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ABSTRACT
We introduce an economic model for private commons
that consists of network providers serving a fixed pri-
mary demand and making strategic pricing decisions to
improve their revenues by providing service to a sec-
ondary demand. For general forms of secondary de-
mand, we establish the existence and uniqueness of two
critical prices for each provider: the break-even price
and the market sharing price. The prior determines ser-
vice profitability while the latter determines a provider’s
willingness to share the market. We further show that
the market sharing price is always greater than the break-
even price, leading to a price interval in which a provider
is both profitable and willing to share the market. Mak-
ing use of these results, we shed insight into the nature of
market outcomes (Nash equilibria) when two providers
compete to attract secondary demand: (i) if the mar-
ket sharing intervals of the two providers overlap, then
the providers end up sharing the market; (ii) else, the
provider with the lower break-even price captures the
entire market as the result of a price war.

1. INTRODUCTION
In an effort to make more efficient usage of the electro-

magnetic spectrum, the FCC is promoting new paradigms
for spectrum sharing. One such paradigm is the Private
Commons, which is deemed both “commercially viable
and technologically feasible” [1]. This paradigm sup-
ports spectrum transactions, where ownership of spec-
trum remains with the license holder providing service
to its primary users, but this provider may also pro-
vide spectrum access to secondary users for a fee. The
Amazon’s Kindle model can be viewed as an early re-
alization of this paradigm, in which owners of Kindle
e-readers make secondary use of AT&T network to re-
trieve contents from the cloud. Other precursors include
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machine to machine (M2M) communication and mobile
virtual network operators (MVNOs), such as Republic
Wireless, that mainly rely on Wi-Fi and utilize a cellular
network as a fallback.

A network providing secondary spectrum access has
two major challenges to resolve. The first such challenge
is to keep a profitable margin by making the correct
strategic pricing decision. The difficulty of this chal-
lenge lies with the uncertainty in the demand response
to the advertised price, which is generally stipulated by
a so-called demand function. However, this function is
hard to characterize and may also be time-varying.

The second challenge is the market competition that
a provider faces in spectrum offerings. When several
providers offer secondary spectrum provisions, this opens
up the possibility of market sharing by advertising the
same price. However, it is not clear whether such an ac-
tion is favorable over trying to capture the entire market
by slightly lowering the price in turn.

The main goal of our paper is to provide insight, for
general demand functions, into the market outcomes of
a game involving multiple providers offering secondary
spectrum access in their private commons. Toward this
end, we identify two price thresholds playing a critical
role for each provider, and establish a fundamental re-
lationship between them.

We first prove the existence of a unique break-even
price pBE that guarantees a positive profit as long as a
provider sets its price above it. Next, we derive another
unique threshold price, called market sharing price pMS ,
below which a provider finds it desirable to share sec-
ondary demand with another provider. Even though the
expressions for the market sharing and break-even prices
are implicit, we prove that the market sharing price is
always strictly greater than the break-even price, re-
gardless of the demand function. This leads to the con-
clusion that there always exists a price interval in which
a network provider is profitable and is willing to share
the market as illustrated in Fig. 1(a).

Finally, we consider a duopoly competition where net-
work providers make pricing decisions to maximize their
revenues. We formally establish the best response strat-
egy of each provider and list the possible market out-
comes in the form of Nash equilibria. Due to space
limitations, the proofs of all the lemmas and theorems
presented in this paper can be found in [2].
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Figure 1: Price intervals and traffic flow model

2. MODEL
We consider two spectrum providers, where each pro-

vider i has a capacity Ci and a primary demand of
volume λi, which generates a revenue of Ki units per
service. These providers compete for a stream of sec-
ondary demand, whose volume depends of their pricing
of secondary service as illustrated in Figure 1(b). We
assume a traffic model where if provider i receives a to-
tal demand of volume λi, then it can accommodate the
volume min(Ci, λi). The excess demand max(λi−Ci, 0)
does not generate any revenue for the provider.

The total demand of a provider consists of its primary
demand and, depending on its pricing and the pricing
of its competitor, a secondary demand. The steady-
state primary and secondary demands, λi and σ(p), and
the overflow assumption are consistent with fluid models
Such models have widely been used in the literature to
characterize network traffic at the flow level [3].

We shall assume that the two demand types access
the capacity in an uncoordinated fashion, as suggested
by documentation on private commons [1]. Specifically,
the two types of demand share capacity on equal basis,
such that if the demand of provider i is composed of two
types with respective volumes λi and σi, then the over-
flow volume of each type is proportional to the intensity
of demand of that type. That is, in view of our previous

assumption, a fraction min
(

1, Ci
λi+σi

)
of each type of

demand is actually accommodated by the provider.
We denote the price that provider i charges per unit

of serviced secondary demand by pi. The volume of
the secondary demand is assumed to be determined by
the minimum price min(p1, p2) stipulated by the two
providers. Specifically, the volume of secondary demand
is σ(min(p1, p2)), where σ(·) is the demand function. We
make the mild assumption that this function is differ-
entiable and decreasing ( ∂

∂p
σ(p) ≤ 0). We shall also

assume that σ(0) > 0 and lim
p→∞

σ(p) = 0.

It is assumed that the secondary demand is attracted
to the provider that charges the lowest price. This
behavior can be explained by price aversion, a con-
cept employed in marketing management [5]. When
both providers charge the same price, the resulting sec-
ondary demand splits between the two providers accord-
ing to an arbitrary probability vector [α1, α2] such that
α1 + α2 = 1 and α1, α2 > 0. Namely, each provider i

receives a secondary demand of volume αiσ(pi).
Hence, if provider i receives a secondary demand of

volume σ(pi), its overall revenue is given by:

Wi(pi, σ(pi))
4
= piσ(pi) min

(
1,

Ci

λi + σ(pi)

)
(1)

+Kiλi min

(
1,

Ci

λi + σ(pi)

)
.

In this case, the secondary profit rate of the provider is:

Πi(pi, σ(pi))
4
= Wi(pi, σ(pi))−Wi(0, 0). (2)

Since the secondary demand that a provider receives
depends on the prices of both providers, so does the
profit of the provider. We define the reward Ri(pi, p−i)
of provider i as its profit when it charges secondary ac-
cess pi and its competitor charges p−i units. Namely,

Ri(pi, p−i)
4
=

 Πi(pi, σ(pi)) if pi < p−i
Πi(pi, αiσ(pi)) if pi = p−i
Πi(pi, 0) if pi > p−i.

In the interest of space, the discussion of this paper is
limited to the case when each provider’s network is un-
derloaded prior to inclusion of any secondary demand,
that is λi < Ci, but can be overloaded for low enough
prices, that is λi + σ(0) > Ci.

3. MAIN RESULTS
In this section we present our main results on demand-

invariant price relationships in a secondary spectrum
markets. Since the results apply to each provider sepa-
rately, we drop the index i for notational simplicity.

We define the break-even price pBE(α) as the price
at which the profit of a provider is zero when it at-
tracts a fraction 0 < α ≤ 1 of the total demand, namely
Π(pBE , ασ(pBE)) = 0. We require σ(pBE) > 0 to rule
out prices that do not generate any secondary demand.

We next define the market sharing price pMS , that
asserts whether a provider finds it desirable to share
the secondary demand or not. Specifically, let

∆Π(p) , Π(p, ασ(p))−Π(p, σ(p)). (3)

Then, ∆Π(pMS) = 0. Analogous to the relationship be-
tween the break-even price and provider profitability, a
provider finds it undesirable to share the secondary de-
mand at prices above the market sharing price, whereas



the opposite is true for prices below the market sharing
price. Having defined the break-even and market shar-
ing prices, we can proceed with stating our main results
in the following theorem:

Theorem 3.1 (Market Sharing Interval) For any
secondary demand function, satisfying the assumptions
described in Section 2 and for all values of α : 0 < α ≤
1, there exists a price interval

(P) ≡ (pBE(α), pMS),

such that for all p ∈ (P): Π(p, ασ(p)) > Π(p, σ(p)) > 0.

Theorem 3.1 states that no matter the specific shape
of a secondary demand function, the existence of the
price interval (P) at which a network provider is prof-
itable and finds it preferable to share the secondary de-
mand is guaranteed. In the next two subsections, we
outline how the inequalities stated in Theorem 3.1 are
obtained.

3.1 Profitability and Break-Even Price
In this section we seek to analyze a provider’s profit

and the resulting break-even price. Our result applies
both to the cases when a network provider serves the
entire secondary demand (i.e., α = 1) and when it shares
the market with another provider (i.e, α < 1).

The following theorem, provides an equation that al-
lows the computation of the break-even price pBE(α)
for the aforementioned values of α. The theorem also
establishes the uniqueness of this price and the region
of profitable prices.

Theorem 3.2 (Break-Even Price)

1. For a given 0 < α ≤ 1, such that λ+ ασ(0) > C:

(a) A break-even price pBE(α) is a solution to the
following equation1:

p =
(ασ(p) + λ− C)λK

Cασ(p)
. (4)

(b) The break-even price pBE(α) is unique.

(c) The profit of a provider is such that:

Π(p, σ(p)) > 0 if p > pBE(α) (5)

Π(p, σ(p)) < 0 if p < pBE(α). (6)

2. For a given 0 < α < 1, such that λ + ασ(0) ≤ C,
the break-even price pBE(α) is 0.

Thus, we have effectively formulated and character-
ized the unique break-even price that determines a net-
work provider’s profitability.

3.2 Market Sharing
In the next theorem, we present our result on how

market sharing affects a provider’s profit. The theorem
establishes the existence and uniqueness of the market
sharing price pMS and provides an implicit equation to
compute it.

1This implicit equation can be solved with well-
established fixed point iterations, such as Newton’s
Method.

Theorem 3.3 (Market Sharing Price) For any net-
work provider there exists a unique market sharing price
pMS, which satisfies the following:

1. If λ+ ασ(K) ≤ C, pMS is the solution to:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (7)

2. If λ+ ασ(K) > C,

pMS = K. (8)

For any given pMS, the following is true:

∆Π(p) > 0 for p < pMS ; (9)

∆Π(p) < 0 for p > pMS . (10)

Theorem 3.3 yields a rather non-straightforward re-
sult such that for any network provider there exists a
unique price which acts as a threshold value: market
sharing at all prices greater than this threshold results
in a profit decrease, while at prices below this threshold
the network provider is guaranteed a profit increase by
decreasing its secondary demand.

Theorems 3.2 and 3.3 provide implicit equations for
the break-even price pBE(α) and market sharing price
pMS that depend on the demand function σ(p). Strik-
ingly, one can show through careful analysis that the
ratio of pBE(α) to pMS is strictly smaller than 1 for any
demand function, hence proving Theorem 3.1.

3.3 Duopoly Competition
In this section, we consider a duopoly where two provid-

ers compete to enhance their profits by first capturing
and then serving the secondary demand. To identify
a market equilibrium, we utilize the concept of Nash
equilibrium from game theory. Since Nash equilibria
are classically determined by best response functions,
we will first seek to establish the best response dynam-
ics of provider i to a fixed competitor price p−i, where
the notation −i signifies the competing provider.

Facing a competitor price p−i, the strategies available
to provider i consist of either matching this price and
sharing the secondary demand or not matching it and
trying to capture all of the secondary demand. While
setting the price below or above the competitor’s price
follows a rather straightforward approach, the case of
matching the competitor’s price requires a more detailed
analysis due to the discontinuity in the profit function.
The next lemma states that if it is possible to increase
the profit by capturing all of the secondary demand
σ(pi) at a certain price pi, then it is also desirable to
capture the secondary demand at a slightly lower price
p′i < pi. We will then utilize this result in establishing
provider i’s best response for prices pi > pMS

i .

Lemma 3.1 For any pi such that ∆Πi(pi) < 0 holds,
there exists a price p′i such that pMS

i < p′i < pi and

Πi(p
′
i, σ(p′i)) > Πi(pi, αiσ(pi)). (11)

The next theorem presents provider i’s best response:
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Figure 2: Illustration of the two possible types of market outcomes.

Theorem 3.4 (Best Response) Provider i best response
to its competing provider pricing decision p−i is:

pBRi (p−i) =


p−i − ε for p−i > pMS

i

p−i for pBEi (αi) ≤ p−i ≤ pMS
i

pBEi for p−i < pBEi (αi),

where ε > 0 is a constant such that p′i = p−i − ε < p−i
satisfies Eq. (11) in Lemma 3.12.

Theorem 3.4 establishes that for any network provider,
a price interval, in which market sharing is the best
response, is guaranteed to exist. Above this price in-
terval, a provider will lower its price below the com-
petitor’s price, as in a typical price war. Below this
price interval, profitability conditions from Section 3.1
are violated. While this interval is guaranteed to exist,
whether the market equilibrium is established in this
interval warrants further analysis. In the next theo-
rem, we determine the different market outcomes by
providing the resulting Nash equilibrium from the best
response functions of the two providers.

Theorem 3.5 (Nash Equilibrium) In a market with
two network providers, a pricing strategy profile (p∗1, p

∗
2)

is a Nash equilibrium such that:

1. If max(pBE1 (α1), pBE2 (α2)) ≤ min(pMS
1 , pMS

2 ), then
p∗1 = p∗2, and for i = 1, 2

p∗i ∈[max(pBE1 (α1), pBE2 (α2)),min(pMS
1 , pMS

2 )].

2. If max(p
BE(α1)
1 , pBE2 (α2)) > min(pMS

1 , pMS
2 ) and

without loss of generality pBE1 (α1) < pBE2 (α2)

p∗1 = pBE2 (α2)− ε and p∗2 = pBE2 (α2),

where ε is defined as in Theorem 3.4.

Interpretation of the Nash equilibria. As stated in
Theorem 3.5, the exact price profiles that give the Nash
equilibria depend on the relationship between the mar-
ket sharing intervals of the two providers. If two price

2For continuous prices, a well-known approach used in game
theory is to assume that each provider’s price is a multiple
of a small discretization step ε [4].

intervals overlap, as illustrated in part (a) of Fig. 2, any
equal price pair in that interval will give us a Nash equi-
libria. As a result, two providers share the market and
set their prices at a value above their respective break-
even prices but always less than the smaller of the two
market sharing prices, a value which is guaranteed to be
no greater than Ki, the primary reward collected.

On the other hand, if the market sharing price inter-
vals of the two providers do not intersect, as illustrated
in part (b) of Fig. 2, the market outcome is the same
as the result of a price war, where the provider with
the lower break-even price captures all of the secondary
demand by pricing slightly below its competitor’s break-
even price. The losing provider cannot match this price
without making a negative profit. In this case, even
though both providers find it desirable to go into market
sharing as the prices approach their break-even prices,
the gap between the two market sharing intervals does
not allow them to converge to a market sharing point.
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