
and 4(n−1) packet transmissions at higher rates, T = R1 updWin(pktL)−1+
4(n−1), leading to the RoJ expression given by Eq. (2). The resulting values
are:

• α1 = 1−RoJSampleRate,
n∑
i=2

αi = RoJSampleRate,

• φ1 = 0, φ2 = φ3 = . . . = φn = 1.

Using Eq. (1), we can calculate the throughput:

ThrSampleRate =

[
R1 × updWin

4(n− 1)pktL+R1 × updWin

]
R1 .

This jamming strategy works also for lossy channel conditions. Once
SampleRate is forced down to R1, all bit-rates higher than R1 are black-
listed. Packet losses at R1 within updWin seconds do not affect the behavior
of SampleRate, since only R1 is available. As soon as higher bit-rates are
available, SampleRate switches to those rates regardless of any packet loss
that might have occurred in the last update window. Jamming the trans-
missions at higher bit-rates forces SampleRate to go down to R1 again. �

For default parameter values (i.e., n = 12, pktL = 10000 bits, updWin =
10 sec and R1 = 1 Mb/s), RoJSampleRate ≈ 4.2%.
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5. Jamming-Resistant Rate Adaptation

In the previous section, we analyzed the vulnerability of existing RAAs
to periodic jamming attacks. Our next objective is to develop a robust RAA
that offers stronger protection against jammers, that is, the RoJ against
such RAAs is guaranteed to exceed a minimum threshold (which, by design,
should be as high as possible). Offering such a guarantee is non-trivial, since
it must hold for all possible settings of the jamming parameters that satisfy
the RoJ constraint. Moreover, the robust RAA should perform similarly to
non-robust RAAs in the absence of jammers.

In this section, we propose a plausible approach for a robust RAA, called
Randomized ARF (RARF), and analyze its performance under the bursty
periodic model. Although we assume perfect channel conditions at first, we
generalize our analysis to lossy channel conditions later. We derive a closed-
form lower bound on the minimum jamming rate required to keep RARF
throughput below R1 (i.e., no matter how the adversary selects the values
of T and a, the jamming rate must be at least as high as this bound). This
bound is much higher than the jamming rate sufficient to keep the throughput
of ARF and SampleRate below R1.

5.1. Randomized ARF (RARF)

In Section 4.1, we have shown that the throughput of ARF can be kept
below R1 if RoJ = (s + 1)−1. The main reason for this vulnerability is the
deterministic nature of ARF. Since the adversary knows exactly when ARF
jumps to R2, and when it comes down to R1 after jamming, it is easy to
employ a jamming strategy that keeps the throughput of ARF below R1.
However, randomizing the location of these jumps prevents the adversary
to decide which packets to jam. Thus, instead of switching to the next
higher rate after s successful transmissions, RARF switches with probability
Pr(switch) = s−1 after each successful transmission. In our subsequent anal-
ysis, we refer to these probability trials as coin flips. The failure mechanism
of RARF is the same as ARF, i.e. RARF switches to the next lower rate
after f consecutive failures at the current bit-rate. RARF does not make use
of probe packets, however.

Note that randomized protocols may be harder to troubleshoot or police
than deterministic protocols. Yet, they are already commonplace in wireless
networks. For instance, IEEE 802.11 use random back-offs to arbitrate chan-
nel contention. Even in the context of RAAs, randomized algorithms have
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Figure 1: Diagram of the observation process

already been proposed and implemented in drivers [6]. Our main contribu-
tions lie in judiciously applying randomization into an existing RAA and in
theoretically analyzing the robustness properties of its randomized version.

5.2. Throughput of RARF

In this section we derive an expression for the expected throughput of
RARF. In Section 5.3, we use this expression to derive a lower bound on the
minimum rate of jamming needed to keep the throughput of RARF below
R1. We initially assume that RARF operates only over two bit-rates (R1

and R2). The lower bound on RoJ can easily be shown to apply to multiple
bit-rates, as explained in Section 5.4.

We observe the system just before the jamming burst in every jamming
period. The state of the system is the transmission rate used at the time of
observation, thus the state space is S = {R1, R2}. A diagram for the observa-
tion process is given in Fig. 1. Check marks indicate successful transmissions
while cross marks stand for failed transmissions due to jamming. The steady
state probability of finding the system at rate Ri is denoted as πi.

The behavior of the system depends on the burst size a. Thus, we consider
two different cases for the adversary: a < f and a ≥ f . We start with the
simpler case, when a < f .

Proposition 4. Under a bursty periodic jammer with parameters (a, T ) and
a < f , the throughput of two-rate RARF is:

E[ThrRARF] =

(
T − a
T

)
R2 .

Proof. RARF switches to the next lower rate only when f consecutive fail-
ures occur. Thus, if the system switches to R2 at some point, it stays at
R2 until the end of transmission, since the jammer cannot force the system
down to the next lower rate with a jamming burst size of a < f . In ad-
dition, a bursty periodic jammer allows at least one successful transmission
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(a) (b)

Figure 2: Possible scenarios in a jamming period when a ≥ f .

in each jamming period (T > a). Since RARF switches to R2 with a non-
zero probability after each successful transmission at R1, it is impossible to
keep RARF at R1 forever using a bursty periodic jammer. Therefore, RARF
switches to R2 no matter what the jammer parameters are, and stays at R2 if
a < f . Since we consider the steady state throughput, we ignore the tempo-
rary phase until RARF switches to R2, resulting in the following values:

• α1 = 0, α2 = 1 ,

• φ2 =
a

T
.

Using Eq. (1), we can calculate the throughput:

E[ThrRARF] =

(
T − a
T

)
R2 .

�

Next, we analyze the case a ≥ f . This time, RARF is guaranteed to be
at R1 after each jamming burst. If the bit-rate at the observation point is
R1, all T − a packets before that point must have been transmitted at R1 as
in Fig. 2(a), since the jammer was idle during those transmissions. On the
other hand, if the current bit-rate is R2, some of the last T − a packets were
transmitted at R1 and the rest were transmitted at R2 as in Fig. 2(b). X1

denotes the number of packets transmitted at rate R1 in a jamming period,
given that the bit-rate right before the jamming burst is R2. Next, we provide
an expression for the expectation of X1.

Lemma 1.

E[X1] = s−
(T − a)

(
1− 1

s

)T−a
1−

(
1− 1

s

)T−a .
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Proof. By definition of X1, it is given that the bit-rate right before the
jamming burst isR2. If it was not given, the number of packets transmitted at
R1 would have a geometric distribution, since each coin flip after a successful
transmission is independent of the others. Let Y1 denote this geometric
random variable with the following distribution:

Pr(Y1 = y) = Pr(switch)[1− Pr(switch)]y−1

=
1

s

(
1−

1

s

)y−1

, for y = 1, 2, . . . (3)

However, we know that the system uses a higher bit-rate after T−a packet
transmissions, thus a transition must have occurred before that. This limits
the set of possible values for X1 to the set {1, 2, . . . , T − a}. Therefore, we
can denote X1 as a truncated geometric random variable with the following
distribution:

pX1(x) =
Pr(Y1 = x)

Pr(Y1 ≤ T − a)
=

1
s

(
1− 1

s

)x−1
1−

(
1− 1

s

)T−a , (4)

for x = 1, 2, . . . , T − a. Using Eq. (4), we can calculate the expected value of
X1 as follows:

E[X1] =

T−a∑
x=1

x

s

(
1− 1

s

)x−1
1−

(
1− 1

s

)T−a = s−
(T − a)

(
1− 1

s

)T−a
1−

(
1− 1

s

)T−a .

�

Next, we provide expressions for the probability of finding the system at
rate R1 or rate R2, at the time of an observation.

Lemma 2. Under a bursty periodic jammer with parameters (a, T ) and a ≥
f , the steady state probabilities for a two-rate RARF system are:

π1 =

(
1− 1

s

)T−a
, π2 = 1−

(
1− 1

s

)T−a
.
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Proof. For a ≥ f , we know that the system starts transmission from R1

after every jamming burst. Thus, the probability that we observe the system
at R1 is equal to the probability that all coin flips between two observation
points fail. We know that there are T packet transmissions between two
observation points but a of them are jammed. Thus, we have T −a coin flips
between two observations, leading to:

π1 = [1− Pr(switch)]T−a =

(
1− 1

s

)T−a
,

π2 = 1− π1 = 1−
(

1− 1

s

)T−a
.

�

Applying the previous two lemmas, the following theorem provides an
expression for the throughput of RARF.

Theorem 1. Under a bursty periodic jammer with parameters (a, T ) and
a ≥ f , the throughput of two-rate RARF is:

E[ThrRARF] =

(
T − a
T

)
R2 −

[
1−

(
1− 1

s

)T−a]
s (R2 −R1)

T
.

Proof. We consider the successful transmissions during the last jamming
period given the bit-rate at the current observation point. The current state
can either be R1 or R2 with probabilities π1 and π2 given by Lemma 2. If the
current state is given as R1, then all successful transmissions in the previous
jamming period are guaranteed to be transmitted R1 as in Fig. 2(a).

On the other hand, if the current state is given as R2, then we know that
a transition has definitely occurred in the last jamming period as in Fig.
2(b). The transition happens after X1 packets are transmitted at R1, and
the remaining T − a − X1 successful packet transmissions use R2. Lastly,
Lemma 1 gives the expected value of the location of this transition, leading
to the following expected throughput value:
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E[ThrRARF] = π1

(
T − a
T

)
R1 + π2

(
E[X1]

T
R1 +

T − a− E[X1]

T
R2

)
=

(
1− 1

s

)T−a(
T − a
T

)
R1

+

[
1−

(
1− 1

s

)T−a](E[X1]

T
R1 +

T − a− E[X1]

T
R2

)
(5)

=

(
T − a
T

)
R2 −

[
1−

(
1− 1

s

)T−a]
s (R2 −R1)

T
.

�

5.3. Jamming Strategies Against RARF

In this section, we derive a lower bound on the minimum rate of jamming
needed for a bursty periodic jammer to cause the throughput of RARF to
fall below R1. First, we analyze the simple case a < f .

Proposition 5. For a < f , the throughput of RARF can be kept below R1

by using a bursty periodic jammer with jamming rate:

RoJRARF = 1− R1

R2

.

For default parameter values (i.e., R1 = 1 Mb/s and R2 = 2 Mb/s),
RoJRARF = 50%.

Proof. Using the expected throughput expression given by Proposition 4,
we can calculate the lowest RoJ to keep that expression less than or equal to
R1 as follows:

E[ThrRARF] =

(
T − a
T

)
R2 = (1−RoJRARF)R2 ≤ R1 ,

RoJRARF ≥ 1− R1

R2

.

�

Unless R2 is close to R1, choosing a < f requires a high jamming rate
to keep the throughput below R1. Thus, the case a ≥ f usually results in a
more efficient jamming strategy.
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The throughput expression given by Theorem 1 for a ≥ f appears com-
plicated for deriving an expression for RoJ . Thus, we use a lower bound on
the throughput of RARF that in turn will be used to derive a lower bound
on the minimum jamming rate. This bound is based on the following lemma:

Lemma 3.

E[X1] ≤
T − a+ 1

2
.

Proof. Using Eq. (4), we can write the cumulative distribution function
(CDF) of X1 as follows:

FX1(x) =
1−

(
1− 1

s

)x
1−

(
1− 1

s

)(T−a) , for x = 1, 2, . . . , T − a.

The expected value of X1 can be calculated as:

E[X1] =
T−a∑
x=1

P(X1 ≥ x) =
T−a∑
x=0

1− FX1(x) .

Let’s consider another discrete random variable Z1 that is distributed
uniformly over the same region. The CDF of Z1 is given as follows:

FZ1(z) =
z

T − a
, for z = 1, 2, . . . , T − a.

The expected value of Z1 can be calculated as:

E[Z1] =
T−a∑
z=1

P(Z1 ≥ z) =
T−a∑
z=0

1− FZ1(z) =
T − a+ 1

2
.

We know the following about X1 and Z1:

• Both X1 and Z1 are defined over the same region.

• Since X1 is a truncated geometric random variable, FX1(y) is concave
over y ∈ [0, T − a].

• Since Z1 is a uniform random variable, FZ1(y) is linear over y ∈
[0, T − a].
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• FX1(0) = FZ1(0) = 0.

• FX1(T − a) = FZ1(T − a) = 1.

Thus, one can deduce that:

FX1(y) ≥ FZ1(y) , for y = 1, 2, . . . , T − a ,

E[X1] ≤ E[Z1] =
T − a+ 1

2
.

�

In order to find the optimum rate of jamming, we need to find optimum
values for a and T separately. Instead, we first keep the jamming rate fixed
at a′/T ′. Later, we evaluate the expected throughput value of RARF under a
bursty periodic jammer with parameters (ka′, kT ′), where k is a real number
greater than or equal to 1. Finally, we show that the expected throughput
increases with k, urging the jammer to pick the lowest possible value of a if
RoJ is fixed.

Lemma 4. For a bursty periodic jammer (a, T ) with a fixed jamming rate
and for a ≥ f , a lower bound on the throughput of two-rate RARF is mini-
mized when a = f .

Proof. As we have mentioned before, we consider a bursty periodic jammer
with parameters (ka′, kT ′), where k ≥ 1. Using Eq. (5), we can express the
expected throughput of two-rate RARF scheme under this jammer as follows:

E[ThrRARF] =

(
1− 1

s

)k(T ′−a′)(
1− a′

T ′

)
R1

+

[
1−

(
1− 1

s

)k(T ′−a′)][E[X1]

kT ′
R1 +

(
1− a′

T ′
− E[X1]

kT ′

)
R2

]
.

Applying Lemma 3 to Eq. (5) yields a lower bound on the throughput
of RARF. Note that an upper bound on E[X1] implies a lower bound on
the expected throughput, since the system throughput drops if more time is
spent at R1.
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E[ThrRARF] ≥

[
1 +

(
1− 1

s

)k(T ′−a′)](
1− a′

T ′

)
R1

2

+

[
1−

(
1− 1

s

)k(T ′−a′)][(
1− a′

T ′

)
R2

2
− R2 −R1

2kT ′

]
= β1(k)

(
1− a′

T ′

)
R1

2
+ β2(k)

(
1− a′

T ′

)
R2

2
,

where

β1(k) = 1 +
1

k(T ′ − a′)
+

[
1− 1

k(T ′ − a′)

](
1− 1

s

)k(T ′−a′)
,

β2(k) =

[
1− 1

k(T ′ − a′)

][
1−

(
1− 1

s

)k(T ′−a′)]
.

Note that increasing the value of k causes β1 to decrease, and β2 to
increase, leading to an increase in the expected throughput. Therefore, for
a fixed jamming period, a bursty periodic jammer with parameters (a, T )
should choose the value of a as low as possible within the acceptable region,
in order to obtain the lowest throughput of the two-rate RARF system. In
our case, the lowest possible value of a is f , since the operating region is
a ≥ f .�

Lemma 4 reduces the two dimensional optimization problem to a one
dimensional integer programming problem [39]. However, keeping a = f and
solving for T might not result in an integer value. Since our purpose is to
derive a lower bound on RoJ rather than choosing jammer parameters, we
relax the problem by considering non-integer values for T , keep a = f , and
calculate the bound on RoJ accordingly.

At this point, we know that the optimal value of a in the region a ≥ f
is equal to f . Thus, we have to find the corresponding optimal value of T .
Lemma 5 helps in further simplifying the expression of E[ThrRARF].

Lemma 5. (
1− 1

s

)x
≤ s

e x
, for s ≥ 2 and x ≥ 1,

where e is Euler’s number.
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The proof of Lemma 5 can be found in the Appendix. Using the result
of Lemma 5, Theorem 2 provides a closed-form expression for a lower bound
on RoJRARF.

Theorem 2. To keep the throughput of RARF below R1, a bursty periodic
jammer with a ≥ f must satisfy the following:

RoJRARF ≥
f

b+
√
b2−4es
2e

+ f
,

where b = e+ s+
2ef

R2

R1
− 1

.

Proof. Applying Lemmas 3, 4 and 5 on Eq. (5) results in the following
bound on the throughput:

E[ThrRARF] ≥ T − f
2T

{
R2 +R1 −

(
R2 −R1

T − f

)[
1 +

s

e
− s

e(T − f)

]}
.

Setting this bound below R1 yields an upper bound on T . Let x = T −f .

x

2(x+ f)

[
R2 +R1 − (R2 −R1)

(
1

x
+

s

e x
− s

e x2

)]
≤ R1,

leading to the following quadratic expression:

ex2 −

(
e+ s+

2ef
R2

R1
− 1

)
x+ s ≤ 0. (6)

Let b = e+ s+
2ef

R2

R1
− 1

.

The two roots of Eq. (6) are denoted by x1 and x2. Since x1 is always
smaller than 1, the only feasible root is:

x2 =
b+
√
b2 − 4es

2e
,

resulting in the following bound on the jamming rate:

RoJRARF =
f

T
≥ f

x2 + f
=

f

b+
√
b2−4es
2e

+ f
.

�
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For default parameter values (i.e. s = 10, f = 2, R1 = 1 Mb/s and R2 = 2
Mb/s), we get b ≈ 23.59 and RoJRARF ≥ 19.5%. Apart from an analytical
bound, a slightly tighter numerical bound on RoJRARF can be derived as in
Theorem 3.

Theorem 3. A lower bound on RoJRARF can be found by keeping a = f and
solving for the largest T value that satisfies the following inequality:

T − f + se−
s+1

s2
(T−f) ≤ f

R2

R1
− 1

+ s .

given that R2 ≤ (f + 1)R1.

The proof of Theorem 3 can be found in the Appendix. For default
parameter values (i.e., s = 10, f = 2, R1 = 1 Mb/s and R2 = 2 Mb/s),
T ≤ 9.714 and RoJRARF ≥ 20.6%.

Combining Theorem 2 and Proposition 5, we can pick the smaller of the
two expressions as a lower bound on the optimal jamming rate. For default
parameter values, our analysis formally proves that a bursty periodic jammer
attacking RARF must at least double the jamming rate compared to ARF.
For IEEE 802.11g networks, our ns-3 simulations in Section 6 show that the
difference between the minimum jamming rates of RARF and ARF is even
higher, i.e. about 33% for RARF versus 9% for ARF.

Note that any jamming strategy that is able to keep RARF throughput
below R1 under perfect channel conditions works under any channel model
too. This is because any packet loss at R1 within a jamming period might
delay the switch to R2, resulting in a lower throughput. Although, a lower
RoJ value might be enough, the jammer should always utilize the strategy
employed for the perfect channel to make sure that the throughput is lower
than R1.

5.4. Generalization of Results to Multiple Rates

Until this point, we have only considered a two-rate RARF scheme. In
this section, we generalize our results to an n-rate system, where n ≥ 2.
We use a coupling method to compare the two-rate system and the n-rate
system, i.e. each coin flip has the same result at both systems. We assume
that both systems start from R1.

We again consider different cases for the burst size of the jammer. The
first case is when a ≥ (n − 1)f . In this case, both systems are guaranteed
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to be at R1 right after a jamming burst, and since we are using the coupling
method, both systems switch to R2 at the same instant. However, the n-rate
system can switch to higher bit-rates after this point, whereas the two-rate
system gets stuck at R2 until the next jamming burst.

(αi)n−rate denotes the long run proportion of packets transmitted at Ri

where n bit-rates are available. Since the jamming pattern, results of the coin
flips, and the number of packets sent at R1 are the same for both systems,
we can derive the following:

For a ≥ (n− 1)f

• (α1) 2−rate = (α1)n−rate ,

• (α2) 2−rate =
n∑
i=2

(αi)n−rate .

When f ≤ a < (n − 1)f , the two-rate system is guaranteed to be at R1

right after a jamming burst. On the other hand, the n-rate system may or
may not drop down to R1 after jamming, leading to:

For f ≤ a < (n− 1)f

• (α1) 2−rate ≥ (α1)n−rate ,

• (α2) 2−rate ≤
n∑
i=2

(αi)n−rate .

Lastly, when a < f , both systems get stuck at the highest bit-rate possible
throughout the transmission, resulting in the following values:

For a < f

• (α2) 2−rate = (αn)n−rate = 1 ,

• (α1) 2−rate = (α1)n−rate = . . . = (αn−1)n−rate = 0 .

Based on Eq. (1) and the resulting αi values, the following expression
holds for all values of a:

E[ThrRARF]n−rate ≥ E[ThrRARF] 2−rate (7)
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(a)

(b)

Figure 3: Performance under perfect channel with no jamming: (a) ARF,
Thr = 53.980 Mb/s, (b) RARF, Thr = 53.984 Mb/s. ARF and RARF
perform similarly in the absence of a jammer.

Eq. (7) shows that for any given bursty periodic jamming strategy, the
throughput of n-rate RARF is higher than that the throughput of two-rate
RARF. Therefore, the lower bounds on the rate of jamming derived in Section
5.3 for two-rate RARF apply also to n-rate RARF. Note that RoJ of n-rate
RARF cannot be lower than RoJ of two-rate RARF since otherwise Eq. (7)
would not hold for the optimal bursty periodic jamming strategy against
n-rate RARF.
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(a)

(b)

Figure 4: Performance under perfect channel with bursty periodic jamming:
(a) ARF under jamming with a = 1 and T = 11, Thr = 0.909 Mb/s ; and
(b) RARF under jamming with a = 1 and T = 11, Thr = 49.072 Mb/s.
RARF performs markedly better than ARF in the presence of a jammer.

6. NS-3 Simulations

6.1. Set-up

In this section, we present the results of ns-3 simulations [40] of IEEE
802.11g WLANs to validate our analytical findings. The goals of our simu-
lations are to monitor the bit-rate used for each packet and to measure the
steady state throughput of a system that employs a specific RAA under a
given bursty periodic jamming strategy. We present first present results for
lossless channels and then for lossy channels, both without and with jammers.

We use standard ns-3 libraries whenever possible. We build new ns-3
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modules for SampleRate and RARF algorithms, since they are not available.
In all our simulations, we set the length of each DATA packet to 1250 bytes.
We use IEEE 802.11g in ad-hoc mode since we consider two stations and
wish to avoid beacons.

The network topology that we consider is as follows. We consider two
legitimate nodes A and B, where A aims to send packets to B continuously.
The jammer node is located between A and B, and has the same transmission
power as them. Whenever A tries to send a packet to B, the jammer detects
it and decides whether to corrupt the packet or not, based on the parameter
values a and T .

Although our ns-3 simulations take into consideration control packets,
back-off retransmissions, and inter-frame spacings, the resulting throughput
values are based on our definition in Section 3.1.

6.2. ARF and RARF

In this section, we compare the performances of ARF and RARF. Sim-
ulations are run for 100 seconds under a perfect channel, and the first 200
DATA packet transmissions are plotted in Figures 3 and 4. In Fig. 3(a) and
Fig. 3(b), respective performances of ARF and RARF are shown in the ab-
sence of a jammer. One can observe that the algorithms take similar time
to converge to the highest bit-rate and continue transmitting at that rate
henceforth.

In Fig. 4(a) the performance of ARF is tested under the jamming strategy
given by Theorem 1. The resulting throughput is 0.909 Mb/s. One can see
that each probe packet sent at 2 Mb/s is jammed. Fig. 4(b) illustrates the
performance of RARF under the same jamming strategy. In that case, the
jammer fails to keep the system at low rates and the resulting throughput
value is 49.072 Mb/s. This result shows that an effective jamming strategy
against ARF does not have much effect on RARF.

In Fig. 5, throughput values of ARF and RARF under a bursty periodic
jammer are plotted with a and T taken as parameters. This figure intends to
indicate jamming strategies that keep ARF and RARF throughput below the
base-rate, rather than comparing the performance of these two RAAs under
general jamming parameters. The jamming period T ∈ {1, 2, . . . , 20}, and
the jamming burst size a ∈ {1, 2, . . . , 5}. The resulting throughput values
that are lower than or equal to 1 Mb/s are plotted. The jamming rate RoJ
is illustrated as a contour plot for valid jamming strategies at the bottom
of each figure. Note that each data point indicates a jamming strategy that
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Throughput

(a)

Throughput

(b)

Figure 5: Throughput of (a) ARF and (b) RARF under periodic jamming
with parameters a and T . RoJ is depicted as a contour plot at the bottom
of each graph. Low RoJ values are plotted in dark colors to indicate the
severity of the vulnerability. Among the strategies to keep the throughput
below 1 Mb/s, the one with the lowest RoJ is indicated.

manages to keep the throughput below R1. The optimal strategy should have
the lowest RoJ among those.

In Fig. 5(a) for ARF, RoJ is minimized when a = 1 and T = 11, as given
by Proposition 1. On the other hand, Fig. 5(b) reveals that the optimal
jamming strategy against RARF has the parameters a = 2 and T = 6,
resulting in a rate of jamming of 33.3%. Thus, any jamming strategy with
RoJ below 33.3% fails to keep the throughput of RARF below 1 Mb/s.

Table 1 shows that RoJRARF is sizably higher than the lower bound de-
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RAA Analytical Results Simulation Results
ARF RoJ = 9.1% RoJ = 9.1%
SampleRate RoJ = 4.2% RoJ = 4.7%
RARF RoJ ≥ 19.5% RoJ = 33.3%

Table 1: Analytical and simulation results for minimum jamming rate to
keep the throughput of each RAA below 1 Mb/s.

rived in Theorem 2, since twelve rates are available in IEEE 802.11g. On the
other hand, ns-3 simulations of RARF with two bit-rates yield a = 2 and
T = 9 as the optimal values. This leads to an RoJ of 22.2%, which is close
to the analytical bound of 19.5% derived in Theorem 2 and the numerical
bound of 20.6% derived in Theorem 3.

6.3. SampleRate

We consider the jamming strategy given by Theorem 3 for SampleRate.
Simulation is run for 100 seconds under a perfect channel, and the first 50
seconds are plotted in Fig. 6. Each data point indicates the rate used for a
DATA packet transmission. We use an initial jamming phase forcing the rate
down to 1 Mb/s. Note that the only information needed in this initial phase
is the time when the transmissions start, which can be obtained by carrier
sensing.

The bursty periodic jammer corrupts 44 consecutive packets after every
10 seconds spent at 1 Mb/s. Since the transmission of acknowledgments
take a non-negligible amount of time, the system transmits 890 packets in
10 seconds at 1 Mb/s rather than 1000 packets. The jammer parameters to
keep SampleRate throughput below 1Mb/s are a = 44 and T = 934, leading
to an RoJ value of 4.7%, close to the value of 4.2% predicted by Theorem 3.

We have also observed that such a jamming pattern cannot keep RARF
throughput below 1Mb/s, since during 10 seconds of idle period of the jam-
mer, RARF performs many jumps to rates higher than 1Mb/s.

6.4. Lossy Channel

In this section, we perform simulations for lossy channels utilizing the
ns3::LogDistancePropagation LossModel of ns-3, which has the following
parameters:
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Initial Jamming Phase

Figure 6: Performance of SampleRate under bursty periodic jamming with
a = 44 and T = 934. Thr = 0.955 Mb/s.

• k : path loss distance exponent,

• d0 : reference distance (m),

• L0 : path loss at reference distance (dB),

• d : distance (m),

• L : path loss (dB).

The reception power is calculated using the log-distance propagation loss
model by the following equation:

L = L0 + 10 k log10

(
d

d0

)
. (8)

The default parameter values for this channel model are k = 3, d0 =
1m, and L0 = 46.677 dB. Under this channel model, we first compare the
performances of ARF and RARF without jammers. The simulations are run
for 100 seconds in the absence of a jammer with d = 70 m and default channel
parameter values. Fig. 7 plots the rates used for the first 200 DATA packet
transmissions for each RAA. One can observe that ARF and RARF perform
similarly, leading to similar throughput values.

Next, we implement the jamming strategies devised in Sections IV and V
for ARF, RARF, SampleRate with d ∈ {10, 20, . . . , 200}, k ∈ {1, 2, . . . , 5},
and default values for d0 and L0. We find that the jamming strategies man-
age to keep the throughput below 1 Mb/s for each RAA. As an example,
throughput values for d = 100m and k = 3 are given in Table 2.
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(a)

(b)

Figure 7: Performance under lossy channel with no jamming: (a) ARF,
Thr = 21.77 Mb/s, (b) RARF, Thr = 23.22 Mb/s. ARF and RARF perform
similarly under lossy channel conditions in the absence of a jammer.

6.5. Alternative Throughput Definition

In Section 3.1, we have defined throughput as the average rate used per
packet. This definition of throughput enabled us to perform exact analysis
of the behavior of rate control mechanisms under various jamming patterns.

An alternative and widely used definition of throughput is the number of
bits transmitted successfully per unit time. Assume that the packet length
is fixed to pktL and N packets are transmitted in total. Let Ni denote the
number of packets transmitted at Ri, so that αi = Ni/N . In this case, the
alternative throughput metric can be defined as:
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RAA Jammer Parameters Thr
ARF a = 1, T = 11 0.909 Mb/s
SampleRate a = 44, T = 934 0.951 Mb/s
RARF a = 2, T = 6 0.895 Mb/s

Table 2: Throughput values of various RAAs with corresponding effective
jamming strategies under a lossy channel. The strategies considered for per-
fect channel keep throughput below 1 Mb/s under lossy channel conditions
as well.

ThrALT =
total # of bits transmitted successfully

total transmission time

=

n∑
i=1

(1− φi)Ni pktL

n∑
j=1

Nj pktL

Rj

=

n∑
i=1

(1− φi)αi

n∑
j=1

αj

Rj

=
n∑
i=1

(1− φi)Ri

αi

Ri

n∑
j=1

αj

Rj

 =
n∑
i=1

(1− φi)Ri αi, (9)

where αi denotes the fraction of time spent at Ri.
Using this new metric, we have repeated the simulations for each RAA

under corresponding effective jamming strategies. All simulations are run for
100 seconds assuming a perfect channel. The results are given in Table 3.

We observe that effective jamming strategies considered for each RAA
are still able to keep the system throughput (as defined in Eq. (9)) below the
base rate for default parameter values. Thus, our analysis is verified for both
definitions of the throughput metric.

7. Conclusion

In this paper, we introduced a theoretical framework that employs a
bursty periodic jamming model and a rate of jamming metric to analyze
the vulnerabilities of widely used RAAs. We proved that the jamming rate
required to keep throughput performance below the base rate is low for ARF
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RAA Jammer Parameters ThrALT

ARF a = 1, T = 11 0.952 Mb/s

SampleRate a = 44, T = 934 0.994 Mb/s

RARF a = 2, T = 6 0.785 Mb/s

Table 3: Throughput values based on Eq. (9) of various RAAs with corre-
sponding effective jamming strategies under a perfect channel

(around 10%), and even lower for SampleRate (around 4%). For ARF, we
also proved that bursty periodic jamming is a near-optimal jamming strat-
egy. Thereafter, we proposed a randomized variant of ARF (RARF) and
analyzed its performance under the same jamming model.

We proved that one needs a jamming rate of at least 19.5% to keep the
throughput of RARF below the base rate. This bound is relatively tight
for two-rate RARF. Using ns-3 simulations, we corroborated our analytical
results and observed that for IEEE 802.11g, the throughput of RARF falls
below the base rate only for RoJ values above 33%, which is more than three
times the value required for ARF. The jamming strategies considered can be
employed for perfect or lossy channels.

We demonstrated that a randomized approach for adapting transmission
rates provides high jamming resistance, without drastically altering average
system performance in the absence of jamming. Specifically, a positive fea-
ture of RARF is that it does not need to distinguish between legitimate
interferers and malicious interferers. As shown, in Fig. 7, in the case of non-
adversarial lossy channel conditions, RARF perform similarly to ARF. Thus,
with the design of RARF, we showed the added benefit of randomization on
the resiliency of a well-known rate control scheme (ARF) against jamming
attacks. Although we considered bursty periodic jamming, randomization
should be applicable against any jammer that is unaware of the real-time
transmission rate.

The analysis in our paper focused on a single pair of node. In the case of
multiple pairs of nodes operating within a cell, it is sufficient for an attacker
to target a single pair to bring down the throughput of all the pairs, as
also noticed in [17]. This is a consequence of the well-known “performance
anomaly” problem affecting IEEE 802.11 networks [41].

In summary, our analytical findings and ns-3 simulations show that state-
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of-the-art RAAs are vulnerable to jamming attacks that are easy to imple-
ment. We propose a solution, leveraging randomization, that is provably
more robust as it conceals bit-rate information. Thus, in the future, rate
adaptation algorithms should include some level of randomness to increase
their resiliency against jamming attacks. We note that a recently proposed
RAA, called Minstrel [6], does include some level of randomization, but its
behavior is complex. Analysis of Minstrel is an interesting area left for fu-
ture work. Future work could also aim at deriving a tighter lower bound on
the minimum jamming rate for multi-rate RARF, adopting alternative jam-
ming models, investigating the performance of RAAs under general network
topologies, and analyzing the case of multiple jammers.
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Appendix A. Proof of Lemma 5

Proving Lemma 5 is equivalent to proving the following inequality:

f(x) =

(
1− 1

s

)x
e x

s
≤ 1 , for s ≥ 2 and x ≥ 1.

Note that f(x) is differentiable for x ≥ 1. The first order derivative is:

f ′(x) = e

(
1−

1

s

)x
x log

(
1− 1

s

)
+ 1

s
.

Let f ′(x?) = 0. For x ≥ 1, the unique solution is:

x? = − 1

log
(
1− 1

s

) .
The second order derivative of f(x) is:

f ′′(x) = e

(
1−

1

s

)x
log
(
1− 1

s

)
s

[
log

(
1− 1

s

)
x+ 2

]
.

In order to know if x? is a maximum or a minimum, we calculate f ′′(x?).

f ′′(x?) =
log
(
1− 1

s

)
s

< 0 , for s > 1.

Since f ′′(x?) < 0, a maximum occurs at x?. Next, we evaluate f(x?), the
maximum value of the function f(x) for x ≥ 1, and show that it is less than
or equal to 1:

f(x?) = − 1

s log
(
1− 1

s

) .
Since 1− s−1 ≤ e−s

−1
,

log

(
1− 1

s

)
≤ −1

s
,

leading to f(x?) ≤ 1. Therefore, f(x) is lower than 1 at its maximum point.
Since f(x) has only one extreme point, we do not need to check the boundary
condition of x = 1. Thus, we have proved that f(x) ≤ 1 for x ≥ 1 and s ≥ 2.
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Appendix B. Proof of Theorem 3

We begin the proof of Theorem 3 by presenting the following well known
bound as given in [42]:

1− z ≥ e−z−z
2

, for z ∈ R and z ≤ 1

2
. (B.1)

We use Theorem 1, Lemma 4 and Eq. (B.1) to obtain a lower bound on
the expected throughput as follows:

E[ThrRARF] ≥
(
T − f
T

)
R2 −

[
1− e−

s+1

s2
(T−f)

] s (R2 −R1)

T
. (B.2)

Now that we have a simplified lower bound expression for the expected
throughput, we can obtain an upper bound on the jamming period T , by
setting the right-hand side of Eq. (B.2) lower than or equal to R1.(

T − f
T

)
R2 −

[
1− e−

s+1

s2
(T−f)

] s (R2 −R1)

T
≤ R1 ,(

R2

R1

− 1

)[
T − f − s+ se−

s+1

s2
(T−f)

]
≤ f ,

T − f + se−
s+1

s2
(T−f) ≤ f

R2

R1
− 1

+ s . (B.3)

Let x = T − f , and f(x) denote the left side of Eq. (B.3).

f(x) = x+ se−
x(s+1)

s2 .

We aim to prove that Eq. (B.3) can be solved for the maximum value of
x. We consider x ≥ 1 since T must always be greater than a for a periodic
jammer. First, we show that the inequality is satisfied for x = 1.

f(1) = 1 + se−
s+1

s2 < 1 + s ≤ f
R2

R1
− 1

+ s,

for R2 ≤ (f + 1)R1.
Secondly, note that as x→∞, f(x)→∞. Lastly, we need to show that

f(x) is increasing, i.e. the first order derivative f ′(x) is greater than 0, for
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x ≥ 1 to prove that Eq. (B.3) can be solved. The first order derivative of
f(x) is as follows:

f ′(x) = 1−
(

1 +
1

s

)
e−

x(s+1)

s2 .

Using the well known inequality of 1 + s−1 ≤ es
−1

[42],

f ′(x) ≥ 1− e
s−x(s+1)

s2 .

For x ≥ 1, we get s − x(s + 1) < 0, leading to e
s−x(s+1)

s2 < 1. Therefore,
f ′(x) > 0 and f(x) is increasing for x ≥ 1, which enables us to solve Eq. (B.3)
for maximum value of T .
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