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Abstract

We consider equilibrium analysis of several dynamic resesharing policies for multiclass loss networks with aicyttpologies.
The policies of interest are based on the principle of piong classes via thresholding or reservation. We show tinaer
each policy the equilibrium network state is a Markov randietd and we obtain closed form expressions for the condafion
probabilities therein. Such representations drasticaitiuce the computational complexity of blocking prob&piéind revenue
calculations. We provide revenue comparison of the consitigolicies and several extensions of the applied analytgchnique.
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1. Introduction Connections between Markov random fields and loss net-

. o . . works have been previously studied. Exact analyses intére li
Revenue management via admission control arises in a varl-

. . . . ature are limited to uncontrolled networks with acyclicatp
ety of contexts ranging from logistic service provision étet

. . . . gies [3, 4, 5, 6]. Here the term topology specifies a structure
phone networks. This paper is motivated by the renewed in- ) ) _ »
for routes in the generic loss network formulation as spatifi
terest due to recent regulatory progress that paves theavay t o
. . by [5]. Analyses of these papers rely also on reversibility o
dynamic spectrum access by so-called primary and secondary

. . network state in the uncontrolled case. This property hfuds
users. In this context, resources are radio channels thabta

. . . . . ) . threshold policies, for which equilibrium distributionarc be
be utilized simultaneously in neighboring locations duénto

. . obtained in closed form but entail computationdlidulty due
terference; and a spectrum provider may augment its revenue

. o - to normalizing constants [2]. Reversibility generally da®t
from a primary customer base by providing opportunistic ac-

. o . hold under reservation policies. In turn these policieshzen
cess to secondary users subject to an admission policy.

. - . studied via fixed-point [5, 7, 8] and asymptotically exact a
We analyze four admission control policies on linear (and P ! ] ymp y P

. . IprOX|mat|0ns [9, 10]. The technical contribution of the geat

more generally acyclic) network topologies that may mode , ,
. . - Raper is exact analysis of controlled loss networks under tw

highways and beaches. Considered policies are based on the o . o . .

. L . . canonical admission philosophies in a particular settimbe
concepts of reservation, which is optimal for an isolated re sis h | i ibility. h thtireets

. i analysis here also relies on reversibility, however

source [1], and thresholding [2]. Equilibrium analyses atle y Y T

. . . different than those of [3, 4, 5, 6] due to both admission control
policy under standard Markovian models are computatignall N ] )
. . _ .. and the composition of considered routes; in turn the aralys
intense. We show that for linear network topologies, efuili

of these papers do not directly apply here. The present paper
rium system state under each policy can be explicitly repre- pap ! y apply P pap

. - ... also provides a streamlined approach to identifying thel fiel
sented as a Markov random field. The conditional probaddliti p_ _ . PP . . bt _g _
} ) ) . . potentials in terms of probability transition matrices,ighis a
in such representation are identified, thereby leadinglietsin- ) )
. . . ) . . key to the alluded computational savings.
tial computational convenience in calculating blockingpa-
bilities and network revenue. We provide a numerical com-
parison of revenue rates under the considered policiesaand2, Resource Sharing Policies
discussion of generalizations of the applied techniques.

Consider N + 1 nodes indexed by the integers
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and let an edge be drawn between nodasd j if |i — j| = 1. A type 2 request is admitted if its inclusion preserves
We shall interpret each edge as a collectio@g€&sources. We
consider two types of dynamic requests for resources: At eac Niz+MNi2<C-K i=-N--- N-L
node, typek (k = 1, 2) requests arrive according to a Poisson
process with ratel. If honored, such a request generates a
revenue ofy units and it holds one resource at each edge that is
incident to the node of arrival. Arrival processes acros$eso
and types are independent, and holding times are expohigntia
distributed with unit mean, independently of the historppto
the request arrival.

Let njx denote the number of typerequests in service at
nodei. We shall denote the detailed occupancy of nioolg

4. Reservation Policy: This policy prioritizes type 1 re-
quests by rejecting type 2 requests above a certain occu-
pancy level. Specifically, each node has a reservation pa-
rameterR (0 < R < C). A type 1 request is admitted if
its admission preserves conditions (1), whereas a type 2
request is admitted if, besides (1), its admission preserve
the total number of requests in service at the node below
R; i.e.,afterinclusion

ni = (N1, Ni2)

Note that the reservation parameter actssorather than

S + S1 S0 the policy difers slightly from trunk reserva-
S = N+ Nio. tion policies considered earlier for circuit switched net-
works [7].

and the total occupancy of the node by

Hence the vectom(y, - - - , ny) of detailed occupancies neces-

) o We point out that complete sharing and complete partitignin
sarily satisfies

can be analyzed via special cases of threshold and reservati

S+5.,<C foralli=-N,---.N-L (1) policies; so it stfices to analyze only the latter two policies.

We consider the following four policies to share the avddab 3. Equilibrium Node Occupancies

resources between the two types of requests: .
yp q We define the network stateas

1. Complete Sharing Policy: A request, of either type, is

admitted whenever the network has resources available to n=(n-n,---,NN).
accommodate the request. Namely, a request is admitted
if and only if its inclusion preserves condition (1). Under each of the above policies,is an irreducible Markov

2. Threshold Policy: This policy prioritizes type 1 requests Process with a finite state space; therefore it possessequaeun
by enforcing a threshol@ (0 < T < C) on the number  €quilibrium distributionr. The long-term rate of revenue gen-
of resources that can be unavailable due to ongoing type gration is denoted by
requests. Namely, a type 1 request is admitted if that does N
not violate conditions (1), whereas a type 2 request is ad- W = Z Z rede(1 - BS)),
mitted if, in addition to (1), its inclusion preserves I=-Nk=12

WhereBs) is the blocking probability of typ& requests at node

i. By the PASTA propertyBs) can be expressed in terms of the

3. Complete Partitioning Policy: Under a complete parti- €quilibrium distributionz. In this section, we provide closed
tioning policy, the resources are statically divided betwe form expressions for that are particularly convenient for com-
the two types so tha resources are allocated to type 1 Puting the blocking probabilities and in turn the revenute ra

and the remaining@ — K resources are available exclu- Under each policy.
sively to type 2 requests. A type 1 request is then admitted We define an occupancy stateo beadmittingfor typek at

Miz2+Nip2<T, i=-N,---,N-1 )

if its inclusion preserves nodei if a request of typd can be admitted at the nodat that
network state. Let us denote such states#y). For example,
Nii+nNi1<K i=-N---,N-1 for a threshold policy, admitting states for type 2 requests



nodei, A(?), are the statesthat satisfy both conditions (1) and whereA is the set of tripletsr(_1, no, N1) such that

(2) with strict inequality. Due to the PASTA property, blacg

probability of typek requests at nodes given by o+s <C So+s1 <G
No2+ N2 < T, No2+N_12 < T.

BY=1- ) x(n). ®) _ N _
nineAIK Blocking probabilities at other nodes can be obtained tiinou

similar computations. Note that the number of possibleeslu
For large values of parametesandC, determining block- o . is at most quadratic i€ and membership in the set is
ing probabilities via expression (3) is computationallieimse. | q ified in triplets: so (5) entail®(C?) operations.
This is mainly due to two reasons: (i) The state space of the
occupancy process increases with the network size and the
number of request types. Even in cases when the distribmtion  We next identify the matriceB; and the distributionry that
has a product form (as for the complete sharing policy), comrender the form (4) an equilibrium distribution for the namte
putation ofr requires determining a normalizing constant thatcupancies under a threshold policy with parame&tefhis will
is NP-hard [11], and (ii) once is obtained, computation &  be done by first finding a nonnegative matfband a nonnega-
requires a large number of summands due to the statistieal déve vectorg such that the product
pendence among node occupancies. -
Here we show that the alludedffi¢ulties can be avoided in #(No) 1_[ Q(ni, Ni+1)Q(N=i, n_i—1) (6)
linear (more generally acyclic) network topologies for tos- i=0

sidered sharing policies. Namely, we establish that undene gajisfies the detailed balance equations for the prateS&is

policy the distributionr admits the representation would imply that the process is reversible. Furthermore, it

N-1 would imply that expression (6) would give the equilibrium
n(n) = an(No) 1_[ Pn-i(Ni, Niva)Pn-i(n-isn-ica),  (4)  distribution ofr after being properly normalized to become a

=0 probability distribution on the state space associateti e

where{an(no) © No1,No2 = 0,1,---,C} is a probability dis-  threshold policy. Such a normalization can be imposed on the

tribution andPj, j = 1,---,N are stochastic matrices. Here, individual factors in (6) by definin®;(x, y) from (4) as

enumeration of matrix rows and columns with two-dimensiona _

vectorsn; is arbitrary but consistent for all matric&y. The Pi(x.y) = Qx.y) Zz_Ql’l(y, z)’ j=1---,N @)

structure of form (4) yields that is a Markov random field 2, Ql(x.2)

with respect to the linear network graph. In the terminolofly whereQ! denotes thgth
Markov random fields, the vectayis a node potential and the
matricesP; are edge potentials.

matrix power ofQ, and

2
An(X) = Go(x) [Z Q. z)] (8)

Under the representation (4), the equilibrium variables

Ni, Nit1, Niy2, - -+ where 2
Gt=) ¢ [Z QV(x, z)) . 9)

form a non-homogeneous Markov process whose transition x z
probabilities are determined by the stochastic matrigesAn ~ The sums in the above definitions run through all possible val
immediate consequence of this observation is that the malrgi ues of associated entries, which will be specified below.eNot
distribution of the network load at the neighborhood of aegiv that under definitions (7)-(9) the product on the right haidd s
node admits a succinct characterization, and thereby leads of (4) is equal to
efficient computation of blocking probabilities at that node. i -
For example, for a threshold policy with threshdlgblocking 7 (No) . ]_[ Qni, Nis1)Q(N_i, N_i_1). (10)
probability of type 2 requests at node 0 is given by (22 Q¥(no.2))" g

Itis easy to verify that if (6) satisfies the detailed balaeqaa-

BO=1- Pn(No, n)an(No)Pn(no, n-1), (5
2 Z N(o. Na)in(o)Pr(fo. N-1). — (5) tions forn, then so does (10); therefore (4) holds.

(N_1.n0.N1)EA



We next carry out the program outlined above. Let The second equality above follows since b@in;_1, n; + &)
andQ(n; + &, nj;1) are nonzero if only if
M= {X=(X,%)€Z : X+ % <C, % <T}.
1) s+s:1+1<C,and
Theorem 3.1. (Threshold policy): Consider a threshold policy
with parameter T. Let Q be th&| x M| matrix defined by ~ 2) M2+ Niz12+1<T whenk = 2.

setting for eachx,y € M . . . . .
In that casen + g  is feasible becauseis feasible and it dfers

P i 2, X+ Yk < Cand fromn + g only in theith entry; furthermore
Qx,y) = {71 ¥ X2+ Y2 <T
2Ty Q(Mi-1. M +8)/Q(Mi-1. M) = /(M + 1)
0 otherwise.
Q(ni + &, Niy1)/Q(Mi, Miyg) = 1
Let¢ be the M-dimensional vector defined by setting
due to the definition of).
/lxl X2 -
#(X) X_1|X_2|, cM Fori =0,
v pn+eor) _ QNo+ e N-1)é(No + 8)Q(No + &, Na)
Then (6) satisfies the detailed balance equationsfan turn u(n) Q(no, N-1)¢(no)Q(No, N1)
the equilibrium distributionr of n is given by (4) subject to = A 1|{n + ey is feasible.
Nok + :

definitions (7)-(9).
The second equality above follows from the definitions of the

Proof. Let|{.} be the indicator function that is 1 if its argument matrix Q and the vectop. Thereforeu solves the detailed bal-
is true and 0 otherwise. Also define ance equations far; and in turnz is given by (4). O

e =(1,0) and e =(01) We next turn to the reservation policy. The network occu-
pancyn is generally not reversible under reservation policies.
Perhaps the easiest way to verify this is to consider a single
node (i.e.N = 0) and inspect the asymmetries in the state tran-
sition diagram oh. While the techniques of Theorem 3.1 can-

and for each = —N, - -- , N the following vectors of tuples that
have the same dimensionality as

€1=1{(0.0).---.(10),---.(0.0)f, not be applied to obtain the equilibrium distributiandue to
ithentry irreversibility, we shall show that a coarser state desarip
a,Zi (0,0)77(0,1)”(070) Sﬁ(S_N,"',SN)
——
ithentry

is reversible and it can be analyzed by analogous techniques
(Recall thats = nj1 + nj» is the total occupancy of node

Let us refer to elements of the state space of the networ[‘('nder reservation policies,is a Markov process since request

. .admission decisions are based on total node occupancies and
occupancy process as feasible states. For a threshold polic

with parametefT, staten is feasible if and only if it satisfies request holding times have identical statistics for thetypes.

conditions (1) and (2). For each feasible statet

Note that jumps of the processare of the formze y for some
nodei and some typé&.

Letrs denote the unique equilibrium distributionsdinder a
reservation policy with paramet& We establish reversibility
of sby showing thatrs admits the following form

N-1
u(n) = p(no) [ ] i, ni) QN i),
i=0

N-1
7s(s) = an(So Pn-i(S, S+1)Prn-i(Ssis Soie1)s 11
Fori + 0 andk— 1.2 59 =) | [Pri(s s)Pui(ss si) (D
n+ Ni_1, N n; LN R ) .
pnre o Qs N+ GJQN + & Niva) wherern(s) : S0 = 0,1,2,---,C is a probability vector and
u(n) Q(Ni-1, Ni)Q(Ni, Ni+1) _ _ _
A Pj, j = 1---,Nare C+1)x (C + 1) stochastic matrices.

= e 70+ els feasible.

Towards that end, it is enough to show that detailed balance



equations fos are satisfied by

N-1
() | | Qs $:0)Q(s0,510)
i=0

for some nonnegative>(+ 1)-dimensional vectop and C +
1) x (C + 1) matrixQ, since then one can set

QY 25,972

. N
(z:z() QJ (Xv Z)

Pi(x.y) =L (12)

and

C
N = Go(( ) QV(x. 2)? (13)
z=0

wherex,y =0,1,---,C andG is a normalizing constant.

Theorem 3.2. (Reservation policy): Given a reservation policy
with parameter R, let the matrigQ(x,y) : x,y = 0,1,---,C)
be defined by setting

Wkl jfx+y<C, andy<R
()RR
y!

Qxy) = ifx+y<C, andy>R

0 otherwise,

and for x=0,1,---,C let

B(x) = {

Thenrs is given by (11) subject to definitions (12)—(13).

(it if x <R

X!
D+a)RAR
% |f X > R.

x!

Proof. The theorem is proved by verifying the detailed balance
equations as in the proof of Theorem 3.1 and thus the proof is

omitted. O

4, Approximationsfor Large Topologies

Consider first the threshold policy. LBt andxy be defined
by equalities (7) and (8) respectively, and define

P(x.y) = lim Pn(x.y)
a(x) = NIim an(x)
for x,y € M. The above limits exist and can be characterized.

Namely,Q is a non-negative primitive matrix, i.e., there exists
an integerj > 0 such that all entries a®! are strictly positive.
Therefore by [12, Theorem 1.2]

lim

=00

= wxv(y). (14)

Q(x,y)

o
whereo is the largest eigenvalue §f andw = (w(x) : x € M)
andv = (v(x) : x € M) are respectively the corresponding
right and left eigenvectors, normalized such that = 1. It
can be verified tha® is irreducible sov andv are unique up
to a multiplicative constant and in turn the right hand sifle o
equality (14) is well-defined. By substituting (14) in (7)B(8)
we obtain respectively

PXY) = Q(:Vs\:z;\;(y)
X1 /l)(g
(X)) = Gox—i!x—z!w(x)z

for some normalizing consta,.

The blocking probability of type 1 requests arriving at a-typ
ical node can now be approximated by

B<1°)=1—Zﬁ(x){1— Z

YiX1+Xp+Y1+Y,=C
which is the probability that a random vectar (Xo, X,) € M3
with distribution P(Xo, X_)7(Xo) P(Xo, X+) Satisfiesx_1 + x_o +
Xo1+ X2 =COrX,1+ X2+ X1 + X2 = C. Analogously, for
type 2 requests

2
P(x,y) ] .

In this section we consider an approximate method that en-

tails further computational reductions, and that is asyript
cally exact asN tends toco. The approximation is based on
the observation that in a large linear topology most of theeso
are far away from the two network boundaries; if the tel@ra

2
P(x,y) ] .

B;°>=1—Zﬁ(x)[1—

The revenue ratper node 5y, is then approximately

2,

YiXo+ya=T

statistics are homogeneous in the network then marginal dis

tributions of the network occupancybecome almost uniform
and the concept of a typical node emergel ésndsco. A good

candidate for a typical node is the center node whose lignitin

distribution is determined by the asymptotic charactéiczeof
Pn andn“N.

rida(1 - BY) + rox(1 - BY). (15)

This approximation is asymptotically exactlds— co.

A similar procedure can be applied to the reservation pol-
icy. In this case, the limitg(X) = limy_ 7n(X) @andP(X,y) =



limnoe Pn(X, y) are given by

(/11+/12)x

200 G, 2l w(x)? 0<x<R
m(X) = . (x-T)
G, U2 R<x<C,
whereG, is a constant, and
QX y)w(y)
P(X7 Y) - O'W(X) .

Here, as beforey andv are properly normalized right and l¢
eigenvectors corresponding to the largest eigenvalwé the
matrix Q defined in Theorem 3.2. In turn,

C

BY = 1-a((1- > Pxy)
=0 yix+y=C
R-1

BY = 1-) a((1- > P(xy))

o

X= y:x+y=C

and rate of revenue per node is approximated as in (15).

5. Revenue Comparison
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Figure 1. Optimal revenue rates per node for an infinitelerded topology
with C = 10 and1; = 1, = 5.0.

6. Generalizations

The analytical technique of Section 3 can be generalized in
a number of directions at the expense of some notational bur-
den. Specifically, analysis of (i) networks with node-degeamt
arrival rates, (ii) threshold and reservation policieshwibde-
dependent parameters, and (iii) three or more request égms

In this section, we compute the highest revenue per node uRypject to diferent reservation parameters can be carried out by

der each policy (over possible policy parameters) for thseca

redefining matriceg andQ in a way to mimic the general pro-

N = co. For example, for the threshold policy, the revenue valcedure followed here. The analysis can also be generalized t
ues are computed for all possible threshold parametersh@nd tarbitrary acyclic (tree) topologies. This extensiofietis from

maximum value is picked. We refer to such valué\gg. Fig-
ure 1 depictdo, under each policy for dierent values of»
with values on both axes normalized iy The results are ob-
tained forC = 10 channels and; = 1, = 5.0 requests per unit

the program presented here not in the guessing of mat@ces
andr, but in the mechanism of passageRpands. Although
itis rather rudimentary given the present analysis, theresion
requires proper notation and it is omitted for space lirfota.

time. Note here that the displayed revenue values for the com

plete sharing policy are restricted to the ran@ﬁ)% <1l0as
those achieved below this range are fairly low. The figurevsho
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