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Abstract—The advent of practical rateless codes enables
implementation of highly efficient packet-level forward error
correction (FEC) strategies for reliable data broadcasting in
loss-prone wireless networks, such as sensor networks. Yet, the
critical question of accurately quantifying the proper amount
of redundancy has remained largely unsolved. In this paper, we
exploit advances in extreme value theory to rigorously address
this problem. Under the asymptotic regime of a large number of
receivers, we derive a closed-form expression for the cumulative
distribution function (CDF) of the completion time of file distri-
bution. We show the existence of a phase transition associated
with this CDF and accurately locate the transition point. We
derive tight convergence bounds demonstrating the accuracy of
the asymptotic estimate for the practical case of a finite number of
receivers. Further, we asymptotically characterize the CDF of the
completion time under heterogeneous packet loss, by establishing
a close relationship between the data broadcasting and multi-
set coupon collector problems. We demonstrate the benefits of
our approach through simulation and through real experiments
on a testbed of 20 Tmote Sky sensors. Specifically, we augment
the existing Rateless Deluge software dissemination protocol with
an extreme value FEC strategy. The experimental results reveal
reduction by a factor of five in retransmission request messages
and by a factor of two in total dissemination time, at the cost of
a marginally higher number of data packet transmissions in the
order of 5%.

Index Terms—Extreme Value Theory, Coupon Collector’s
Problem, Forward Error Correction (FEC), Rateless Coding,
Over-the-Air Programming.

I. INTRODUCTION

Reliable data broadcasting for wireless networks is an es-
sential service supporting a plethora of applications, including
distribution of text and multimedia contents, podcasting, and
over-the-air programming (OAP) [1–6].

The lossy nature of wireless channels significantly com-
plicates the task of reliable broadcasting, however. Due to
the potentially large number of wireless devices, the so-
called “broadcast storm” [7] phenomenon may arise when
multiple receivers contend over a shared channel to request
retransmissions of lost packets via either acknowledgements
(ACKs) or negative acknowledgements (NACKs) messages.
Although some mechanisms exist to mitigate the broadcast
storm problem, such as ACK and NACK suppression [8], the
impact of this problem can still be considerable [2, 5].

A preliminary version of this paper appeared in the proceedings of the
IEEE INFOCOM 2009 conference.

Ideally, instead of relying on receivers to notify a source
about missing packets, a procedure commonly referred to as
automatic repeat request (ARQ), the source should be able to
accurately predict the total number of transmissions required
and sends out data without the need for acknowledgements.
Packet-level forward error correction (FEC) [9] provides a
practical approach towards implementing this idea. With the
advent of rateless codes, such as random linear codes, LT,
and raptor codes [10, 11], FEC can be implemented in a very
efficient fashion, whereas a source continuously encodes new
packets based on the M original packets of a given file. The
source then sends out the encoded packets and as soon as
receiver obtains M (or slightly more) distinct packets, it can
reconstruct the entire file successfully.

Although FEC broadcasting has been shown to outperform
ARQ in many cases [12, 13], the major issue of quantifying the
proper amount of redundancy has remained unsolved to a large
extent (cf. Section II for related work). While transmitting too
many redundant packets wastes bandwidth and energy, too lit-
tle redundancy leaves many receivers unable to reconstruct the
original file, leading to retransmission requests and eventually
the same problems as encountered by ARQ schemes.

In this paper, we exploit advances in extreme value theory
(EVT) [14] to rigorously address the problem of quantifying
FEC redundancy in lossy wireless broadcast networks. Our
main contributions are as follows.

First, under the asymptotic regime of a large number of
receivers N , we derive a closed-form expression for the
cumulative distribution function (CDF) of the completion time
(i.e., the total number of packets to be sent by a source to
ensure file recovery by all the receivers). Our analysis reveals
the existence of a phase transition property associated with
this CDF. Specifically, we show that there exists a threshold on
the number of packets to be sent below which the probability
that a file can be recovered by all the nodes in the network
is close to zero. However, if the number of packets sent is
slightly greater than the threshold, then the probability that
every node in the network is able to reconstruct the file quickly
approaches one. We accurately locate the threshold value and
conduct a sensitivity analysis for the case where the packet loss
probability and the number of receivers are imperfectly known.
Further, we extend the analysis to the case where complete file
reception is only required for N−K out of N receivers, where
K is a small, fixed number.

Our second contribution is the derivation of tight con-
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vergence bounds for a finite number of receivers N . These
bounds allow us to estimate the error committed by replacing
the exact CDF by its limiting form. They also provide a
means to compute the amount of redundancy needed for finite
values of N . The bounds reveal that the asymptotic formula
is remarkably accurate even for small values of N (e.g., 10).

Third, we analyze the heterogeneous packet loss case,
whereby different receivers experience different packet loss
probabilities. To this effect, we establish a relationship be-
tween the data broadcasting problem and the multi-set coupon
collector’s problem [15]. Exploiting this relationship, we pro-
vide asymptotically tight bounds on the CDF of the completion
time to successfully disseminate a file to a set of receivers with
heterogeneous packet loss probabilities.

Last, we conduct real experiments on a testbed of 20 Tmote
Sky sensors that illustrate practical use of our theoretical find-
ings. Specifically, we embed our extreme-value FEC strategy
into the Rateless Deluge OAP protocol [5] and demonstrate
potential for significant reduction in retransmission requests
(about 80%) and in completion time (about 50%) at the cost
of marginally higher data packet transmissions (less than 5%)
with respect to the original protocol.

The rest of this paper is organized as follows. We first
discuss related research on FEC data broadcasting in Sec-
tion II. After reviewing basics of extreme value theory in
Section III, we present our network model and problem
formalization for homogeneous packet loss in Section IV-A.
We conduct an asymptotic analysis of FEC broadcasting as
N → ∞ in Section IV-B, derive convergence bounds for
finite N in Section IV-C, and perform a sensitivity analysis in
Section IV-D. An asymptotic analysis of the completion time
under heterogeneous packet loss is carried out in Section V.
We present our simulation results and prototype implemen-
tation in Sections VI and VII respectively, and conclude the
paper in Section VIII. Due to space limitation, proofs of some
theorems are omitted. They can be found in [16].

II. RELATED WORK

Reliable data dissemination is a key enabling technology
for wireless sensor networks. It provides fundamental services,
such as dissemination of a software program from one source
to an entire network [1–6]. Thus, the problem considered in
this paper is different from that of data aggregation, where
multiple sensors send their data to a sink [17, 18].

The concept of exploiting FEC for reliable multicast-
ing/broadcasting1 has been the subject of considerable amount
of work, both in wireline and wireless settings. We survey
here only most closely related work. Rubenstein et al [19]
propose a multicast protocol that requires a source to forward
redundant packets in advance. This protocol is shown to
achieve a significant decrease in the expected time for reliable
delivery of data. Rizzo et al propose RMDP [20], another
FEC-based reliable multicast protocol, and show that FEC
effectively reduces the amount of acknowledgments. However,
the problem of quantifying FEC redundancy remains unsolved.

1The terms multicasting and broadcasting are used interchangeably in this
paper.

Huitema [21] and Nonnenmacher et al [22] evaluate the
performance improvements achieved with different levels of
FEC redundancy via numerical computation. Ghaderi et al [13]
and Mosko et al [23] obtain numerical evaluation of the dis-
tribution of the completion time. However, no closed form is
provided to relate the redundancy needed with the probability
of success. Eryilmaz et al [24] provide recursive expression
for the average completion time and Ghaderi et al [13] derive
an asymptotic expression for it. However, they do not provide
results for the CDF. Furthermore, to our knowledge, our work
is the first to demonstrate the phase transition associated with
this CDF and to derive bounds on the asymptotic error for the
case of a finite number of receivers.

While in practice the packet loss probability differs from
node to node due to many factors (i.e., link quality, distance
to the source, antenna sensitivity) all the following references
[4, 10–13, 19–21] assume homogeneous packet loss rates in
their analysis. The work in [22, 23] provide analysis for het-
erogeneous packet loss probability scenarios. However, unlike
our paper, the results are only numerical.

III. BACKGROUND

A. Extreme Value Theory

Let X1, X2,.., XN be independent, identically distributed
(i.i.d.) random variables. Extreme value theory provides tools
for characterizing possible limit distributions of sample max-
ima of the above i.i.d. random variables. Denote by F the
CDF of X and by FN the CDF of the maximum of X1,
X2,.., XN . Suppose there exists a sequence of constants aN
and bN , such that max(X1,X2,...,XN )−bN

aN
has a nondegenerate

limit distribution as N → ∞, then

lim
N→∞

FN (aNx+ bN ) = G(x), (1)

or equivalently,

lim
N→∞

NF̄ (aNx+ bN ) = − logG(x), (2)

where G(x) is the CDF of one of the three extreme value
distributions, namely Fréchet, Gumbel and Weibull [14, p.9].

For a given random variable, various tests exist to determine
its domain of attraction (i.e., the corresponding extreme value
distribution) and its normalization constants. In our paper, all
the distributions of interest belong to the domain of attraction
of the Gumbel distribution, i.e.,

G(x) = exp(−e−x) ∀x ∈ R. (3)

Under mild technical assumptions [14, p.77], the domain of at-
traction conditions imply also moment convergence. Thus, for
distributions belonging to the Gumbel’s domain of attraction

lim
N→∞

E[max(X1, X2, ..., XN )]− bN
aN

= γ, (4)

where γ ≈ 0.5772 is the Euler’s constant.
The above result can be generalized to obtain character-

ization of the asymptotic distribution of the K-th largest
random variable, where K ≥ 1 is a fixed number. Arrange
the random variables Xi in increasing order as following,
X1:N ≤ X2:N ≤ .. ≤ XN :N . Thus, XN :N = maxn=1,..N Xn
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Fig. 1. Illustration of convergence metric.

is the largest random variable, XN−1:N is the second largest
random variable, etc. According to Ref. [25, p. 127], if

lim
N→∞

Pr

(
XN :N − bN

aN
≤ x

)
= G(x), (5)

then

lim
N→∞

Pr

(
XN−K:N − bN

aN
≤ x

)
= G(x)

K∑
i=0

1

i!

(
log

1

G(x)

)i

.

(6)

B. Convergence Metric

As mentioned above, an estimation based on EVT assumes
N → ∞. We provide now a metric to study the quality of
convergence when N is finite. Specifically, we fix a value on
the y-axis and measure the distance on the x-axis between
the points corresponding to the exact distribution FN and the
limit distribution G. Specifically, as shown in Fig. 1, let{

G(x∗) = y,
FN (aN x̃+ bN ) = y,

(7)

then the convergence metric is set as follows

∆ = |x∗ − x̃|. (8)

In the following section, we will derive a bound on ∆ that
applies uniformly to an entire interval [yl, yh], where 0 ≤ yl ≤
yh < 1. If the desired completion probability y is known in
advance, then the values of yl and yh can simply be set to
y leading to a tighter bound on ∆. Otherwise, one can select
a larger interval and the bound will apply to all values of y
belonging to that interval.

IV. THE HOMOGENEOUS CASE: LIMIT DISTRIBUTION
AND CONVERGENCE BOUNDS

A. Model and Problem Formulation

We consider the problem of broadcasting a file consisting
of M packets from a source (e.g., a base station) to N nodes
within its transmission range. The time axis is slotted and
each packet transmission takes one time slot. In this section,
we assume that each node experiences the same packet loss
probability p, independent of any other events.

We assume that FEC is implemented using a perfect rateless
code, i.e., each node needs to correctly receive M distinct
packets to recover a file. Thus, a source transmits new packets

until all the nodes received M different packets. If slightly
more packets are needed (say M ′) because of the imperfection
of codes, then one just need to replace M by M ′ in the
following analysis.

Denote by T the random variable representing the comple-
tion time, i.e. the number of time slots, needed to disseminate
M packets to a cluster of N nodes. Our goal is to characterize
the CDF of T , namely Pr{T ≤ t}, with which one can
determine the number of redundant packets needed in FEC.
Towards this end, we will use EVT to characterize the limiting
form of the CDF of T when N → ∞ and then derive bounds
on the error ∆ for finite values of N .

In this paper, we do not enter into the details of how to
estimate the network parameters N and p. We refer the inter-
ested reader to [5, 26] for possible approaches. Nevertheless, in
Section IV-D, we will study robustness of our FEC prediction
model to inaccurate estimation of these parameters.

B. Asymptotic Analysis of Completion Time

Denote by Tm
n the number of slots needed for node n to

receive its m-th packet, 1 ≤ m ≤ M . Clearly, Tm
n follows a

geometric distribution with mean 1/(1 − p), i.e., Pr{Tm
n =

i} = pi−1(1− p).
Thus, the time Tn needed for node n to receive M different

packets is the sum of M i.i.d geometric random variables
with mean 1/(1 − p), i.e., Tn =

∑M
m=1 T

m
n and Tn is

said to follow a negative binomial or Pascal distribution [27,
p.164]. Due to the broadcast nature of the channel, the
completion time for broadcasting a file to all the nodes is
the maximum of N negative binomial random variables, i.e.,
T = max(T1, T2, . . . ...TN ). The following theorem tightly
bounds the distribution of T as N → ∞. Before proceeding,
we recall the definition of stochastic ordering [28, p. 404].

Definition 1: A random variable X is stochastically larger
than a random variable Y , denoted X ≥st Y , if

Pr(X > a) ≥ Pr(Y > a), for all a. (9)

Theorem 1: The completion time T to disseminate M pack-
ets to N nodes using FEC broadcasting is bounded by random
variables belonging to Gumbel’s domain of attraction. Namely,
there exist Tl and Tu = Tl + 1, satisfying

Tl ≤st T ≤st Tu, (10)

lim
N→∞

Pr{Tl − bN
aN

≤ x} = G(x), (11)

where, aN =1/ log(
1

p
), (12)

bN = log 1
p
(N) + (M − 1) log 1

p
(τ)

+ (M − 1) log 1
p
(
1− p

p
)− log 1

p
(M − 1)!,

(13)

τ = log 1
p
(N) + (M − 1)

(
log 1

p
(
1− p

p
)

)
. (14)

Proof: Let D(t) = Pr{Tn ≤ t}. Since Tn follows a nega-
tive binomial distribution, D(t) = I(1−p;M, t−M+1) [27, p.
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164], [29, p. 519], where t (t ≥ M) is an integer and I(z; a, b)
is the regularized beta function, defined as following [29, p.
516],

I(z; a, b) = 1− (1− z)b

B(a, b)

a−1∑
i=0

(−1)i
(
a− 1

i

)
(1− z)i

b+ i
, (15)

where a and b are integers, and B(a, b) is the complete beta
function [29, p. 594, 597]

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (16)

where Γ is gamma function, i.e., Γ(z) =
∫∞
0

xz−1e−x dx, and
Γ(a) = (a− 1)Γ(a− 1) for a > 0 [27, p. 66].

Create a continuous R.V. Tn
u with CDF F (x) = I(1 −

p;M,x − M + 1), where x > M − 1. Let Tn
l = Tn

u − 1.
The probability distribution function for Tn

l is thus F (x+1).
According to Eq. (15) and Eq. (16), we have,

F̄ (x) = 1− I(1− p;M,x−M + 1) (17)

=
px−M+1

B(M,x−M + 1)

M−1∑
i=0

(−1)i
(
M − 1

i

)
pi

x−M + 1 + i

(18)

=
ΠM−1

j=0 (x− j)

(M − 1)!
px−M+1

M−1∑
i=0

(
M − 1

i

)
(−1)ipi

x−M + 1 + i
.

(19)

Let D̄(x) = 1−D(x). Since I(x) is an increasing function
of x, we have

F̄ (x+ 1) ≤ D̄(⌈x⌉) ≤ F̄ (x). (20)

From Eq. (20), we have Tn
l ≤st T ≤st Tn

u accord-
ing to Definition 1. Let Tu = maxn=1..N Tn

u , and Tl =
maxn=1..N Tn

l = Tu − 1. Since the max operation conserves
stochastic ordering, we have Tl ≤st T ≤st Tu.

Inserting Eq. (12) and Eq. (13) into Eq. (19) yields

lim
N→∞

NF̄ (aNx+ bN )

= lim
N→∞

N
ΠM−1

j=0 (aNx+ bN − j)

(M − 1)!
paNx+bN p−(M−1)

×
M−1∑
i=0

(
M − 1

i

)
(−1)ipi

aNx+ bN −M + 1 + i
. (21)

According to Eq. (12) and Eq. (13), we have

paNx+bN = paNx · pbN (22)

= e−x 1

N

(
1

τ

)M−1 (
p

1− p

)M−1

(M − 1)!. (23)

Therefore, from Eq. (21) and Eq. (23), we obtain

lim
N→∞

NF̄ (aNx+ bN )

= lim
N→∞

ΠM−1
j=0 (aNx+ bN − j)e−x

(
1

τ

)M−1 (
1

1− p

)M−1

×
M−1∑
i=0

(
M − 1

i

)
(−1)ipi

aNx+ bN −M + 1 + i
. (24)

Noting that bN → ∞ as N → ∞, we get

lim
N→∞

M−1∑
i=0

(
M − 1

i

)
(−1)ipi

aNx+ bN −M + 1 + i

= lim
N→∞

M−1∑
i=0

(
M − 1

i

)
(−1)ipi

aNx+ bN
(25)

= lim
N→∞

1

aNx+ bN

M−1∑
i=0

(
M − 1

i

)
(−1)ipi (26)

= lim
N→∞

1

aNx+ bN
(1− p)M−1. (27)

The last step of the above equations follows from the
binomial theorem. Inserting Eq. (27) into Eq. (24), yields

lim
N→∞

NF̄ (aNx+ bN )

= lim
N→∞

ΠM−1
j=0 (aNx+ bN − j)

τM−1(aNx+ bN )
e−x. (28)

Consider the expression

ΠM−1
j=0 (aNx+ bN − j)

τM−1(aNx+ bN )
. (29)

According to Eq. (12), Eq. (13) and Eq. (14), the dominating
component of both the numerator and denominator of that

expression is
(
log 1

p
(N)

)M

.
Accordingly, from Eq. (28), we obtain

lim
N→∞

NF̄ (aNx+ bN ) = e−x = − logG(x). (30)

Thus, F is in the domain of attraction of G with normalizing
constants aN and bN [14], namely,

lim
N→∞

Pr{Tl − bN
aN

≤ x} = G(x). (31)

�
Theorem 1 shows that as N → ∞, the CDF of the

completion time converges to a scaled and shifted Gumbel
distribution, namely,

Pr{T ≤ t} ≈ G(
t− bN
aN

). (32)

Since the packet loss probability p is usually small, aN is
small as well and the completion time distribution has a sharp
phase transition around the point bN . This will be verified by
our numerical results in Section VI.

As a corollary from the theorem, we can also asymptotically
characterize the distribution of the completion time when
allowing up to K receivers not to recover the entire file.
We denote the corresponding random variable TN−K:N . From
Theorem 1 and Eq. (6), we have

Pr(TN−K:N ≤ t) ≈ G(
t− bN
aN

)
K∑
i=0

e
− i(t−bN )

aN

i!
. (33)

Such a characterization sheds light on the trade-off between
the stringency of the requirement for file completion and
the amount of FEC redundancy. For instance, according
to Eq. (32) and Eq. (33), if the source transmits t = aN + bN
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packets, the probability that at least N − 1 nodes receive the
file is about 37% larger than the probability that all N nodes
receive the file. We will investigate this trade-off further in the
numerical results section.

Another corollary from the theorem is that the performance
of rateless coding on a single channel is identical to that of
plaintext coding over an unlimited number of channels [4].

C. Convergence Bounds

Theorem 1 characterizes the limiting form of the CDF of T
as N → ∞. The following theorem bounds the asymptotic
error using the convergence criterion defined in Eq. (8), that
is, it bounds the distance between the asymptotic estimate x̃
and the exact value x∗.

Theorem 2: The distance ∆ = |x̃ − x∗| between the exact
distribution Pr{T ≤ aN x̃ + bN} = y and the Gumbel distri-
bution G(x∗) = y is bounded as follows for all probability
values y belonging to the interval [yl, yh]:

∆ ≤ |∆l|+ |∆h + log(1 +
1

N
log

1

y
)|, (34)

where ∆l = log p− (M − 1)2

2(aNG−1(yl) + bN )−M + 3

+ (M − 1)(1− τ

aNG−1(yl) + bN + 1
), (35)

∆h =(M − 1) log(
1

1− p
)

+ (M − 1)
aNG−1(yh) + bN + 1− τ

τ
, (36)

and G−1 is the inverse function of G.
Theorem 2 provides a means to conservatively implement

FEC for finite values of N , that is, if one wants to guarantee
a completion probability y, then the source should transmit
at least ⌈aN (x∗ + ∆) + bN⌉ packets. The bound provided
by Eq. (34) also exhibits the desirable property of becoming
tighter as the number of recipient nodes N increases and as
the completion probability y approaches 1.

D. Sensitivity Analysis

In practice, one seldom has perfect information on the
network parameters p and N . We are going next to analyze
the effect of imperfect estimation of these parameters on the
computation of the FEC redundancy.

Denote by N̂ and p̂ the estimations of N and p, respectively.
Without loss of generality, we can write N̂ = (1 + ϵN )N
and p̂ = (1 + ϵp)p. A positive value of ϵN means that N is
overestimated, while a negative value of ϵN means that N is
underestimated. A similar relation holds between ϵp and p.

Denote by T the number of packet transmissions to achieve
a completion probability y, as determined by Theorem 1 using
the parameters N and p. Correspondingly, T̂N and T̂p denote
the number of packet transmissions to achieve a completion
probability y, as determined by Theorem 1 using N̂ and p in
the first case and N and p̂ in the second case.

When p and M are fixed, T roughly increases logarithmi-
cally with N . Thus,

T̂N ≈ T + log 1
p
(1 + ϵN ). (37)

When N and M are fixed, T is approximately a linear
function of 1/ log 1

p . Therefore,

T̂p

T
≈

log 1
p

log 1
(1+ϵp)p

=
log 1

p

log 1
1+ϵp

+ log 1
p

=
1

1− log(1+ϵp)

log 1
p

.

(38)

For a small value of ϵp, by Taylor expansion, we have

log(1 + ϵp) ≈ ϵp, (39)

and
1

1− ϵp
log 1

p

≈ 1 +
ϵp

log 1
p

. (40)

From Eq. (38), Eq. (39) and Eq. (40), we get

T̂p

T
≈ 1 +

ϵp

log 1
p

. (41)

Eq. (37) and Eq. (41) can be used to conservatively calibrate
the amount of FEC redundancy. They show that the completion
time is more sensitive to the receiver packet loss probability p
than to the number of receivers N . For example, when
p = 5%, a 20% overestimate of N , namely ϵN = 20%, will
result in sending only 0.06 extra packets on average. A 20%
overestimate of p will require the transmission of 6% more
packets overall, which is still reasonable.

V. THE HETEROGENEOUS CASE: LIMIT OF DISTRIBUTION
AND EXPECTATION

In this section we relax the assumption of homogeneous
packet loss probabilities. We consider a model whereby re-
ceivers are deployed uniformly at random within a disk of
radius of R, with the source at the origin. The signal quality
is discretized into L levels based on the distance from the
source. Denote by −→α = [α1, α2, .., αL] the distance vector
(normalized by R), where 0 < α1 < .. < αL = 1. Next,
let −→ωα = [ωα1 , ωα2 , .., ωαL

] be the corresponding packet loss
vector, where 0 < ωα1 < .. < ωαL < 1. The packet loss
probability for a node is ωαl

if its distance from the source
is between αl−1R and αlR (α0 = 0 by definition). This
radio model, which captures spatial correlation of the packet
loss, is illustrated in Fig 2. Then, the CDF of the packet
loss probability for node n is a multi-step function defined
as follows

Pr(pn ≤ x) =

 0 0 < x < ωα1 ,
α2
l ωαl

≤ x < ωαl+1
, l = 1, .., L− 1

1 x ≥ ωαL
.

(42)
Note that the radio model of the previous section is a special

case of this model, by setting L = 1 and ωαL = p.
In the remainder of this section, we first establish a rela-

tion between the FEC data broadcasting problem in wireless
networks and the multi-set coupon collector’s problem. This
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L-1
2

L

1

Fig. 2. Radio model for heterogeneous packet loss.

connection enables us in the second part of the section to
leverage recent analytical results on the asymptotic behavior of
heterogeneous coupon collector systems [15] to analyze FEC
data broadcasting with heterogeneous packet loss probabilities.

A. Relation between Coupon Collector and Data Broadcasting
Problems

In the multi-set coupon collector’s problem, a shopper tries
to collect M complete sets of N different coupons in several
attempts. Coupon n is associated with a value qn > 0. Each
attempt provides the collector with a coupon n with probability
qn/

∑N
i=1 qi. Assume that there is unlimited supply of coupons

of each kind. Let η{qn} be the number of attempts the collector
needs to make in order to obtain M complete sets of N
coupons, where {qn} represents the set of coupon’s values.
Asymptotic limits of the CDF of η{qn} for large values of N
are studied in [15].

Back to our original problem, let {pn} be a set of packet
loss probabilities associated with each receiver and T{pn} be
the time to transmit M packets to N users with packet loss
probabilities p1, p2, .., pN using FEC data broadcasting. The
following Theorem establishes a relation between the CDF of
T{pn} and that of η{qn}.

Theorem 3: Suppose the packet loss probability at each
receiver n, n = 1, .., N , is an i.i.d. random variable pn and
let qn = log( 1

pn
). Then, as N → ∞,

Pr(
η{qn}

Nµ
+M ≤ x) ≤ Pr(T{pn} ≤ x) ≤ Pr(

η{qn}

Nµ
≤ x),

(43)

where µ is the mean of the random variable log( 1
pn

).

B. Asymptotic Completion Time
We next derive a closed-form expression for the distribution

and the expectation of the completion time as N → ∞, for
the heterogeneous radio model presented at the beginning of
the section.

Theorem 4: If the CDF of the packet loss probability of
each node n, n = 1, .., N , satisfies Eq. (42), then, as N → ∞

G(x− M

aN
) ≤ Pr

(
T{pn} − bN

aN
≤ x

)
≤ G(x), (44)

E[T{pn}] = bN +Θ(1), (45)
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Fig. 3. Accuracy of asymptotic estimate and phase transition demonstration.

where

p′ =ωαL , N ′ = (α2
L − α2

L−1)N, (46)

aN =1/ log(
1

p′
), (47)

bN = log 1
p′
(N ′) + (M − 1) log 1

p′
τ

+ (M − 1) log 1
p′

1− p′

p′
− log 1

p′
(M − 1)!, (48)

τ = log 1
p′
(N ′) + (M − 1)

(
log 1

p′

1− p′

p′

)
. (49)

This theorem provides the following insight. On average the
number of nodes staying within the furthest ring in the disk is
(α2

L−α2
L−1)N . By comparing Eq. (47), Eq. (48) and Eq. (49)

with Eq. (12), Eq. (13) and Eq. (14), respectively, we can see
that T̄ ({pi}) is asymptotically identical to the expected time
needed to disseminate M packets to (α2

L−α2
L−1)N nodes with

homogeneous packet loss probability ωαL
. Hence, as N → ∞,

the time needed to disseminate packets to the nodes with the
highest packet loss probability dominates.

VI. NUMERICAL RESULTS

In this section, we illustrate the major analytical findings
of this paper, namely, (i) the accuracy of the asymptotic
estimate of the CDF of the completion time provided by
Theorem 1 and the phase transition behavior of this CDF,
(ii) the tightness of the upper and lower bounds derived along
the proof of Theorem 2, (iii) the tradeoff between redundancy
and completion requirement, and (iv) the accuracy of the
asymptotic limit on the expected completed time provided by
Theorem 4. All the simulation plots are obtained by averaging
results over 10000 simulations with identical parameters, but
different random seed.

A. Accuracy of Asymptotic Estimate

Fig. 3 compares the CDF estimated by Theorem 1, with
the CDF obtained from simulation for various parameters M ,
N , and p. It is evident from the figure that the limit form
provides an accurate estimate of the actual distribution. It is
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Fig. 4. Number of packets needed to be sent to guarantee completion with probability 99%: Varying different parameters.
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Fig. 5. Number of packets needed to guarantee completion with probability 99%, comparison of simulation and analytical bounds.

interesting to note that even with a large number of receivers
and relatively high loss packet probability, we do not need
a large number of redundant packets to ensure file reception
(with high probability) by all the nodes.

Fig. 3 also clearly demonstrates the phase transition behav-
ior of the CDF. As expected, the CDF shifts to the right as the
number of nodes N or the number of file packets M increases,
but the sharpness phase transition is not much affected. On
the other hand, the packet loss rate p has an effect on both
translating and scaling the CDF. A smaller value of p shifts
the CDF to the left and also results in a sharper transition.

As discussed in Section IV-B, the phase transition occurs
around the point bN . Using Eq. (13), one can compute the
values of bN for the three cases shown in Fig. 3, which are
found to be 12.709, 15.659, 32.020. These values accurately
locate the phase transition points.

According to Theorem 1, as N → ∞, the CDF converges
to a Gumbel distribution scaled by 1

aN
and translated to

the right by bN
aN

. To verify this finding, we closely examine
each parameter by fixing the other two. Results are shown in
Fig. 4(a), 4(b) and 4(c). We study the phase transition shift
of the CDFs as the parameters change by evaluating the case
where the completion probability is 99%.

Fig. 4(a) shows the number of packets needed as N in-
creases. As predicted by Eq. (37), when M and p is fixed,
the number of packets needed increases logarithmically with
N . This is true even when the number of nodes is small,
e.g. N = 10, 20, 50. This result explains why the redundancy
needed is relatively small, even for large values of N .

Fig. 4(b) demonstrates the case where N and M are fixed.
From Eq. (41), the number of packets is approximately a linear
function of p, which coincides with Fig. 4(b).

Fig. 4(c) shows that, fixing N and p, the phase transition
shifts to the right linearly as M increases. This is because the
CDF shifts by bN

aN
, which is roughly a linear function of M .

B. Tightness of Bounds

We next compare the analytical upper and lower bounds
with simulation results. Each parameter (i.e., N , M , p) is
investigated by fixing the other two. Simulation results are
compared with analytical bounds, shown in Fig 5(a), Fig 5(b)
and Fig 5(c). The analytical bounds are obtained by Theo-
rem 2. We fix yl = yh = 99%, that is, a 99% probability of
completion. As expected, the curve representing simulation
result lies between the analytical lower bound and upper
bound. More importantly, the gap between the upper bound
and the simulation result is reasonably small for a variety of
different parameters. If one is to use the analytical upper bound
to estimate the amount of redundant packets, then only one or
two more packets than necessary would be transmitted.

C. Tradeoff between Redundancy and Completion Require-
ment

We next characterize the benefit of loosening the require-
ment of file recovery by all nodes. Specifically, we allow
incomplete file reception at up to K nodes. The analytical
estimate in that case is obtained from Eq. (33). Fig. 6 shows
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Fig. 6. Tradeoff between redundancy and number of incomplete file reception
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Fig. 7. Different network settings for heterogeneous packet loss simulation.

the number of transmissions required as a function of K for
various cases. We set the completion probability to 95%. We
note a good match between the analytical estimates and the
simulation results. We also observe that sacrificing one or two
nodes can significantly reduce FEC redundancy. For example,
for the case N = 5000, M = 20 and p = 15%, allowing
incomplete file recovery by one node out of 5000 leads to
a 10% reduction in the redundancy amount. However, the
marginal gain becomes less significant as K increases.

D. Heterogeneous Packet Loss

In this part we verify the result of Theorem 4, which states
that as N → ∞, the time needed to disseminate packets to the
nodes with the highest packet loss probability dominates. We
investigate a variety of network settings as shown in the table
of Fig. 7. We compare three results: (i) the expected time
to disseminate M packets to N nodes under heterogeneous
packet loss described by distance vector −→α and packet loss
vector −→ωα, based on simulation; (ii) the expected time to
disseminate M packets to (α2

L − α2
L−1)N nodes all having

the same packet loss probability ωαL
, based on simulation;

and (iii) the analytical estimate based on Theorem 4.
The results are shown in 8. In cases 1 through 3 we assume,

L = 2 levels of signal quality: nodes within distance α1R
of the source have lower packet loss probability ωα1 . Nodes
beyond this radius have higher packet loss probability ωα2 .
The results show that the presence of nodes with lower packet
loss rates has little impact on the completion time for the entire
network. This is true even when only a small fraction of nodes
suffers from higher packet loss rates. For example, in case 3,
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Fig. 8. Average completion time for scenarios with heterogeneous packet
loss vs. homogeneous packet loss.
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Fig. 9. CDF of completion time heterogeneous packet loss: parameters as
described in Case 3 of Fig 7.

on average only 19% · N of nodes have higher packet loss
probability e−2, and yet distributing a file only to these nodes
takes as much as the time to distribute a file to a network
where 81% · N nodes have packet loss probability e−3 and
19% ·N nodes have packet loss probability e−2. This fact can
also observed from Fig. 9 which depicts the CDF. Cases 4 and
5, in which the signal quality is discretized into L = 5 levels,
reveal similar behavior. In all cases, Theorem 4 predicts well
the simulation results.

VII. PROTOTYPE IMPLEMENTATION

A. Set-up

In this section, we describe practical implementation of
extreme value FEC into the Rateless Deluge over-the-air
programming protocol [5]. This protocol uses random linear
codes for data encoding and enables efficient distribution of a
new file program to all the nodes of a sensor network.

The default setting of Rateless Deluge is as follows. A file
is divided into pages and each page consists of 20 packets,
where each packet contains 23 bytes of data. A sensor sends
out a request if it discovers its neighbors have new data. The
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Fig. 10. Experimental testbed with 20 Tmotes.

request message specifies the page number and the number of
packets it needs. When a sensor receives enough number of
packets (in our case 20), it can decode the page successfully.
As in the original Deluge protocol [1], a sensor suppresses its
request if it overhears similar requests sent recently.

Here, we augment the original Rateless Deluge with extreme
value FEC, and refer to the new protocol as Extreme Value
FEC Deluge. Extreme Value FEC Deluge operates the same
as Rateless Deluge except that when receiving a request for a
new page, the base station broadcasts a redundant amount of
packets. The redundancy is set to guarantee with high enough
probability that all the receivers recovered the file. In our case,
we set the desired completion probability to be 97%, and the
redundancy is then computed using Theorem 1.

The performance of Rateless Deluge and Extreme Value
FEC Deluge are evaluated on a testbed consisting of 20
Tmote Sky sensors (see Fig. 10). All the sensors are within
communication range. Sensors transmit at their highest power
setting over short distances to ensure a good link, and packet
loss at the receiver is forced by dropping packets uniformly at
random. One sensor serves as the base station and 18 others
are receivers. The last sensor is used to record network traffic.
During each experiment, a new file is injected from a PC into
the base station and the base station then disseminates it to
the network.

B. Results

In our first experiment, we disseminate a single page, 20-
packet file using Rateless Deluge. The packet loss probability
is p = 18%. We record the number of data packets sent
until every node finishes receiving the file. Based on 200
identical iterations, we plot in Fig. 11 the CDF of the number
of packets sent and compare it with the analytical estimate
from Theorem 1. We observe that the theory predicts well
the experimental results. Further, even though the number of
sensors in the network is relatively small, the sharp phase
transition is still evident.

Next, we compare the performance of Rateless Deluge and
Extreme Value FEC Deluge. We distribute a 20-packet file and
take averages over 200 identical experiments. We analyze the
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Fig. 11. Real sensor experiments vs. analysis: N = 18, M = 20, p = 18%.

Fig. 12. Rateless Deluge vs. EV-FEC Deluge: 1 page, N = 18, M = 20,
p = 18%.

network traffic in control plane as well as data plane, namely,
we record the number of request messages and data messages
sent. We also record the completion time to disseminate the
file. The results of the comparison are summarized in Fig. 12.

The results show that Extreme Value FEC Deluge sends
out slightly more data messages (less than 5%). However, it
drastically reduces the amount of feedback request messages
by a factor of about five compared to Rateless Deluge. Note
that the minimum possible number of request messages is one
since at least one request message must be sent to initiate the
dissemination process. With Extreme Value FEC Deluge, the
average number of requests is 1.225. Thus, most of the time
the entire network finishes receiving enough packets after the
base station’s first set of transmissions. Thanks to its lower
control plane overhead, Extreme Value FEC Deluge effectively
reduces the completion time to disseminate a 20-packet file to
a 18-node network to 1.14 sec, which is about half of the time
needed by Rateless Deluge. We observed similar results when
disseminating larger files.

VIII. CONCLUDING REMARKS

In this paper, we developed theoretical foundations and
demonstrated practical use of a highly efficient strategy for
reliable data broadcasting, called extreme value FEC. This
strategy accurately predicts the number of redundant packets to
be disseminated by a source so to avoid (with high probability)
unnecessary retransmission requests by receivers.

Our analysis, based on extreme value theory, accurately
captures characteristics of the completion time of FEC data
broadcasting. Not only does it demonstrate the phase transition
of the CDF of the completion time, but also accurately
pinpoints the location of the phase transition point. The
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analysis also reveals that the number of redundant packets
required to guarantee file completion by all receivers increases
only logarithmically with N . Another major contribution of
the paper is in providing convergence bounds for finite N ,
demonstrating fast convergence of the asymptotic estimate.

By establishing a relation with the coupon collector’s prob-
lem, we provide asymptotically tight bounds on CDF of
the completion time to disseminate a file to receivers with
heterogeneous packet loss probabilities. The result points out
that, as N gets large, the time needed to disseminate packets to
the nodes with the highest packet loss probability dominates.
Simulations confirm this finding even when only a small
fraction of nodes suffers from high packet loss rates.

Our sensitivity analysis shows that FEC redundancy is
robust to imperfect knowledge of the total number of receivers,
while uncertainty in the packet loss probability will result in
the same order of uncertainty in FEC redundancy. On the
other hand, we show that FEC redundancy can be significantly
reduced (e.g., on the order of 10%), if we allow incomplete
file reception at a single node in the network. However, the
marginal gain in allowing incomplete file reception at more
nodes quickly diminishes.

Finally, the paper reports a practical implementation of the
extreme value FEC strategy in conjunction with the Rateless
Deluge OAP protocol. The results show significant perfor-
mance improvement with respect to control-plane overhead
and average data dissemination time, thereby validating the
benefits of our approach under real network settings.

The paper leaves many interesting problems for future
work. This includes extending the analysis to the case where
receivers have temporally correlated packet loss probabilities
as well as to multihop network scenarios.
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