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Abstract—Network reconnaissance is a core security func-
tionality, which can be used to detect hidden unauthorized
devices or to identify missing devices. Currently, there is a
lack of network reconnaissance tools capable of discovering
Internet of Things (IoT) devices across multiple protocols. To
bridge this gap, we introduce IoT-Scan, an extensible IoT
network reconnaissance tool. IoT-Scan is based on software-
defined radio (SDR) technology, which allows for a flexible
implementation of radio protocols. We propose passive, active,
multi-channel, and multi-protocol scanning algorithms to speed
up the discovery of devices with IoT-Scan. We implement the
scanning algorithms and compare their performance with four
popular IoT protocols: Zigbee, Bluetooth LE, Z-Wave, and LoRa.
Through experiments with dozens of IoT devices, we demonstrate
that our implementation experiences minimal packet losses, and
achieves performance near a theoretical benchmark.

I. INTRODUCTION

The Internet of Things (IoT) device market is currently ex-

hibiting exponential growth (among the 29 billion connected

devices forecast this year, 18 billion will be related to IoT [1]).

These devices run a variety of low-power wireless communi-

cation protocols, such as Bluetooth Low Energy (BLE) [2],

Zigbee [3], Z-Wave [4], and LoRa [5]. which support applica-

tions in smart homes, assisted living, smart grid, health care,

and environmental monitoring.

The heterogeneity of the IoT ecosystem – and in particular

the large number of IoT protocols – represents a major chal-

lenge from a network security monitoring perspective [6], [7].

This heterogeneity makes it hard for network administrators

to run network reconnaissance tasks, which aim at discovering

wireless IoT devices and their properties. Since many IoT

devices are mobile (e.g., wearables and trackers), network

reconnaissance tasks must be run regularly. New laws adopted

by regulators, such as the IoT Cybersecurity Improvement Act

of 2020 [8] in the US, and the upcoming legislation in EU [9],

provide further impetus to the design of effective solutions for

IoT network reconnaissance.

The simplest solution for IoT network reconnaissance is to

use a monitoring device equipped with a different network

card for each protocol. However, even devices operating on

the same protocol may be incompatible if they run different

versions of the protocol (e.g., normal versus long-range Z-

Wave). Using dozens of different USB dongles or network

cards for each protocol is prohibitive for practical network

security auditing. Furthermore, some protocols, like LoRa,

encode the network ID at the PHY layer. In such cases,

common network cards cannot detect devices belonging to

other networks even though they run the same protocol.

Existing software tools for network reconnaissance, such as

Nmap [10], focus on devices with IP addresses. Nmap can

scan IP/port ranges for an arbitrary number of local or remote

hosts and their services. However, this approach is limited to

IP-enabled devices only, and yet many popular IoT protocols,

including BLE, Zigbee, Z-Wave, and LoRa do not support

IP addressing. While there is currently an effort by several

vendors to create a unified, IP-based IoT protocol, called

Matter [11], its level of adoption and backward-compatibility

with legacy devices remain uncertain.

To address this current gap, we propose IoT-Scan, an

extensible, multi-protocol IoT network reconnaissance tool

for enumerating IoT devices. IoT-Scan runs both on the

900 MHz and 2.4 GHz bands and currently supports four

popular IoT protocols: Zigbee, BLE, LoRa, and Z-Wave.

Remarkably, IoT-Scan runs on a single piece of hardware,

namely a software-defined radio (SDR) [12].

IoT-Scan leverages software-defined implementation of

IoT communication protocol stacks, mostly under the GNU

Radio ecosystem [13], [14]. This approach reduces the amount

of hardware needed to address the growing number of IoT

protocols. This further allows for future expansion into new

protocol versions, thus eliminating the need for purchasing or

upgrading protocol-specific hardware [15].

Our main contributions are thus as follows:

• We introduce IoT-Scan, a universal tool for IoT net-

work reconnaissance. IoT-Scan consists both of a col-

lection of efficient and practical IoT scanning algorithms

and of their implementations using a single commercial

off-the-shelf software-defined radio device, namely a

USRP B200 SDR [16].

• We validate the performance of the algorithms through

extensive experiments on a large collection of devices.

We demonstrate multi-protocol, multi-channel scanning

both on the 2.4 GHz band for Zigbee and BLE, and on

the 900 MHz band for LoRa and Z-Wave. Our implemen-

tation allows to promiscuously listen to network traffic,

even when the network ID is encoded at the PHY layer.

• We propose new active scanning algorithms and show

an implementation for Zigbee, which cuts down the

discovery time by 87% (from 365 seconds to 46 seconds)

compared to a sequential passive scanning algorithm.

• We evaluate the efficiency of the scanning algorithm

implementation on the SDR through a theoretical bench-

mark based on the non-uniform coupon collector prob-



lem [17], [18]. We show that passive scan algorithms for

Zigbee and BLE perform near that benchmark.

Threat model. The purpose of IoT-Scan is to enumerate

IoT devices and their properties at a given location (e.g.,

an office, a hospital room, etc.). This can be used to detect

hidden unauthorized devices, some of which may have been

intentionally planted by an adversary for malicious purposes

(e.g., eavesdropping). We assume that these devices transmit

packets, such as beacons, and/or respond to queries according

to their respective wireless protocols. Note that it is hard to

detect devices that do not transmit at all. IoT-Scan can also

be used to identify missing devices which may have been de-

activated or stolen by a malicious party (these devices would

appear in scans up to some point, but disappear afterward).

The rest of this paper is structured as follows. Section II dis-

cusses related work. Section III presents the scanning methods

and algorithms forming the core of IoT-Scan. Section IV

discusses performance metrics for the algorithms, as well

as a theoretical model for benchmarking device discovery.

Section V elaborates on how IoT-Scan discovers addresses

of devices in each case. Section VI presents our experiments,

including implementation aspects, experimental setup, and

results. Section VII concludes our findings, discusses ethical

issues, and presents an outlook on future work.

II. RELATED WORK

This section presents related work. Most existing work fo-

cuses on protocol-specific techniques. In contrast our work

introduces several cross-protocol algorithms for IoT scanning,

and further benchmarks their performance both theoretically

and experimentally.

Heinrich et al. presents BTLEmap [19], a BLE-focused

device enumeration and service discovery tool inspired by

traditional network scanning tools like Nmap [10]. While

BTLEMap supports both Apple’s Core Bluetooth protocol

stack and external scanner sources, it is limited to Bluetooth

LE by design and does not aim to support multiple protocols.

In contrast, IoT-Scan is not tied to a particular vendor as

a host device, and supports multiple protocols simultaneously,

with one radio source.

Tournier et al. propose IoTMap [20], which models inter-

connected IoT networks using various protocols, and deduces

network characteristics on multiple layers of the respective

protocol stacks. IoTMap requires dedicated radios for each

protocol in order to operate, whereas IoT-Scan achieves de-

vice detection across multiple protocols with a single software-

defined radio transceiver.

In prior work, Mikulskis et al. presented Snout [21] and

showcased scanning of BLE and Zigbee devices under a

common SDR platform. IoT-Scan encompasses additional

protocols, namely LoRa and Z-Wave. Furthermore, our work

introduces novel scanning algorithms and conducts extensive

evaluation of these algorithms, both theoretically and empiri-

cally with dozens of IoT devices. In contrast, the work in [21]

did not present scanning algorithms and had no evaluation

contents (either theoretical or empirical).

Bak et al. [22] optimize BLE advertising scan (i.e., device

discovery) by using three identical BLE dongles. This ap-

proach is not scalable since it requires a new hardware receiver

for each new channel, and equally does not scale beyond the

BLE protocol. In contrast, our SDR-based approach uses the

same SDR hardware to receive multiple protocols.

Kilgour [23] presents a multi-channel BLE capture and

analysis tool implemented on a field programmable gate array

(FPGA). This multi-channel BLE tool allows receiving data

from multiple channels in parallel. However, the focus is

on BLE PHY receiver implementation and related signal

processing rather than actual scanning and enumeration of

devices. In contrast, our work extends beyond Bluetooth LE,

and crucially performs practical device enumeration scans to

quantify scanning performance.

Park et al. describe a Wi-Fi active scan technique performed

using BLE radio using cross-protocol interference [24]. The

active scan algorithms in IoT-Scan are motivated by similar

ideas, but require judicious use of protocol-specific mecha-

nisms (i.e., sending beacon request packets in Zigbee).

Hall et al. [25] describe a tool, called EZ-Wave that can

discover Z-Wave devices passively and actively. The EZ-Wave

tool actively scans a Z-Wave device by sending a “probe”

packet with acknowledgement request flag set. In the older

version S0 of the Z-Wave protocol, it was compulsory for

a Z-Wave device to reply with acknowledgements to such

packets. By getting this acknowledgement back, the EZ-Wave

tool learns about a device’s presence. However, the EZ-Wave

tool only supports older versions of Z-Wave protocol. In the

new version (S2) of the Z-Wave protocol, acknowledgements

are not compulsory and this is not a reliable active scan mech-

anism. The old Z-Wave protocol uses only the R1 (9.6 kbps)

and R2 (40 kbps) physical layers. Our work adds R3 (100 kbps

PHY) as well as multi-protocol capabilities. The R1, R2, and

R3 rates are defined in [4, Table 7-2].

Choong [26] implements a multi-channel IEEE 802.15.4

receiver using a USRP2 software-defined radio. Choong de-

scribes a channelization method similar to the receive chain

used in this work (see Section 2) that extracts multiple

channels from a wider raw signal stream. However, Choong’s

work focuses on the performance impact of the SDR host

computer, and is a Zigbee-specific implementation, whereas

our work focuses on device enumeration in a multi-channel as

well as multi-protocol context.

Our Zigbee, BLE, and Z-Wave GNU Radio receiver im-

plementations are based on scapy-radio [14] flowgraphs. Our

LoRa GNU Radio receiver flowgraph is based on a work by

Tapparel et al. [5]. A similar multi-channel LoRa receiver was

implemented by Robyns in [27]. In order to support multi-

radio, multi-channel capabilities, IoT-Scan implements sev-

eral changes to these GNU Radio receiver implementations. In

general, these changes pertain to the signal path between the

SDR source and the receive chains for individual channels and

protocols (i.e., frequency translation, filtering, and resampling,

see Section VI-A). Additionally, our LoRa receiver can listen

to LoRa packets promiscuously.



Algorithm 1: Passive_Scan(ch_list,
dwell_time, scan_time)

⊲ Enumerate devices by repeatedly listening for

duration dwell_time on each channel in ch_list

and stop after scan_time

1 tstart ←time() ⊲ Store current time

2 device_list← {} ⊲ Initialize device list

3 i← 0 ⊲ Set channel counter to zero

4 while time()−tstart ≤ scan_time do
⊲ ch_list(i) is the i-th element in ch_list

5 new_dev ← Listen(ch_list(i), dwell_time)

6 device_list = device_list ∪ new_dev
7 i← (i+ 1) mod |ch_list|
8 end while

9 return device_list

III. SCANNING ALGORITHMS

In this section, we introduce SDR-based scanning algorithms

that form the core of IoT-Scan. The notion of channel in this

section refers to a 3-tuple containing the center frequency of

the channel, the channel bandwidth (i.e., a range of frequencies

delineated by the lower and upper frequencies of the channel),

and the protocol type. The concept of instantaneous bandwidth

refers to the range of frequencies captured by the SDR at any

given point of time. The center frequency corresponds to the

frequency at the middle of the range.

A. Single-channel methods

The key building block to any of the following scanning algo-

rithms is the function Listen. This function takes two input pa-

rameters, namely a channel ch (defined by a center frequency,

bandwidth and protocol) and a time period dwell_time after

which the procedure terminates listening to channel ch. During

execution of this procedure, the SDR decodes any packet

received on the channel, and extracts address information that

identifies a device. Upon the expiration of the channel dwelling

time, the procedure returns the list of discovered devices.

Algorithm 1 presents a simple sequential scanning pro-

cedure Passive_Scan that can be used in conjunction with

any IoT protocol. This algorithm represents a baseline against

which the performance of more advanced algorithms can be

compared. The algorithm invokes the Listen procedure in a

round-robin fashion on each channel of a given channel list

ch_list, which is provided as an input to the procedure. The

total scan time is set by the scan_time input parameter. Note

that generally scan_time ≫ dwell_time, and hence each

channel is visited several times during the scan. The algorithm

returns the list of discovered devices.

Sequential passive scanning can be slow, especially if an

IoT protocol supports many channels, but only a few chan-

nels are used. To speed up device discovery, Algorithm 2,

referred to as Active_Scan, implements a two-phase approach.

During the first phase (line 4), it invokes a helper function

Probe_Channels, which sends a probe packet on each chan-

Figure 1: Find_Channels_In_Range starts at the lowest chan-

nel in the provided list and returns all channels that are in range

of the SDR hardware based on the provided instantaneous

bandwidth parameter.

nel ch in the provided channel_list and waits for a response.

If one or more devices respond, then channel ch is added to

the active_channels list. During the second phase (lines 5–

7), Algorithm 2 performs passive scanning only on channels

appearing in the active_channels list for the remaining scan

time. Algorithm 2 is especially useful for protocols such as

Zigbee, which defines 16 different channels, not all of which

may be in use (see also Section V).

B. Multi-channel methods

The subsequent algorithms expand from single channel scan-

ning to handling multiple channels and multiple protocols,

at the same time. First, we need a method of grouping

channels within the range of the instantaneous bandwidth of

the SDR. The function Find_Channels_In_Range identifies

all channels in an input channel list (ordered by ascending

frequency) by selecting all channels that fit the instantaneous

bandwidth under consideration of their respective center fre-

quencies and channel bandwidths, see Fig. 1. Note that while

some channels overlap, transmissions on these channels do not

occur continuously. Hence, it is possible to decode packets if

they do not collide, which is usually the case.

We further define a helper function Listen_In_Parallel

which simultaneously listens to multiple channels by calling

Listen on all provided channels. Implementing this algorithm

requires extracting multiple signal streams by frequency-

shifting, filtering, and resampling the incoming signal. This

procedure is called channelization. The implementation as-

pects of this procedure are described in Section VI-A.

Multiprotocol_Scan (Algorithm 3) describes a parallel

multi-protocol scan that can be used with any number of

IoT protocols. Based on a list of channels to consider (or-

dered by ascending frequencies), the algorithm starts at the

lowest frequency and determines all channels within range

of the first channel by calling Find_Channels_In_Range.

It subsequently listens to those channels by invoking Lis-

ten_In_Parallel.

Active_Multiprotocol_Scan combines the aforementioned

active scanning and multi-protocol scanning capabilities. It is

useful for scanning multiple protocols, some actively and some

passively (such as a combination of Zigbee and BLE).



Algorithm 2: Active_Scan(ch_list, dwell_time, scan_time)

⊲ Enumerate devices by first identifying the list of active_channels in ch_list and then performing

passive scanning only on those active_channels

1 device_list← {} ⊲ Initialize list of found devices

2 active_channels← {} ⊲ Initialize list of busy channels

3 tstart ←time() ⊲ store current time

⊲ Phase 1: Scan active devices

4 active_channels, device_list← Probe_Channels(ch_list, dwell_time)
⊲ Phase 2: Passive-scan known active channels for the remaining time

5 tscan ← scan_time− (time()− tstart) ⊲ Compute remaining scanning time

6 new_dev ← Passive_Scan(active_channels, dwell_time, tscan) ⊲ Run passive scan on active channels

7 device_list← device_list ∪ new_dev ⊲ Add devices found during passive scanning

8 return device_list

Algorithm 3: Multiprotocol_Scan(ch_list, dwell_time, scan_time, bandwidth)

⊲ This algorithm enumerates devices by scanning as many channels as can fit in the instantaneous

bandwidth of bandwidth for a duration dwell_time in each iteration.

1 ch_unscanned← ch_list ⊲ All channels in the list are unscanned

2 ch_groups← {} ⊲ Initialize list of channel groups

3 while ch_unscanned 6= {} do
⊲ Find channels that can be scanned simultaneously as they fit the instantaneous bandwidth.

4 ch_range← Find_Channels_In_Range(ch_unscanned, bandwidth)

⊲ Scan channels that fit in instantaneous bandwidth BW around center freq.

ch_groups← ch_groups ∪ {ch_range} ⊲ Add this group to the list of channel groups

5 ch_unscanned← ch_unscanned \ ch_range ⊲ Remove channels from unscanned list

6 end while

7 tstart ←time() ⊲ Store current time

8 device_list← {} ⊲ Initialize list of found devices

9 i← 0 ⊲ Set channel counter to zero

10 while time()−tstart ≤ scan_time do
⊲ Scan all channels of the i’th channel group in parallel

11 new_dev ← Listen_In_Parallel(ch_group(i), dwell_time)

⊲ Remove scanned channels from unscanned channel list

12 device_list← device_list ∪ new_dev i← (i+ 1) mod |ch_groups|
13 end while

14 return device_list

IV. PERFORMANCE METRICS AND ANALYSIS

A. Metrics

Our main metric is the discovery time of IoT devices, which

we aim to minimize. Assume there are N devices in total,

with corresponding discovery times T1, T2, . . . , TN . We are

interested in characterizing the order statistics of these random

variables, i.e., the time elapsing till one device is discovered,

which is denoted X1:N , then till two devices are discovered

which is denoted X2:N , and so on till all devices are discov-

ered, which is denoted XN :N . We thus have

X1:N = min(T1, T2, . . . , TN ), (1)

X2:N = min({T1, T2, . . . , TN} \X1:N ), (2)

. . .

XN :N = max(T1, T2, . . . , TN ). (3)

In our experiments, we estimate the expectation of the n-

th order statistics E[Xn:N ], for n = 1, 2, . . . , N . To obtain

these estimates, we run each scanning algorithm M times and

denote by x
(m)
n:N the time till n devices are discovered at the

m-th iteration, where m = 1, 2, . . . ,M . We then compute the

sample mean for the n-th order statistics as follows:

x̄n:N =

∑M
m=1 x

(m)
n:N

M
. (4)

We also provide (1− α)100% confidence intervals for our

estimates

[x̄n:N − en:N , x̄n:N + en:N ], (5)

based on computing the sample standard deviation sn:N and



the confidence interval parameter en:N as follows:

sn:N =

√

√

√

√

1

M − 1

M
∑

m=1

(x
(m)
n:N − x̄n:N )2, (6)

en:N = tα/2,M−1 ×
sn:N√
M

, (7)

with tα/2,M−1 denoting the 1 − α/2 quantile of the t-
distribution with M − 1 degrees of freedom [28]. In our

experiments, described in Section VI, we run M = 10
independent iterations for each algorithm and consider 95%

confidence intervals (i.e., α = 0.05), hence tα/2,M−1 = 2.262.

B. Theoretical Model

We next propose a theoretical model to estimate the expec-

tations of order statistics of the discovery time, under appro-

priate statistical assumption. The analysis further assumes an

idealized channel environment where no packet loss occurs

(in practice such losses could occur due to imperfect receiver

implementation or interference). In Section VI-C, we show

that the performance of the scanning algorithms approaches

that predicted by the theoretical model, which demonstrates

the efficiency of the algorithms.

1) Statistical assumptions: To model device enumeration,

we need statistics of the inter-arrival times of packets gener-

ated by each device. For the sake of analytical tractability,

we assume that devices transmit in a memoryless fashion, i.e.,

the inter-arrival times of their packets follow an exponential

distribution. Note that the mean and standard deviation of

an exponential random variable are equal. Hence, we expect

that this model can provide a reasonable approximation, if

for each device i, its mean inter-arrival time µi and standard

deviation of inter-arrival times σi are roughly equal. We stress

that this assumption is not needed for the implementation of

the scanning algorithms, only for their analysis.

To check this assumption, we collected statistics of the inter-

arrival times of packets of the Bluetooth and Zigbee devices

listed in Table I below. Table I indicates that indeed for all

tested BLE devices and most Zigbee devices µi ≈ σi.

2) Analysis of order statistics: Enumerating devices

shares similarities with the non-uniform coupon collector’s

problem [17], albeit with certain modifications. The coupon

collector’s problem assumes a probability distribution in which

each draw results in a coupon (i.e., a discovered device). This

cannot be applied directly to a scenario in which devices’

transmission characteristics may result in null coupons, i.e., a

scan iteration in which no new device is discovered. Anceaume

et al. [18] provide a method of calculating the expectation

of the non-uniform coupon collector problem which accounts

for a null coupon. Define the probability vector p in which

p0 is the probability of no device transmitting, and pi is the

probability of device i transmitting, i = 1, 2, . . . , N . The

expectation for the n-th order statistics Xn,N (i.e., the time to

to discover n out of N devices) is then given by

E[Xn:N (p)] =

n−1
∑

h=0

RN,n,h

∑

J∈Sh,N

1

1− p0 − PJ
(8)

where

RN,n,h = (−1)n−1−h

(

N − h− 1

N − n

)

. (9)

Here, Sh,N denotes all
(

N
h

)

subsets containing exactly h
devices. Denote by J any subset of Sh,N that contains exactly

h devices. Then, PJ =
∑

j∈J pj is the summation of the

transmission probabilities of all devices belonging to J . Note

that the second summation term in Eq. (8) works out to a

summation over all possible subsets J of cardinality h.

Assuming all N devices send packets in an independent and

identically distributed memoryless fashion as discussed above,

the device traffic can be modeled as N independent Poisson

processes with rate λi = 1/µi. The combined influx of packets

from all the devices then follows a Poisson process with rate

λ =
∑N

i=1 λi. By selecting a small interval ∆t such that either

zero or one packet arrives during any interval ∆t, we can use

Eq. (8) to compute the expectation of the order statistics of

the discovery time of devices. If all devices transmit on one

channel that is continuously monitored, the probability pi that

device i transmits during an interval ∆t is then

pi = (λi∆t)e−λi∆t ≈ λi∆t. (10)

Note that if all devices are randomly distributed on any

of C available channels, a randomly channel-hopping radio

scanner would receive a transmission from device i with

probability pi/C. This can also be used as an approximation

when the scanner visits channels in a round-robin rather than

in a random fashion.

V. PROTOCOL DEVICE ENUMERATION

In the previous sections, the concepts of “listening to a

channel” and “extracting device addresses” were presented in

a generic way. We now discuss these aspects for all the IoT

protocols implemented in IoT-Scan.

A. Zigbee

IoT-Scan implements both passive and active scans for

Zigbee. A passive scan listens on each channel for a certain

amount of time (i.e., the channel dwell time) repeatedly until

the total scan time expires. With active scanning, channels with

network activity are discovered by sending beacon requests

on each channel. Receiving a beacon frame in response to

a beacon request indicates that there is a network on the

current channel (typically, a Zigbee network has a router or

a coordinator that responds to beacon requests). Subsequent

passive scanning rounds can then be limited to these active

channels (line 6 in Algorithm 2), in order to detect any further

devices that did not respond to active scanning.

B. Bluetooth Low Energy (BLE)

In BLE, data channels are used for communication after a

connection has been established, whereas advertising channels



are used between devices that are in range to discover one

another and exchange metadata. Therefore, IoT-Scan only

scans the three advertising channels (i.e., there is no need

to monitor data channels). Typically, advertising packets are

sent on all three advertising channels for any given advertising

event. This redundancy makes device discovery more resilient

in cases where some of the channels experience interference.

This means that scanning for BLE devices on any one of the

three advertising channels is as good as a multi-channel scan

(sequentially scanning each advertising channel), a fact that

we also verified experimentally.

C. LoRa

In our implementation, we scan Yolink devices listed in

Table I. The major challenge in receiving any Yolink traffic

is in determining the PHY-layer network sync word, because

the existing SDR LoRa receiver implementation [5] accepts

only sync words with a value of zero. Yet, sync word values

containing 0x00 are forbidden in deployed networks and

can only be used for testing. We overcome this challenge

by modifying the LoRa receiver of [5]. Our implementation

allows one to promiscuously listen for all sync words, as well

as configure the bandwidth, the center frequency, the bitrate,

and other parameters. A key advantage of scanning LoRa

using an SDR implementation is that all sync words can be

monitored simultaneously, whereas certified LoRa transceiver

chips are programmed to receive a specific sync word.

D. Z-Wave

IoT-Scan uses the Source ID [29] in the MAC header to

enumerate Z-Wave devices. R1 and R2 Z-Wave PHY imple-

mentations are based on scapy-radio [14]. We built the R3 Z-

Wave PHY receiver flowgraph based on the existing R2 PHY

implementation, the main difference being the bitrate/sampling

which is 2.5 times larger.

VI. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of the

scanning algorithms of IoT-Scan. We detail SDR imple-

mentation aspects, the experimental set-up (including the list

of tested devices), and the experimental results.

A. Algorithm Implementation

The main software components of our implementation consist

of GNU Radio 3.8 [13] and Scapy-radio 2.4.5 [14]. Scapy-

radio is a pentest tool with RF fuzzing capabilities. Note that

Scapy-radio is based on GNU Radio version 3.7. We ported

receiver flowgraphs to GNU Radio 3.8 gaining great reception

improvements due to the automatic gain control (AGC) inside

the USRP Source block.

1) Flowgraph control: We implement the scanning algo-

rithms described in Section III in Python. Signal processing

parameters, such as the SDR center frequency, the channel

frequency offsets, and the channel bandwidths, are managed

by a GNU Radio flowgraph. The GNU Radio flowgraph is

imported from the main application as a Python module and

is controlled with its native Python API. This allows for

dynamic control of flowgraph parameters during the runtime

of the flowgraph. Controlling the flowgraph in this way is

crucial for correct time-keeping of the experiments, as it

allows to compensate for seconds of startup delays due to

the initialization of the USRP hardware driver library.

2) Signal processing: The process of converting an un-

filtered full-bandwidth signal from an SDR source into the

receive chain (i.e., the sequence of DSP blocks connected

serially starting with radio source, demodulator, filter, and

clock recovery) of a particular protocol is referred to as

channelization [30]. Channelization is particularly important

in multi-protocol scanning, since it selects (filters out) a few

narrow band signals (receive chains) from the raw wide band

signal. Multi-protocol scans require parallel decoding of two or

more receive chains which can overwhelm the capabilities of a

typical host computer if the processing chain in the flowgraph

is not correctly optimized.

Channelization in IoT-Scan comprises three signal pro-

cessing steps: frequency translation (from the center frequency

of the raw radio signal to the center frequency of the desired

channel), channel filtering (filtering out other protocols and

potential interference), and re-sampling (down conversion) to

reduce the computational load. Reducing the sample rate relies

on Nyquist’s theorem, which dictates that the sample rate of

a signal be at least twice the signal’s bandwidth, in order to

not lose any information.

B. Experimental Setup

We implemented all the scanning algorithms described in

Section III on a single SDR device, namely a USRP B200

device [16], with a PC capable enough to handle data process-

ing in real-time without dropping samples (i.e., overflowing

buffers). Thus, all our experiments were run on a ThinkCentre

8 Core Intel i7 running Ubuntu 20.04.

The devices used in the experiments are listed in Table I.

All scanning experiments were based on IoT devices under

our control, which were placed in the same office room as the

SDR. Any foreign device from the environment was filtered

Table I: Tested IoT devices.



out. In order to only account for our devices, we initially

enumerated them with a passive scan inside an RF shielded

box (Ramsey box STE3500) to determine their addresses.

Traffic of the BLE and Zigbee devices were statistically

analyzed to derive the parameters of the theoretical traffic

model introduced in Section IV-B. Note that we did not

analyze transmission statistics of low-power Z-Wave and LoRa

devices due to their periodic transmission patterns (devices

transmit once every hour or so).

We conducted all scanning experiments using the default

network configuration of the respective devices and protocols.

In all experiments, the tested devices were in an idle state,

i.e., not actively used by an operator. Manually operating

devices in a way that generates network communication, e.g.,

actuating Zigbee lights via the Amazon Alexa smartphone app,

would impact scanning performance. We expect the results

presented in this section to be conservative estimates of the

scanning time, since generating additional traffic from the

devices should speed up the discovery of the devices.

Regarding the parameters of the algorithms, the channel

dwell time (i.e., the scanning time of each channel in each

round) was set to 1 second. We also tried channel dwell times

of 0.1 second and 3 seconds, and found that the scanning times

did not differ significantly. The channel dwell time during

active scan of Zigbee was set to 0.2 second. When scanning

each individual protocol, we set the instantaneous bandwidth

parameter according to the protocol’s bitrate. Specifically,

BLE’s channel bandwidth was set to 1 MHz, Zigbee to 2 MHz,

LoRa to 125 KHz, and Z-Wave to 40/100 KHz. When im-

plementing multiprotocol scanning algorithms, we used wider

bandwidth to fit the bandwidth of each protocol and channel

spacing in between. Both the Zigbee/BLE and Z-Wave/LoRa

and multi-protocols experiment used 8 MHz of bandwidth.

C. Results

In this section, we discuss experimental results of the scanning

algorithms. The figures show the sample means and 95%

confidence intervals of the order statistics of the discovery time

of the n-th device (see Eqs. (4) and (5)). Each point represents

an average over 10 experiments with identical parameters.

1) Passive Zigbee and BLE Scans and Comparison with

Theoretical Model: We first evaluate the performance of the

passive scanning algorithms (Algorithm 1) for Zigbee and BLE

devices, and compare those with the expected discovery times

based on the theoretical model described in Section IV-B.

To build the theoretical traffic model (see Section IV-B),

we measured device characteristics of our tested devices by

running one long continuous scan of 100 minutes on every

Zigbee channel and on every BLE advertising channel, in

order to collect a baseline of traffic for each device. The traffic

statistics are shown in Table I. We set ∆t = 0.1s in Eq. (10)

to compute pi for each device. We then use Eq. (8) to compute

the expectation of the order statistics of the discovery time of

devices. Note that for Zigbee, we replace pi by pi/16, since

with Algorithm 1, the SDR listens to only one out of the 16

Zigbee channels at a time.

Figure 2: Zigbee theoretical model and experimental passive

scan results. The 95% confidence intervals indicate a good fit.

Figure 3: BLE passive scan results align closely with the

theoretical model.

Fig. 2 shows curves for the experimental results of Zigbee

passive scanning and the theoretical model. The model fits

inside most of the 95% confidence intervals. This shows

that our passive scan implementation is close to the best

performance possible, and our testbed has minimal packet

losses. The deviation from the model could be attributed to

interference (e.g., from Wi-Fi) and the fact that transmissions

of some Zigbee devices are not memoryless.

Fig. 3 shows experimental results for BLE passive scanning

and the theoretical benchmark. The measured discovery times

again fit the model well. Since all BLE advertising channels

are equivalent, scanning is performed on channel 37 only.

Note that BLE device discovery can only be performed as a

passive scan, since BLE does not allow for broadcast-type scan

requests as performed in Zigbee. While BLE scan requests

could be a useful active scanning technique for gathering

additional device data, they are always directed scans, i.e.,

they require knowledge of the target device’s address.

2) Active Zigbee Scan: We next evaluate the performance

of active scanning (Algorithm 2) and compare it to passive

scanning in the context of Zigbee. Fig. 4 shows that the passive

discovery of 12 Zigbee devices takes 365 seconds on average

while active Zigbee discovery takes only 46 seconds, i.e., a

reduction of 87% in the scan time. While active scanning



Figure 4: Zigbee active versus passive scan.

Figure 5: Zigbee/BLE multiprotocol active scan vs. sequential

passive scan.

discovers the 12 devices within one minute, passive scanning

discovers only 4 devices within one minute. Note that Zigbee

supports up to 64,000 nodes per network. It is conceivable

that the improvement of active scan over passive scan would

be even more significant with a larger number of nodes.

3) Zigbee and BLE Multiprotocol Scan: We next evaluate

the performance of active multiprotocol Zigbee and BLE scan

and compare it to sequential passive scan. Sequential passive

scan consists of passive BLE scan followed by passive Zigbee

scan. Sequential passive scan enumerates the 24 considered

devices in 395 seconds on average, while active multiprotocol

Zigbee and BLE scan takes 118 seconds on average, which

corresponds to a 70% improvement (Fig. 5). Within 1 minute

active multiprotocol scan discovers 22 devices while sequential

scan discovers only 10. Breaking down sequential passive

scan into two: the first 106 seconds corresponds to a BLE

passive scan, followed by 289 seconds of Zigbee scan, which

is consistent with the results shown in Figs. 2 and 3. The

speed-up is achieved because of two aspects: active scan and

multiprotocol scan. Zigbee active scan narrows the search

down from 16 to only 3 channels. Multiprotocol scan supports

reception of one Zigbee and one BLE channel in parallel. Note

that parallel reception is possible only if the two channels

fit within the instantaneous bandwidth. As mentioned earlier,

the instantaneous bandwidth for multiprotocol scan was set to

Figure 6: Multiprotocol passive scan (Z-Wave, LoRa)

8 MHz. Three Zigbee active channels were identified, namely

channel 11, 15, and 20. BLE has three well-known advertising

channels, namely 37, 38, and 39. BLE channel 37 and Zigbee

channel 11 can be received in parallel as well as BLE channel

38 and Zigbee channel 15. However, Zigbee channel 20 and

BLE channel 39 are scanned separately since they do not fit

within the same instantaneous bandwidth.

4) Z-Wave and LoRa Multiprotocol Scan: We next eval-

uate the performance of passive multiprotocol LoRa and Z-

Wave scan on 900 MHz band (Algorithm 3) and compare it to

sequential passive scan (Algorithm 1). Passive multiprotocol

scan consists of scanning each of 3 frequency channels (2

Z-Wave and 1 LoRa) in a round robin fashion. The passive

scanning operation visits the LoRa and Z-Wave channel in

a round-robin fashion, one at a time. Due to having 2 Z-

Wave channels (908.4 and 916 MHz) and only 1 LoRa channel

(910.29 MHz), Z-Wave has an advantage in passive scanning.

Fig. 6 shows that sequential LoRa and Z-Wave scan takes

about 8.1 hours on average while multiprotocol Z-Wave and

LoRa scan takes 2.5 hours, which represents a reduction

of about 70% in the discovery time. Within a single hour

passive scan discovers less than 1 device on average while

multiprotocol scan discovers 5 out of the 7 devices. This

significant speed-up is achieved because multiprotocol scan

receives all three channels (from the two protocols) in parallel,

namely 908.4 MHz (Z-Wave R2 PHY), 910.23 MHz (LoRa

uplink), and 916 MHz (Z-Wave R3 PHY).

VII. CONCLUSION

We presented IoT-Scan, an extensible multi-protocol net-

work reconnaissance tool for the Internet of Things that can

be employed for security auditing and network monitoring.

IoT-Scan leverages the capabilities of SDRs to process

multiple streams in parallel. Accordingly, we introduced sev-

eral scanning algorithms and evaluated them both theoretically

and experimentally. Using the theoretical model, we showed

that our implementation is efficient and achieves minimal

packet loss in reception. We implemented multi-protocol,

multi-channel scanning both on the 2.4GHz band for Zigbee

and BLE, and on the 900 MHz band for LoRa and Z-Wave, and



demonstrated significant improvement over sequential passive

scanning.

Our SDR implementations should prove especially useful in

overcoming the incompatibility of different protocols based on

the same PHY layer. For instance, besides Zigbee, there exist

several IoT protocols based on the IEEE 802.15.4 standard,

such as Thread [31] and WirelessHART [32]. We expect that

these protocols could readily be integrated into IoT-Scan.

The design of IoT-Scan does not raise ethical issues in

itself. However, like other penetration testing tools, usage of

this tool does require explicit consent from the owners of the

devices under test. Specifically, active scanning, while brief,

may interfere with existing network traffic and delay time-

sensitive communication. A major advantage of IoT-Scan

versus a tool like Nmap is that it also supports a passive

scanning mode, which does not generate traffic.

This paper opens several avenues for future work. First,

one could explore FPGA implementations of IoT-Scan to

increase the number of channels and protocols that can be

decoded in parallel and further speed up the discovery of IoT

devices. While this should yield useful performance improve-

ments, we expect that such implementations would still rely on

the algorithms introduced in Section III. Another interesting

research avenue lies in the design of active scanning methods

for LoRa and Z-Wave, as devices in these protocols transmit

sparingly. We have publicly released data traces obtained with

IoT-Scan in [33]. We envision that these traces should be

useful for the design and evaluation of scanning algorithms

and other IoT-related research.
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