
On Equilibrium Analysis of Acyclic Multiclass Loss Networks under Admission Control

Ashraf Al Daouda, Murat Alanyalib, David Starobinskib

aDepartment of Communications Engineering, German-Jordanian University, Jordan
bDepartment of Electrical and Computer Engineering, BostonUniversity, USA

Abstract

We consider equilibrium analysis of several dynamic resource sharing policies for multiclass loss networks with acyclic topologies.

The policies of interest are based on the principle of prioritizing classes via thresholding or reservation. We show that under

each policy the equilibrium network state is a Markov randomfield and we obtain closed form expressions for the conditional

probabilities therein. Such representations drasticallyreduce the computational complexity of blocking probability and revenue

calculations. We provide revenue comparison of the considered policies and several extensions of the applied analytical technique.
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1. Introduction

Revenue management via admission control arises in a vari-

ety of contexts ranging from logistic service provision to tele-

phone networks. This paper is motivated by the renewed in-

terest due to recent regulatory progress that paves the way to

dynamic spectrum access by so-called primary and secondary

users. In this context, resources are radio channels that cannot

be utilized simultaneously in neighboring locations due toin-

terference; and a spectrum provider may augment its revenue

from a primary customer base by providing opportunistic ac-

cess to secondary users subject to an admission policy.

We analyze four admission control policies on linear (and

more generally acyclic) network topologies that may model

highways and beaches. Considered policies are based on the

concepts of reservation, which is optimal for an isolated re-

source [1], and thresholding [2]. Equilibrium analyses of each

policy under standard Markovian models are computationally

intense. We show that for linear network topologies, equilib-

rium system state under each policy can be explicitly repre-

sented as a Markov random field. The conditional probabilities

in such representation are identified, thereby leading to substan-

tial computational convenience in calculating blocking proba-

bilities and network revenue. We provide a numerical com-

parison of revenue rates under the considered policies, anda

discussion of generalizations of the applied techniques.
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Connections between Markov random fields and loss net-

works have been previously studied. Exact analyses in the liter-

ature are limited to uncontrolled networks with acyclic topolo-

gies [3, 4, 5, 6]. Here the term topology specifies a structure

for routes in the generic loss network formulation as specified

by [5]. Analyses of these papers rely also on reversibility of

network state in the uncontrolled case. This property holdsfor

threshold policies, for which equilibrium distributions can be

obtained in closed form but entail computational difficulty due

to normalizing constants [2]. Reversibility generally does not

hold under reservation policies. In turn these policies have been

studied via fixed-point [5, 7, 8] and asymptotically exact ap-

proximations [9, 10]. The technical contribution of the present

paper is exact analysis of controlled loss networks under two

canonical admission philosophies in a particular setting.The

analysis here also relies on reversibility, however the setting is

different than those of [3, 4, 5, 6] due to both admission control

and the composition of considered routes; in turn the analyses

of these papers do not directly apply here. The present paper

also provides a streamlined approach to identifying the field

potentials in terms of probability transition matrices, which is a

key to the alluded computational savings.

2. Resource Sharing Policies

Consider 2N + 1 nodes indexed by the integers

{−N,−N + 1, · · · ,N − 1,N}
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and let an edge be drawn between nodesi and j if |i − j| = 1.

We shall interpret each edge as a collection ofC resources. We

consider two types of dynamic requests for resources: At each

node, typek (k = 1, 2) requests arrive according to a Poisson

process with rateλk. If honored, such a request generates a

revenue ofrk units and it holds one resource at each edge that is

incident to the node of arrival. Arrival processes across nodes

and types are independent, and holding times are exponentially

distributed with unit mean, independently of the history prior to

the request arrival.

Let ni,k denote the number of typek requests in service at

nodei. We shall denote the detailed occupancy of nodei by

ni
.
= (ni,1, ni,2)

and the total occupancy of the node by

si
.
= ni,1 + ni,2.

Hence the vector (n−N, · · · , nN) of detailed occupancies neces-

sarily satisfies

si + si+1 ≤ C, for all i = −N, · · · ,N − 1. (1)

We consider the following four policies to share the available

resources between the two types of requests:

1. Complete Sharing Policy: A request, of either type, is

admitted whenever the network has resources available to

accommodate the request. Namely, a request is admitted

if and only if its inclusion preserves condition (1).

2. Threshold Policy: This policy prioritizes type 1 requests

by enforcing a thresholdT (0 ≤ T ≤ C) on the number

of resources that can be unavailable due to ongoing type 2

requests. Namely, a type 1 request is admitted if that does

not violate conditions (1), whereas a type 2 request is ad-

mitted if, in addition to (1), its inclusion preserves

ni,2 + ni+1,2 ≤ T, i = −N, · · · ,N − 1. (2)

3. Complete Partitioning Policy: Under a complete parti-

tioning policy, the resources are statically divided between

the two types so thatK resources are allocated to type 1

and the remainingC − K resources are available exclu-

sively to type 2 requests. A type 1 request is then admitted

if its inclusion preserves

ni,1 + ni+1,1 ≤ K, i = −N, · · · ,N − 1.

A type 2 request is admitted if its inclusion preserves

ni,2 + ni+1,2 ≤ C − K, i = −N, · · · ,N − 1.

4. Reservation Policy: This policy prioritizes type 1 re-

quests by rejecting type 2 requests above a certain occu-

pancy level. Specifically, each node has a reservation pa-

rameterR (0 ≤ R ≤ C). A type 1 request is admitted if

its admission preserves conditions (1), whereas a type 2

request is admitted if, besides (1), its admission preserves

the total number of requests in service at the node below

R; i.e.,after inclusion

si ≤ R, i = −N, · · · ,N.

Note that the reservation parameter acts onsi rather than

si + si+1 so the policy differs slightly from trunk reserva-

tion policies considered earlier for circuit switched net-

works [7].

We point out that complete sharing and complete partitioning

can be analyzed via special cases of threshold and reservation

policies; so it suffices to analyze only the latter two policies.

3. Equilibrium Node Occupancies

We define the network staten as

n
.
= (n−N, · · · , nN).

Under each of the above policies,n is an irreducible Markov

process with a finite state space; therefore it possesses a unique

equilibrium distributionπ. The long-term rate of revenue gen-

eration is denoted by

W
.
=

N∑

i=−N

∑

k=1,2

rkλk(1− B(i)
k ),

whereB(i)
k is the blocking probability of typek requests at node

i. By the PASTA property,B(i)
k can be expressed in terms of the

equilibrium distributionπ. In this section, we provide closed

form expressions forπ that are particularly convenient for com-

puting the blocking probabilities and in turn the revenue rate

under each policy.

We define an occupancy staten to beadmittingfor typek at

nodei if a request of typek can be admitted at the nodei at that

network state. Let us denote such states byA(i,k). For example,

for a threshold policy, admitting states for type 2 requestsat
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nodei,A(i,2), are the statesn that satisfy both conditions (1) and

(2) with strict inequality. Due to the PASTA property, blocking

probability of typek requests at nodei is given by

B(i)
k = 1−

∑

n:n∈A(i,k)

π(n). (3)

For large values of parametersN andC, determining block-

ing probabilities via expression (3) is computationally intense.

This is mainly due to two reasons: (i) The state space of the

occupancy processn increases with the network size and the

number of request types. Even in cases when the distributionπ

has a product form (as for the complete sharing policy), com-

putation ofπ requires determining a normalizing constant that

is NP-hard [11], and (ii) onceπ is obtained, computation ofB(i)
k

requires a large number of summands due to the statistical de-

pendence among node occupancies.

Here we show that the alluded difficulties can be avoided in

linear (more generally acyclic) network topologies for thecon-

sidered sharing policies. Namely, we establish that under each

policy the distributionπ admits the representation

π(n) = π̂N(n0)
N−1∏

i=0

PN−i(ni , ni+1)PN−i(n−i , n−i−1), (4)

where{π̂N(n0) : n0,1, n0,2 = 0, 1, · · · ,C} is a probability dis-

tribution andP j , j = 1, · · · ,N are stochastic matrices. Here,

enumeration of matrix rows and columns with two-dimensional

vectorsni is arbitrary but consistent for all matricesP j . The

structure of form (4) yields thatπ is a Markov random field

with respect to the linear network graph. In the terminologyof

Markov random fields, the vector ˆπN is a node potential and the

matricesP j are edge potentials.

Under the representation (4), the equilibrium variables

ni , ni+1, ni+2, · · ·

form a non-homogeneous Markov process whose transition

probabilities are determined by the stochastic matricesP j. An

immediate consequence of this observation is that the marginal

distribution of the network load at the neighborhood of a given

node admits a succinct characterization, and thereby leadsto

efficient computation of blocking probabilities at that node.

For example, for a threshold policy with thresholdT, blocking

probability of type 2 requests at node 0 is given by

B(0)
2 = 1−

∑

(n−1,n0,n1)∈A

PN(n0, n1)π̂N(n0)PN(n0, n−1), (5)

whereA is the set of triplets (n−1, n0, n1) such that

s0 + s1 < C, s0 + s−1 < C,

n0,2 + n1,2 < T, n0,2 + n−1,2 < T.

Blocking probabilities at other nodes can be obtained through

similar computations. Note that the number of possible values

of ni is at most quadratic inC and membership in the setA is

verified in triplets; so (5) entailsO(C6) operations.

We next identify the matricesP j and the distribution ˆπN that

render the form (4) an equilibrium distribution for the nodeoc-

cupancies under a threshold policy with parameterT. This will

be done by first finding a nonnegative matrixQ and a nonnega-

tive vectorφ such that the product

φ(n0)
N−1∏

i=0

Q(ni , ni+1)Q(n−i , n−i−1) (6)

satisfies the detailed balance equations for the processn. This

would imply that the process is reversible. Furthermore, it

would imply that expression (6) would give the equilibrium

distribution ofπ after being properly normalized to become a

probability distribution on the state space associated with the

threshold policy. Such a normalization can be imposed on the

individual factors in (6) by definingP j(x, y) from (4) as

P j(x, y)
.
=

Q(x, y)
∑

z Q j−1(y, z)
∑

z Q j(x, z)
, j = 1, · · · ,N (7)

whereQ j denotes thejth matrix power ofQ, and

π̂N(x)
.
= Gφ(x)





∑

z

QN(x, z)





2

(8)

where

G−1
=

∑

x

φ(x)





∑

z

QN(x, z)





2

. (9)

The sums in the above definitions run through all possible val-

ues of associated entries, which will be specified below. Note

that under definitions (7)-(9) the product on the right hand side

of (4) is equal to

π̂N(n0)
(∑

z QN(n0, z)
)2

N−1∏

i=0

Q(ni , ni+1)Q(n−i , n−i−1). (10)

It is easy to verify that if (6) satisfies the detailed balanceequa-

tions forn, then so does (10); therefore (4) holds.
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We next carry out the program outlined above. Let

M
.
= {x = (x1, x2) ∈ Z

2
+

: x1 + x2 ≤ C, x2 ≤ T}.

Theorem 3.1. (Threshold policy): Consider a threshold policy

with parameter T. Let Q be the|M| × |M| matrix defined by

setting for eachx, y ∈ M

Q(x, y) =






λ
y1
1

y1!
λ

y2
2

y2! if






∑2
k=1 xk + yk ≤ C and

x2 + y2 ≤ T

0 otherwise.

Letφ be the M-dimensional vector defined by setting

φ(x) =
λ

x1
1

x1!

λ
x2
2

x2!
, x ∈ M.

Then (6) satisfies the detailed balance equations forn; in turn

the equilibrium distributionπ of n is given by (4) subject to

definitions (7)-(9).

Proof. Let I {.} be the indicator function that is 1 if its argument

is true and 0 otherwise. Also define

e1
.
= (1, 0) and e2

.
= (0, 1),

and for eachi = −N, · · · ,N the following vectors of tuples that

have the same dimensionality asn:

ei,1
.
=





(0, 0), · · · , (1, 0)
︸︷︷︸

ithentry

, · · · , (0, 0)





,

ei,2
.
=





(0, 0), · · · , (0, 1)
︸︷︷︸

ithentry

, · · · , (0, 0)





.

Note that jumps of the processn are of the form±ei,k for some

nodei and some typek.

Let us refer to elements of the state space of the network

occupancy process as feasible states. For a threshold policy

with parameterT, staten is feasible if and only if it satisfies

conditions (1) and (2). For each feasible staten let

µ(n)
.
= φ(n0)

N−1∏

i=0

Q(ni , ni+1)Q(n−i , n−i−1).

For i , 0 andk = 1, 2

µ(n + ei,k)
µ(n)

=
Q(ni−1, ni + ek)Q(ni + ek, ni+1)

Q(ni−1, ni)Q(ni , ni+1)

=
λk

ni,k + 1
I {n + ei,k is feasible}.

The second equality above follows since bothQ(ni−1, ni + ek)

andQ(ni + ek, ni+1) are nonzero if only if

1) si + si±1 + 1 ≤ C, and

2) ni,2 + ni±1,2 + 1 ≤ T whenk = 2.

In that casen+ ei,k is feasible becausen is feasible and it differs

from n + ei,k only in theith entry; furthermore

Q(ni−1, ni + ek)/Q(ni−1, ni) = λk/(ni,k + 1)

Q(ni + ek, ni+1)/Q(ni, ni+1) = 1

due to the definition ofQ.

For i = 0,

µ(n + e0,k)
µ(n)

=
Q(n0 + ek, n−1)φ(n0 + ek)Q(n0 + ek, n1)

Q(n0, n−1)φ(n0)Q(n0, n1)

=
λk

n0,k + 1
I {n + e0,k is feasible}.

The second equality above follows from the definitions of the

matrix Q and the vectorφ. Thereforeµ solves the detailed bal-

ance equations forn; and in turnπ is given by (4).

We next turn to the reservation policy. The network occu-

pancyn is generally not reversible under reservation policies.

Perhaps the easiest way to verify this is to consider a single

node (i.e.N = 0) and inspect the asymmetries in the state tran-

sition diagram ofn. While the techniques of Theorem 3.1 can-

not be applied to obtain the equilibrium distributionπ due to

irreversibility, we shall show that a coarser state descriptor

s
.
= (s−N, · · · , sN)

is reversible and it can be analyzed by analogous techniques.

(Recall thatsi = ni,1 + ni,2 is the total occupancy of nodei.)

Under reservation policies,s is a Markov process since request

admission decisions are based on total node occupancies and

request holding times have identical statistics for the twotypes.

LetπS denote the unique equilibrium distribution ofs under a

reservation policy with parameterR. We establish reversibility

of s by showing thatπS admits the following form

πS(s) = π̂N(s0)
N−1∏

i=0

PN−i(si , si+1)PN−i(s−i , s−i−1), (11)

whereπ̂N(s0) : s0 = 0, 1, 2, · · · ,C is a probability vector and

P j , j = 1, · · · ,N are (C + 1) × (C + 1) stochastic matrices.

Towards that end, it is enough to show that detailed balance
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equations fors are satisfied by

φ(s0)
N−1∏

i=0

Q(si , si+1)Q(s−i , s−i−1)

for some nonnegative (C + 1)-dimensional vectorφ and (C +

1)× (C + 1) matrixQ, since then one can set

P j(x, y) =
Q(x, y)

∑C
z=0 Q j−1(y, z)

∑C
z=0 Q j(x, z)

, j = 1, · · · ,N (12)

and

π̂N(x) = Gφ(x)(
C∑

z=0

QN(x, z))2 (13)

wherex, y = 0, 1, · · · ,C andG is a normalizing constant.

Theorem 3.2. (Reservation policy): Given a reservation policy

with parameter R, let the matrix(Q(x, y) : x, y = 0, 1, · · · ,C)

be defined by setting

Q(x, y) =






(λ1+λ2)y

y! if x + y ≤ C, and y≤ R
(λ1+λ2)Rλ

y−R
1

y! if x + y ≤ C, and y> R

0 otherwise,

and for x= 0, 1, · · · ,C let

φ(x) =






(λ1+λ2)x

x! if x < R
(λ1+λ2)Rλ

(x−R)
1

x! if x ≥ R.

ThenπS is given by (11) subject to definitions (12)–(13).

Proof. The theorem is proved by verifying the detailed balance

equations as in the proof of Theorem 3.1 and thus the proof is

omitted.

4. Approximations for Large Topologies

In this section we consider an approximate method that en-

tails further computational reductions, and that is asymptoti-

cally exact asN tends to∞. The approximation is based on

the observation that in a large linear topology most of the nodes

are far away from the two network boundaries; if the teletraffic

statistics are homogeneous in the network then marginal dis-

tributions of the network occupancyn become almost uniform

and the concept of a typical node emerges asN tends∞. A good

candidate for a typical node is the center node whose limiting

distribution is determined by the asymptotic characterization of

PN andπ̂N.

Consider first the threshold policy. LetP j andπ̂N be defined

by equalities (7) and (8) respectively, and define

P(x, y) = lim
N→∞

PN(x, y)

π̂(x) = lim
N→∞
π̂N(x)

for x, y ∈ M. The above limits exist and can be characterized.

Namely,Q is a non-negative primitive matrix, i.e., there exists

an integerj > 0 such that all entries ofQ j are strictly positive.

Therefore by [12, Theorem 1.2]

lim
j→∞

Q j(x, y)
σ j

= w(x)v(y), (14)

whereσ is the largest eigenvalue ofQ andw = (w(x) : x ∈ M)

and v = (v(x) : x ∈ M) are respectively the corresponding

right and left eigenvectors, normalized such thatv′w = 1. It

can be verified thatQ is irreducible sow andv are unique up

to a multiplicative constant and in turn the right hand side of

equality (14) is well-defined. By substituting (14) in (7) and (8)

we obtain respectively

P(x, y) =
Q(x, y)w(y)
σw(x)

π̂(x) = Go
λ

x1
1

x1!

λ
x2
2

x2!
w(x)2

for some normalizing constantGo.

The blocking probability of type 1 requests arriving at a typ-

ical node can now be approximated by

B(0)
1 = 1−

∑

x

π̂(x)




1−

∑

y:x1+x2+y1+y2=C

P(x, y)





2

,

which is the probability that a random vector (x−, xo, x+) ∈ M3

with distributionP(xo, x−)π̂(xo)P(xo, x+) satisfiesx−,1 + x−,2 +

xo,1 + xo,2 = C or x+,1 + x+,2 + xo,1 + xo,2 = C. Analogously, for

type 2 requests

B(0)
2 = 1−

∑

x

π̂(x)




1−

∑

y:x2+y2=T

P(x, y)





2

.

The revenue rateper node, W
2N+1, is then approximately

r1λ1(1− B(0)
1 ) + r2λ2(1− B(0)

2 ). (15)

This approximation is asymptotically exact asN→ ∞.

A similar procedure can be applied to the reservation pol-

icy. In this case, the limits ˆπ(x) = limN→∞ π̂N(x) andP(x, y) =
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limN→∞ PN(x, y) are given by

π̂(x) =






G∗
(λ1+λ2)x

x! w(x)2 0 ≤ x < R

G∗
(λ1+λ2)Tλ

(x−T)
1

x! w(x)2 R≤ x ≤ C,

whereG∗ is a constant, and

P(x, y) =
Q(x, y)w(y)
σw(x)

.

Here, as before,w andv are properly normalized right and left

eigenvectors corresponding to the largest eigenvalueσ of the

matrix Q defined in Theorem 3.2. In turn,

B(0)
1 = 1−

C∑

x=0

π̂(x)( 1−
∑

y:x+y=C

P(x, y) )2,

B(0)
2 = 1−

R−1∑

x=0

π̂(x)( 1−
∑

y:x+y=C

P(x, y) )2

and rate of revenue per node is approximated as in (15).

5. Revenue Comparison

In this section, we compute the highest revenue per node un-

der each policy (over possible policy parameters) for the case

N = ∞. For example, for the threshold policy, the revenue val-

ues are computed for all possible threshold parameters and the

maximum value is picked. We refer to such value asWopt. Fig-

ure 1 depictsWopt under each policy for different values ofr2

with values on both axes normalized byr1. The results are ob-

tained forC = 10 channels andλ1 = λ2 = 5.0 requests per unit

time. Note here that the displayed revenue values for the com-

plete sharing policy are restricted to the range 0.6 ≤ r2
r1
≤ 1.0 as

those achieved below this range are fairly low. The figure shows

that for r2 << r1, admitting type 2 requests leads to a loss in

revenue and hence to negative profitability. In this case allthe

policies except the complete sharing policy have mechanisms

to block type 2 traffic and thus perform better. Forr2 > 0.4r1

the reservation policy starts performing strictly better than the

other policies. Forr2 > 0.6r1 the threshold policy outperforms

the complete partitioning policy, and the revenue gap widens

asr2 increases since type 2 traffic becomes more rewarding and

statistical multiplexing yields strictly better results than the sep-

aration of the two traffic streams. Finally, ifr2 = r1, the maxi-

mum revenue under the threshold policy is achieved by letting

T = C, in which case the policy becomes complete sharing and

hence the two policies yield the same revenue.
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W
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Figure 1: Optimal revenue rates per node for an infinitely extended topology
with C = 10 andλ1 = λ2 = 5.0.

6. Generalizations

The analytical technique of Section 3 can be generalized in

a number of directions at the expense of some notational bur-

den. Specifically, analysis of (i) networks with node-dependent

arrival rates, (ii) threshold and reservation policies with node-

dependent parameters, and (iii) three or more request typeseach

subject to different reservation parameters can be carried out by

redefining matricesφ andQ in a way to mimic the general pro-

cedure followed here. The analysis can also be generalized to

arbitrary acyclic (tree) topologies. This extension differs from

the program presented here not in the guessing of matricesQ

andπ, but in the mechanism of passage toP j andπ̂. Although

it is rather rudimentary given the present analysis, the extension

requires proper notation and it is omitted for space limitations.
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