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Abstract—We examine the problem of minimizing feedbacks
in reliable wireless broadcasting, by pairing rateless coding with
extreme value theory. Our key observation is that, in a broadcast
environment, this problem resolves into estimating the maximum
number of packets dropped among many receivers rather than for
each individual receiver. With rateless codes, this estimation relates
to the number of redundant transmissions needed at the source
in order for all receivers to correctly decode a message with high
probability. We develop and analyze two new data dissemination
protocols, called Random Sampling (RS) and Full Sampling with
Limited Feedback (FSLF), based on the moment and maximum
likelihood estimators in extreme value theory. Both protocols rely
on a single-round learning phase, requiring the transmission of
a few feedback packets from a small subset of receivers. With
fixed overhead, we show that FSLF has the desirable property
of becoming more accurate as the receivers’s population gets
larger. Our protocols are channel agnostic, in that they do not
require a-priori knowledge of (i.i.d.) packet loss probabilities,
which may vary among receivers. We provide simulations and an
improved full-scale implementation of the Rateless Deluge over-
the-air programming protocol on sensor motes as a demonstration
of the practical benefits of our protocols, which translate into
about 30% latency and energy consumption savings.

I. INTRODUCTION

Reliable data broadcasting serves as the basis for numerous
wireless applications, including over-the-air programming and
real-time updating of stock quotes and scoreboards [1–4].

Automatic Repeat reQuest (ARQ) protocols are commonly
employed to guarantee the reliability of data dissemination over
lossy wireless channels [5]. ARQ requires receivers to notify
a source about missing packets via acknowledgements (ACKs)
or negative acknowledgements (NACKs). When the number of
receivers gets large, however, these messages become excessive
and result in the well-known broadcast storm problem [2, 4, 6].

Packet-level forward error correction (FEC) provides a
promising approach to effectively reduce feedbacks [7]. FEC
requires the source to anticipate packet losses and make re-
dundant transmissions proactively, instead of waiting for feed-
backs from receivers and then making additional transmissions.
Rateless codes such as random linear codes, LT codes [8]
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and Shifted LT codes [9] allow FEC to be implemented in
a practical and efficient way. The source encodes M original
packets of a file and then transmit the encoded packets. A
receiver is able to recover the file successfully when receiving
M (or slightly more) distinct encoded packets.

One of the challenges of implementing FEC is for the
source to determine an appropriate amount of redundancy
when transmitting proactively. While too many redundant FEC
packets slows down the data dissemination process unneces-
sarily, insufficient redundancy leaves many receivers unable
to decode packets. Furthermore, the inherent heterogeneity
of channel characteristics across receivers (due to, e.g., link
quality, distance to the source, antenna sensitivity) significantly
complicates the task of redundancy estimation. While estimat-
ing each receiver’s packet loss probability may be possible [10],
such an approach does not scale given that per-receiver packet
loss probability needs to be ascertained.

This paper is based on the following key observation. When
using rateless codes in a broadcasting environment, such as
wireless, the number of redundant packet transmissions cor-
responds to the maximum number of redundant packet trans-
missions needed among all receivers. This allows us to exploit
advances in extreme value theory [11], a powerful mathematical
tool for studying the distribution of extreme order-statistics,
such as maxima of random variables, to effectively quantify
transmission redundancy with minimum overhead.

We consider the problem of disseminating a file composed of
multiple segments, or pages, from one source to N receivers
over a lossy wireless channel. Each page consists of a fixed
number of packets. Our first contribution is formalizing this
problem using extreme value theory, in order to perform accu-
rate online estimation of the amount of transmissions (formally
defined as δ-reliable volume in Section III) a source needs
to make in order to achieve a probability δ of successfully
delivering each page of the file to all the receivers. Thanks
to extreme value theory, we are able to perform accurate
estimation of the δ-reliable volume without requiring specific
knowledge of channel characteristics. This accurate estimation
can be accomplished with extrapolation based on limited infor-
mation obtained from the dissemination of a single page.

Second, we develop two new data dissemination protocols,



called Random Sampling (RS) and Full Sampling with Limited
Feedback (FSLF), based on extreme value estimators known to
be asymptotically exact as N → ∞. Both protocols estimate
the δ-reliable volume during a learning phase, and then reliably
disseminate the rest of the file during a transmission phase.
While RS restricts the overhead of the estimation during the
learning phase, by randomly sampling feedbacks from a small
subset of receivers, FSLF judiciously exploits the fact that the
extreme value estimators require only samples of the k + 1
largest order statistics, for some k << N , to collect all the
feedbacks needed. We further show that FSLF has the appealing
property of providing more accurate estimation of the δ-reliable
volume when the receivers’ population gets larger, without
incurring higher overhead.

Third, we show through extensive simulations that both RS
and FSLF almost completely eliminate receivers’ feedbacks
during the transmission phase. Thanks to the high accuracy
of the estimators, the amount of packet transmission by the
source is only about 5% higher than with ARQ.

Fourth, we compare the performance of different extreme
value estimators, namely, the moment and maximum likelihood
estimators, in conjunction with the RS and FSLF protocols.
Amongst all the possible combinations, we observe that FSLF
based on the moment estimator achieves the best performance,
in terms of minimizing overhead and maximizing accuracy.

Finally, to demonstrate practical benefits of our protocols,
we conduct real mote experiments on a testbed of 14 Tmote
Sky sensors [12] and perform larger-scale simulation using the
TOSSIM simulator [13]. Specifically, we design a new over-the-
air programming protocol based on Rateless Deluge [4], called
Extreme Value Quantile Estimation (EV-QE) Deluge, which
integrates the RS protocol. The experiments and simulations
show that EV-QE Deluge lead to a 75% reduction in control-
plane traffic together with 30% savings on latency and energy
consumption, at the expense of an about 5% increase in data
plane traffic with respect to Rateless Deluge.

This paper is organized as follows. In Section II we survey
related work. We formulate our problem in Section III. We
point out the limitations of classical estimation techniques in
Section IV-A, give a primer on extreme value theory in Sec-
tion IV-B, and introduce the moment and maximum likelihood
estimators in Section IV-C. The design of the RS and FSLF
protocols is presented in Section V. Simulation results and
sensor mote experiments are provided in Section VI and VII,
respectively. We provide concluding remarks in Section VIII.

II. RELATED WORK

The concept of exploiting FEC for reliable data dissemination
has been the subject of prior research, both in wireline and
wireless settings, and we next survey those work most related
to our paper. The works in [14, 15] numerically evaluate the
performance improvements achieved with different levels of
FEC redundancy. In order to allow the sender to decide when to
stop transmitting FEC-coded packets without explicit feedback,
the authors in [16–19] study the properties of file dissemination
completion times. While in practice the packet loss probability

differs from node to node due to many factors (i.e., link quality,
distance to the source, antenna sensitivity), the works in [14,
16, 20, 21] as well as some hybrid FEC/ARQ protocols such
as [22], assume homogeneous packet loss probabilities in their
analysis. The work in [15, 17–19] do study the more realistic
scenario of heterogeneous packet loss, but they assume that
receivers’ packet loss probabilities are known to the source, a
relatively strong assumption for practical multiple receiver en-
vironments. In our work, we allow the packet loss probabilities
to be unknown and heterogeneous across receivers.

While it is possible to perform online estimation of net-
work parameters such as packet loss probabilities [10], such
techniques are not generally scalable with the number of
receivers in the network, given that all per-receiver packet
loss probabilities must be determined. The authors in [23] try
to estimate FEC redundancy without obtaining the individual
receivers’ packet loss probabilities, but they do not establish
relationship between the redundancy and the probability of
success. In this present work, we propose to estimate the
amount of transmissions needed to fully disseminate data to
all receivers, with probability δ. Our estimate is computed
online without the knowledge of channel characteristics, and
we establish an analytical relationship between the amount of
transmissions and the probability of success.

Finally, estimation can also be performed using classical
approaches [24]. However, they have significant overhead (cf.
Section IV for details), which our approach avoids by utilizing
the theory of extreme values.

III. PROBLEM FORMULATION

We consider the problem of broadcasting a file from a source
(e.g., base station) to N receivers within its transmission range.
The file is divided into R pages, each consisting of M packets.
Encoding is done at the packet level using rateless codes (e.g.
computing random sums of input packets). Each receiver needs
to receive M distinct packets1 in order to recover a page.

The time axis is slotted, and each packet transmission is
assumed to take one time slot. The packet loss probability for
receiver n (n = 1, .., N ) is pn, where pn’s are heterogenous and
unknown, but assumed to be independent, identically distributed
(i.i.d.) random variables. The source encodes and broadcasts the
pages in an increasing order. Sending one page is denoted as
one realization in the data dissemination process.

In a given realization r of the data dissemination process,
denote by T r

n the number of time slots required for receiver n
to recover a page. Since pn’s are i.i.d. random variables, the
time required for decoding the page is i.i.d. across receivers; in
other words, T r

ns are also i.i.d. random variables. Denote by T r

the random variable representing the completion time for this
realization, i.e.,the number of time slots needed to disseminate
M packets to a cluster of N receivers: T r = max

n=1...N
T r
n.

The success probability of a page dissemination is the
probability that the page is decoded by all N receivers. The

1Some near optimal rateless codes require slightly more than M packets to
decode a page.



δ-reliable volume, denoted as tδ, is the amount of packets the
source needs to broadcast to guarantee a success probability δ.

Our goal is to sample and analyze a fixed number of feedback
packets in a single realization, corresponding to the broadcast of
the first page of a file, in order to estimate the δ-reliable volume
tδ. Our estimation aims to accurately quantify the value tδ of a
realization r, where, by definition, Pr{T r ≤ tδ} = δ. Note that
tδ is also referred to as δ-quantile of the distribution function
Pr{T r ≤ t} [25, p.404].

IV. EXTREME VALUE QUANTILE ESTIMATION

We begin this section with a review of traditional approaches
in quantile estimation, pointing out their limitations, and a
short primer on extreme value theory, a powerful statistic
tool for studying the distribution of the maxima of random
variables. We then introduce extreme value theory-based esti-
mators, which form the basis for our near-zero feedback data
dissemination protocols described in Section V.

As discussed in Section III, for a given realization r of
the data dissemination process, the completion times of the
receivers are i.i.d. random variables, T r

1 , T
r
2 , .., T

r
N , following

an unknown distribution function F (t). Let their order statistics
be T r

1,N , T r
2,N , .., T r

N,N , meaning that T r
1,N ≤ T r

2,N ≤ .. ≤
T r
N,N . Clearly, T r

N,N , which corresponds to the maximum of
completion times among all receivers, is identical to T r, the
number of packet transmissions by the source during realization
r. Similarly, for R realizations, r = 1, .., R, the set of T r’s are
also i.i.d. random variables because they are the maxima of
i.i.d. random variables. Let their order statistics be denoted by
T 1,R, T 2,R, .., TR,R.

Recall that our goal is to quantify the δ-reliable volume, tδ,
needed in order to achieve a success probability δ of delivering
a page to all receivers, corresponding to the δ-quantile of
the distribution function Pr{T r ≤ t} = Pr{ max

n=1,..N
T r
n ≤

t} = FN (t) [25, p.404]. Equivalently, this problem can be
considered as estimating τ -quantile, τ = δ

1
N , of the distribution

function F (t); clearly this τ -quantile is precisely tδ .

A. Classical Estimators and their Limitations

Classical quantile estimators compute the δ-quantile, t̂δ, by
interpolating linearly between the order statistics [25, p.404].
For example, consider the averaging quantile estimator [24].
After the completion times of R realizations are collected and
ordered as T 1,R ≤ T 2,R ≤ . . . ≤ TR,R, the δ-quantile for
Pr{T r ≤ t} = FN (t) is estimated as

t̂δ =

{
1
2 (T

j,R + T j+1,R) if j = Nδ,
T j+1,R otherwise.

(1)

A major limitation of all interpolation-based quantile estima-
tors is that they need many realizations (i.e.,large R) to estimate
high quantiles. The fundamental reason is that all these estima-
tors implicitly assume that the estimation will not exceed the
largest order statistic, namely, T R,R. For instance, using Eq. (1)
to estimate the high quantile (when δ > 1− 1

R ) always yields
t̂δ = TR,R. Therefore, this estimator becomes ineffective when

Fig. 1. The relationship between function F and U .

δ > 1 − 1
R . In other words, it is not possible to estimate any

quantile higher than (1− 1
R ) based on the data collected from R

realizations using classical quantile estimators. Equivalently, to
determine tδ where Pr{T r ≤ tδ} = δ, one needs to collect the
completion times of T rs from at least R = 1

1−δ realizations.
Note that one could equivalently estimate the τ -quantile,

τ = δ
1
N , of the distribution function F (t) by collecting the

individual completion times, T r
n , from all receivers. However,

it can be shown that at least R = 1
1−δ realizations are still

required for classical quantile estimators.

B. Extreme Value Theory

The completion time for successfully disseminating a page
corresponds to the maximum of the individual completion times
of each receiver. In order to estimate the δ-reliable volume by
extrapolating beyond the limited amount of feedbacks (based
on only a single realization), one needs to explore the properties
of the distribution of the maximum of i.i.d. random variables.

Extreme Value Theory (EVT) provides a sound theoretical
framework for such an extrapolation. It restricts the behavior
of the distribution of the maximum of i.i.d. random variables,
namely T r, where T r = max

n=1,..N
T r
n , to an EVT distribution.

The EVT distribution can be specified by just two parameters,
the extreme value index and the scale factor [11]. Consequently,
we can quantify the δ-reliable volume without requiring knowl-
edge of channel statistics of each individual receiver.

Formally, suppose there exists a sequence of constants a(N)
and b(N), such that ( max

n=1,..N
T r
n − b(N))/a(N) has a non-

degenerate limit distribution as N → ∞. Then, according to
extreme value theory,

lim
N→∞

FN (a(N)t+ b(N)) = Gγ(t), (2)

where

Gγ(t) = exp
(
−(1 + γt)−

1
γ

)
, for 1 + γt > 0, γ ∈ R, (3)

and the right-hand side interpreted as exp(−e−t) for γ = 0.
Define U to be the inverse function of 1

1−F . As depicted in
Fig. 1, U( 1

1−τ ) corresponds to τ -quantile, t′τ . Ref. [11] shows
that the following statement is equivalent to Eq. (2):

lim
N
k →∞

U(t)− U(Nk )

a(Nk )
=

(
tNk
)γ − 1

γ
, (4)

where U(N) = b(N) in Eq. (2), and the right-hand side is
interpreted as log t for γ = 0.



Eq. (4) is used as a basis for extreme quantile estimation. To
estimate a τ -quantile, one can use following estimator,

t̂τ = Û(
1

1− τ
) = Û(

N

k
) + â(

N

k
)
( 1
1−τ · k

N )γ̂ − 1

γ̂
, (5)

where N is the sample size and k is the intermediate number.
As k → ∞, N → ∞ and k

N → 0, Eq. (5) asymptotically
converges to the actual quantile [11].

By the definition of U , it can be shown that Û(Nk ) =
T r
N−k,N . The right hand side, T r

N−k,N , which is the (N − k)
largest completion time in the r-th realization, can be obtained
from the order statistics of the empirically collected completion
times reported by the receivers. Therefore, when using Eq. (5)
to estimate the τ -quantile, one only needs to estimate the
extreme value index γ and the scale factor a(N

k ). This is the
reason the δ-reliable volume at the source can be estimated
without knowledge of channel characteristics. Next, we de-
scribe statistical approaches for estimating the two parameters.

C. Estimation of the Extreme Value Index and Scale Factor

We will now introduce two important EVT estimators used
to estimate the extreme value index γ and the scale factor a( N

k )
of Eq. (5). Note that these estimators are derived from Eq. (2)
or its equivalent forms.

1) The Moment Estimator [26]: The moment estimator is
an extension of the simple and widely used Hill estimator [27],
which is a special case j = 1 of the following equation:

M
(j)
N =

1

k

k−1∑
i=0

(logT r
N−i,N − logT r

N−k,N )j , j = 1, 2. (6)

The Hill’s estimator provides estimates for γ+ � max(0, γ),
and converges to 0 when γ < 0 (i.e.,non-informative).

Let γ− � min(0, γ). The work [26] estimates γ− as follows:

γ̂− = 1− 1

2

(
1− (M

(1)
N )2

M
(2)
N

)−1

. (7)

Complementarily to the Hill’s estimator, γ̂− can only estimate
the case where γ < 0 and converges to 0 for the case γ ≥ 0.

The moment estimator for γ ∈ R, proposed in [26], is
essentially a combination of the estimator for γ+ and γ−,

γ̂M = M
(1)
N + 1− 1

2

(
1− (M

(1)
N )2

M
(2)
N

)−1

. (8)

The corresponding moment estimator of the scale factor is

âM (
N

k
) = XN−k,NM

(1)
N (1− γ̂−). (9)

The authors in [26] show that provided k = k(N) → ∞ and
k
N → 0, as N → ∞, both γ̂M and âM are consistent estimators
and converge to γ and a(N

k ).
2) The Maximum Likelihood Estimator [28]: Given a set

of observations T r
1 , .., T

r
N , the maximum likelihood (ML) es-

timator aims to determine which parameters of the extreme
distribution make the observed data most likely to occur. We

next summarize the work in [28], which provides an equivalent
method of approximating Eq. (2).

Denote the upper endpoint of F by t∗ = sup{t : F (t) <
1} ≤ ∞ and, for s < t∗, let Fs(t) be the conditional
distribution function of T r

n − s given T r
n > s. More precisely,

Fs(t) = P (T r
n ≤ t+ s|T r

n > s) =
F (s+ t)− F (s)

1− F (s)
, (10)

for s < t∗, t > 0 and 1− F (s) > 0.
Then, (based on [28] and the citations therein) there exists a

normalizing function a(s) > 0 such that

lim
s→t∗

sup
0<t<t∗−s

∣∣∣∣Fs(t)−Hγ(
t

a(s)
)

∣∣∣∣ = 0, (11)

if and only if F is in the maximum domain of attraction of
Gγ(t), and Hγ(t) is the generalized Pareto distribution function

Hγ(t) = 1− (1 + γt)−
1
γ . (12)

Eq. (11) shows that the distribution of an applicable ran-
dom variable T − s given T > s converges to a gen-
eralized Pareto distribution Hγ(t), as s → t∗. This sug-
gests that, given a set of order statistics of random variables
T r
1,N , .., T r

N,N , the distribution of the set of random variables{
(T r

N−k+i,N − T r
N−k,N )|i = 1 . . . k

}
given T r

N−k,N , can be
approximated by the distribution of an ordered sample of k i.i.d.
random variables with CDF Hγ(

t
a(s) ), where s = T r

N−k,N .
Given k observations (T r

N−k+1,N − T r
N−k,N ), .., (T r

N,N −
T r
N−k,N), we may thus obtain an approximative likeli-

hood function,
∑k

i=1 log hγ,a(s)(T
r
N−i+1,N − T r

N−k,N ), where

hγ,a(s)(t) =
∂Hγ (t/a(s))

∂t is the PDF (Probability Density
Function) of Hγ(

t
a(s) ).

In order to obtain the estimation that maximizes the like-
lihood, one can set the partial derivatives of the likelihood
function with respect to the extreme value index γ and the scale
function a(s) to zero. Therefore, the resulting likelihood system
of equations in terms of the excesses T r

N−i+1,N − T r
N−k,N ,

i = 1, .., k are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
i=1

1

γ2
log

(
1 +

γ

a(Nk )
(T r

N−i+1,N − T r
N−k,N )

)

−
k∑

i=1

(
1

γ
+ 1

) 1
a(N

k )
(T r

N−i+1,N − T r
N−k,N )

1 + γ
a(N

k )
(T r

N−i+1,N − T r
N−k,N)

= 0,

k∑
i=1

(
1

γ
+ 1

) γ
a(N

k )
(T r

N−i+1,N − T r
N−k,N)

1 + γ
a(N

k )
(T r

N−i+1,N − T r
N−k,N )

= k.

(13)

There are only two unknown variables in Eq. (13), which
are γ and a(Nk ), and their solutions are the ML estimators
for extreme value index and scale factor, denoted γ̂MLE and
âMLE(

N
k ) respectively. Discussions on obtaining the solutions

of Eq. (13) numerically can be found in [29].
Under certain technical conditions [28], for k =

o(log2 N) → ∞ and N → ∞, γ̂MLE and âMLE are shown to
asymptotically converge to the actual values, γ and a( N

k ).



Remarks:
1) Both the moment and ML estimators need only the largest

k + 1 order statistics (of N samples) to estimate γ and a(Nk ),
a significant source of savings for our protocols.

2) According to [11], different choices of the intermediate
number k result in different estimation variances. Discussion on
tuning the parameters of the estimators is beyond the scope of
this paper due to space constraints, and we refer the interested
reader to our technical report in [30].

3) It is possible to use the EVT estimators to collect data from
multiple realizations (pages) to improve the estimation quality.
However, we show that the estimation has small variance (see
Section VI) even if the collection is restricted to one realization.

V. BROADCASTING PROTOCOLS WITH LIMITED

FEEDBACKS

In practical applications, one of the crucial steps to start the
estimation is to collect sample data, which is referred to the
learning phase in this paper. The estimation will then be used
to determine the required redundancy for the remaining pages,
which are distributed in the transmission phase of our protocols.

In the learning phase, the source disseminates the first page
to the network and then collects individual completion times
(T r

ns) from the receivers. Upon collecting enough responses,
the source estimates δ-reliable volume using either the moment
estimator based on Eq. (8) and Eq. (9), or the ML estimator
based on Eq. (13). The estimate of tδ is used to determine how
many packets to transmit in the transmission phase.

It is important to minimize the communication overhead
of our protocol (in terms of the duration and the number of
feedbacks) in order to maintain scalability, especially when
there are a large number of receivers. We propose two methods
for managing this overhead - Random Sampling (RS) and Full
Sampling with Limited Feedback (FSLF).

A. Random Sampling

1) Learning Phase: In our first approach, Random Sampling,
the source restricts the amount of feedbacks by only collecting
completion times from a small set (N ′) of receivers chosen
uniformly at random among N receivers, where N ′ ≤ N .

In order to collect feedbacks from N ′ random receivers, the
source attaches a random seed to the first page, and then en-
codes and transmits packets as usual. The common seed is used
by all receivers to generate the same set of N ′ pseudo-random
integers uniformly distributed on [1 . . .N ]. Only receivers with
IDs within this common set send their completion time back
to the source. The source continues to send packets until it
receives N ′ feedbacks. It then uses the feedbacks to estimate tδ.
In practice, the feedback channel itself may be faulty, in which
case one may designate some smaller threshold of feedback
packets that must be received before attempting estimation.

As discussed in Section IV, to quantify tδ, one can either
estimate the δ-quantile of Pr{Tr ≤ t} = FN (t), or estimate
the τ -quantile, τ = δ

1
N of Pr{T n

r ≤ t} = F (t). In our
case, we will estimate the τ -quantile, since the source collects
completion times T r

n during the dissemination process.

According to Eq. (5), with N ′ data samples, T r
1,N ′, .., T r

N ′,N ′ ,
the source first sorts the data and then obtains the number of
transmissions required using following estimator:

T̂RS(δ) = Û

(
N ′

k

)
+ â

(
N ′

k

) ( 1

1−δ
1
N

· k
N ′

)γ̂

− 1

γ̂
. (14)

The result will be one of two different δ-reliable volume
estimators, T̂M

RS(δ) corresponding the moment estimator or
T̂MLE
RS (δ), corresponding to the ML estimator.
We will show through simulation in Section VI-A that

randomly choosing N ′ = 50 out of N = 104 receivers is
sufficient to achieve good estimation.

2) Transmission Phase: The source first broadcasts data
packets as estimated in the learning phase. Receivers that cannot
recover the page, sense the channel and, if no other request is
overheard first, reply to the source with a request for additional
data packets. The source transmits 2i−1η additional packets in
the i-th round of its transmissions, where η is an integer. This
multiplicative factor is important in reducing the number of
requests, and our simulations show that it does not typically
result in transmission of unnecessary data packets. If there is
no request for a predefined length of time T report, the source
moves on to the next page. In our sensor-mote implementation
(Section VII), we used η = 1 and Treport = 500 (ms).

B. Full Sampling with Limited Feedbacks

A simple way to improve the quality of estimations using the
RS is to collect more feedbacks, e.g., increasing N ′ towards
N . However, this approach does not scale as the number of
receivers N becomes large and may cause feedback implosion,
precisely the problem we try to avoid in the first place.

By exploiting the inherent properties of the EVT estimators,
we devise here a sampling approach called Full Sampling
with Limited Feedbacks which is able to essentially collect
completion times from all receivers, with almost fixed amount
of feedbacks. Consequently, an appealing property of FSLF is
that, given a fixed amount of feedbacks, the estimators become
more accurate when the network has more receivers, since the
source collects more useful data samples.

FSLF exploits the fact that the EVT estimators only need
the k + 1 (recalled k is the intermediate number) largest
order statistics T r

N−k,N , T r
N−k+1,N , .., T r

N,N , as inputs for the
estimation. Therefore, if the sorting process can be performed
before the collecting process, and the source only collects the
k+1 largest individual completion times from the network, then
this is equivalent to the case where the source collects all the
data, sorts them, and then use the k+1 largest order statistics as
inputs for the extreme estimators to quantify δ-reliable volume.

In order for the source to collect the k+1 largest completion
times, we assign higher priority to the receivers with larger
completion times in sending feedbacks. This is achieved as
follow. The source transmits the first page using the RS method.
Ideally, after the page is successfully disseminated, all receivers
know the network completion time T r = max

n=1,..N
T r
n . Each



receiver then sets a random timer with length inversely propor-
tional to the difference between its own completion time T r

n

and the network completion time T r. Before the timer expires,
each receiver records the number of overheard feedbacks with
completion time larger than or equal to its own. When the timer
expires, a receiver reports its own completion time T r

n if less
than k + 1 feedbacks are recorded, or suppress it otherwise.

The timer of each receiver is set as follows. Recall Treport

is the time allowed for receivers to report the feedbacks. We
set the length of the timer to be a random variable uniformly
distributed in the interval between Treport

T r−M+1 (T
r − T r

n) and
Treport

T r−M+1 (T
r − T r

n + 1). Therefore, a receiver with larger
individual completion time T r

n will report its time sooner. After
waiting for Treport of time, the source then estimates δ-reliable
volume with the k + 1 largest order statistics.

In practice, each receiver may not necessarily know the
network completion time and the source may not be able to
collect all k+1 largest completion times, due to lossy channels.
We let each receiver consider the time when overhearing the
last data packets as the network completion time, and use it in
lieu of T r. In the case where the source collects k ′ (k′ < k+1)
feedbacks, the source will underestimate tδ since it considers
the k′ feedbacks as the largest k ′ completion times. However,
recall the source already has an estimation from RS when
sending the first page. Therefore, it can compare both estimates
and keep the larger one.

The estimators for FSLF are slightly different from RS. With
FSLF, although the source collects only k+1 completion times,
it is equivalent to the case where it collects the completion times
from all the receivers, sorts them and then use the k+1 largest
order statistics as inputs for the extreme estimators. Thus, the
sample size for FSLF is N . One can first create N data by
setting the k+1 largest ones to the samples collected, and the
rest to zero, then obtain the estimation of tδ as following,

T̂FSLF (δ) = Û(
N

k
) + â(

N

k
)
( 1

1−δ
1
N

· k
N )γ̂ − 1

γ̂
. (15)

We again have two different δ-reliable volume estimators,
T̂M
FSLF (δ) and T̂MLE

FSLF (δ), depending on the estimators used
(moment or ML). After the estimation, the system enters the
transmission phase and behaves the same way as described in
the RS method.

In summary, an importantly property of FSLF is that given
the same amount of feedbacks, it achieves higher accuracy as
the number of the receivers becomes larger. FSLF helps to
mitigate the problem of feedback implosion in the learning
phase, as it restricts the number of feedbacks to be close to k+1.
Therefore, thanks to its scalability and increasing accuracy, this
approach is ideal for broadcasting in dense networks.

C. Overhead Analysis of Extreme Value Estimators

We next summarize the overhead of the EVT estimators and
compare it with that of classical approaches. We look at the
number of feedbacks needed for the estimation as well as the
number of pages, which corresponds to the time needed.

According to the discussion in Section IV-A, to estimate tδ,
a classical estimator needs to know the completion time of 1

1−δ
pages to get a valid estimation. Therefore, the learning phase
of classical estimators requires the transmission of at least 1

1−δ
pages and the collection of the completion time for each page.

For EVT estimators, the learning phase for both RS and
FSLF requires the transmission of only one page to estimate t δ.
During the learning phase of RS, only N ′ receivers report their
completion times. Therefore the number of feedbacks needed
for RS estimation is N ′. In the learning phase of FSLF, the
source transmits the first page using RS, and then collects
the k + 1 largest completion times. Therefore, the number of
feedbacks needed for FSLF is N ′ + k + 1.

Note that these comparisons are for the best case of all
estimators. In practice, the difference between them can be even
larger as shown by our simulations and experiments.

VI. NUMERICAL RESULTS

A. Performance of Extreme Value Estimators

We first investigate the overhead and accuracy of the EVT
estimators proposed in Section V in the learning phase, as well
as the benefit of applying the estimation to the transmission
phase, in terms of reducing feedback requests and maintaining
the minimum required δ-reliable volume, tδ, where δ = 99%.

In this simulation, a two-page file is disseminated to N
(ranging from 102 to 104) receivers. Each page consists of
M = 1000 packets. For receiver n, the corresponding packet
loss rate pn, unknown to the source, is a uniformly distributed
random variable in the range [0, 0.2]. The δ-reliable volume
estimations are obtained from Eq. (14) and Eq. (15) for RS and
FSLF, respectively. The extreme value index and scale factor
are estimated by the moment estimator (Eq. (8) and Eq. (9)),
and the ML estimator (by solving Eq. (13) using Matlab).

For RS, the source collects feedbacks from N ′ = 50 random
receivers. The intermediate number is k = 20. Since the
solution of the system of equations for the ML estimator yields
complex solutions when N ′ is small (similar issue is reported
in [11]), we omit the ML estimation here. For FSLF, the value
of k for the moment estimator and the ML estimator is set to 20
and 50, respectively. The results shown in the following figures
represent an average over 1000 iterations.

Fig. 2(a) shows that the overhead of the estimators (i.e.,
the number of packets collected for the estimation) marginally
increases as the number of receivers N grows. As discussed in
Section V-C, the smallest possible overhead for RS and FSLF to
perform estimation is N ′ and N ′+k+1 feedbacks, respectively.
The result shows that the overhead for both estimators is close
to minimum and remains almost a constant as the number of
receivers increases. Note that the overhead of FSLF is slightly
higher than RS, since FSLF needs to collect the k + 1 largest
completion times at the end of the learning phase. Next we will
show that this extra communication cost trades off with higher
accuracy in estimating the δ-reliable volume.

Fig. 2(b) shows the accuracy of the estimators by comparing
the estimations with the empirical quantile. The empirical quan-
tile is obtained from the classical quantile estimator in Eq. (1)
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Fig. 2. Performance of EVT estimators. (a) Learning phase: the overhead of quantile estimation, (b) Learning phase: the accuracy of the estimators, (c)
Transmission phase: the amount of feedback, (d) Transmission phase: the ratio of extra packets sent to the minimum packets needed.

by running 105 identical iterations, bringing this estimate close
to the actual value. The accuracy of the RS approach decreases
as the number of receivers increases. Recall that estimating δ-
quantile, tδ, of FN (t) is equivalent to estimating the τ -quantile,
t′τ , τ = δ

1
N of F (t) (see Section IV). Therefore, increasing the

number of receivers requires greater extrapolation to estimate
higher quantiles. Since RS fixes the number of feedbacks to
N ′ = 50, its accuracy thus decreases.

On the other hand, the accuracy of FSLF-based estimators
improves as the number of receivers grows, because the source
collects more useful data with increasing N . Correspondingly,
the EVT estimates converge to the actual value as N → ∞.
Further, the overhead of FSLF barely increases as N grows, as
shown in Fig. 2(a), confirming the scalability of FSLF.

Next, we study the benefit of applying the estimation in
reducing control traffic during the transmission phase. We
record (1), the number of feedback requests and (2), the extra
number of data packets transmitted compared to a pure ARQ
scheme, where the source only transmits when requested and
so the number of data packets transmitted is minimum.

Fig. 2(c) shows the average number of feedbacks for encoded
packets during the transmission phase. While transmitting a
page with M = 1000 packets to N = 104 receivers using RS
with moment estimator, the average number of requests is only
1.2 per page. It even decreases when using FSLF, 0.19 for the
moment estimator and 0.04 for the ML estimator. Therefore, in
almost all cases, receivers recover the page using the initially
estimated δ-reliable volume without using feedbacks.

Fig. 2(d) shows that the moment estimator using both RS and
FSLF overestimates the required redundancy by only 4% (of the
total number of packets transmitted). In the ML estimator, the
overestimate is relatively large when the number of receivers
is small, but decreases to a reasonable level for larger N .

Based on the above simulations, we believe that FLSF
using the moment estimator provides the best trade-off along
all dimensions of interest (high estimation accuracy and low
number of feedbacks). RS using the moment estimator is
accurate when the number of receivers is small. However, the
amount of feedbacks required needs to grow with increasing
N to maintain accurate estimation. Both protocols drastically
reduce receiver(s)-to-sender traffic and incur only marginal
extra communication due to overestimating tδ.

B. Small Network and Non-i.i.d. Scenarios

Here we evaluate the estimators under a non-typical EVT
scenario, i.e., a network with small number of receivers that
have non-i.i.d. packet loss rates. We consider a two state burst
channel model in Fig. 3(a). When the receivers are in a good
channel state their packet loss rates are heterogeneous random
variables uniformly distributed in the range [0, 0.2]. When there
is error-burst (with probability PG,B = 0.2), the channel will
switch to the bad state, wherein the packet loss of each receiver
is uniformly distributed in the range [0.6, 0.8]. The channel may
switch back to the good state with probability PB,G = 0.5
during a subsequent time slot.

Similar to previous simulations, the source first transmits one
page, collects feedbacks, and estimates tδ. It then transmits the
next pages based on the estimate. The parameters are as follows,
M = 50, N ranging from 20 to 60, N ′ = 20, k = 10, and
δ = 95%. The results in Fig. 3(b) and Fig. 3(c) demonstrate
that for these scenarios, the estimators still significantly reduce
feedbacks from the receivers. The extra communication due to
overestimating the δ reliable volume is slightly larger than in
i.i.d. packet loss scenarios, but it is reasonable.

VII. PROTOTYPE IMPLEMENTATION

In this section, we enhance an over-the-air programming pro-
tocol for wireless sensor networks using the proposed extreme
value techniques. Our modifications are based on the Rateless
Deluge over-the-air programming protocol [4], which uses
random linear codes for efficient file distribution to wireless
sensors. The performance of both protocols is compared using
our Tmote sky [12] testbed as well as through the TOSSIM
bit-level network simulator [13].

A. Setup

In our setup a file is divided into pages consisting of twenty
23-byte packets each. The packet loss rate of each receiver is a
uniform random variable in the range [0.1, 0.2]. All sensors are
within communication range and transmit at their highest power
setting to ensure a good link, and packet loss at the receiver is
forced by dropping packets uniformly at random according to
its own packet loss rate. All results in this section represent an
average of 10 independent trials.

A sensor requests encoded packets from the sender if it
discovers that its neighbors have new data. The request message
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Fig. 3. Extreme value estimators for network with small number of receivers with non-i.i.d. packet loss rates. (a) Two state burst channel model, (b) The
amount of feedback, (c) The amount of extra data communication.

Fig. 4. Tmote Sky sensors testbed with 14 motes.

Fig. 5. Rateless Deluge vs. EV-QE Deluge: 20 pages, N = 12, M = 20,
heterogeneous packet loss.

specifies the page number and the number of packets needed.
When a sensor receives enough packets, it can decode the page
successfully. A sensor suppresses its request if it has overheard
similar requests by other sensors recently.

Here, we augment the original Rateless Deluge with the
extreme value quantile estimation technique, and refer to the
new protocol as EV-QE Deluge. To ensure a fair comparison,
minimal modifications are made to Rateless Deluge. EV-QE
Deluge operates in the same manner as Rateless Deluge when
disseminating the first page, referred to the learning phase in
Section V. The source then uses the RS approach to collect N ′

random feedbacks from the receivers and estimate the δ-reliable
volume corresponding to success probability δ = 0.95.

In the transmission phase, the source initially disseminates
a page based on the estimated δ-reliable volume. After that,
it waits for a certain amount of time (Treport = 512 (ms)).
In case a receiver requests more encoded packets in this time,
the requested encoded packets are transmitted. Otherwise the
source continues to send the next page.

B. Tmote Sky Sensor Testbed

The performance of EV-QE Deluge and the original Rateless
Deluge is first evaluated on a testbed consisting of 14 Tmote
Sky sensors. One sensor serves as the file-sending base station

and 12 other sensors are receivers. The last sensor is used to
record network traffic.

The size of the file is 8,518 bytes, which corresponds to 20
pages using Rateless Deluge and EV-QE Deluge. We monitor
the network traffic due to the encoded packets transmitted and
due to the encoded packet requests. We also record the overall
completion time of disseminating the file. Since the number of
receivers here is small (12 sensor motes), we have the source
collect the feedbacks from every receiver after disseminating
the first page. Namely, N ′ = N = 12 in the first experiment.
The intermediate number k is set to 5.

The results in Fig. 5 show that EV-QE Deluge sends out
slightly more encoded packets (about 6%). However, it drasti-
cally reduces the amount of feedbacks, which is only 17.3 on
average. Note that this number includes the overhead messages
in the learning phase for the estimation of tδ, which is 12, as
well as the request messages when the source transmits the
first page using the original Rateless Deluge, which is 3.9 on
average, as shown in Fig. 5. Therefore, with EV-QE Deluge,
in the transmission phase, the average number of feedbacks is
about 1.4 for 19 pages in total, indicating that most of the time
the entire network finishes receiving enough packets after the
source’s first set of transmissions for each page. Being able to
accurately estimate tδ, EV-QE Deluge effectively reduces the
overall data dissemination time by about 30%.

C. Large Scale Network Simulation with TOSSIM

We next compare the performance of both protocols in
TOSSIM for a larger scale experiment. The energy consumption
(due to CPU and Radio) for both protocols are also monitored
through PowerTOSSIM [31]. The parameters for the RS method
are set to N ′ = 30, k = 20.

The simulation results for varying number of receivers N ,
are shown in Fig. 6(a), 6(b) and 6(c). As expected, the number
of data packets sent out by EV-QE Deluge is slightly higher
than Rateless Deluge. However, as N increases, the number of
feedbacks of EV-QE Deluge remains almost constant at about
50, including the N ′ = 30 initial feedbacks for the source to
estimate δ-reliable volume. On the other hand, the number of
feedbacks of Rateless Deluge increases with N . By reducing
the control overhead, EV-QE Deluge is able to effectively
reduce the overall completion time and energy consumption per
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Fig. 6. Rateless Deluge vs. EV-QE Deluge, TOSSIM simulation: 9 pages, M = 20, heterogeneous packet loss, varying the number of receivers N . (a) Total
packets transmitted: forward and feedback channels, (b) Completion time, (c) Average energy consumption per receiver.

receiver by about 30%, as shown in Fig. 6(b), and Fig. 6(c).

VIII. CONCLUDING REMARKS

In this paper, we propose novel, on-line prediction mechanisms
for FEC-coded data dissemination in wireless networks with
heterogenous packet loss probabilities. Our mechanisms, based
on the (asymptotically exact) moment and ML estimators in
extreme value theory, offer major scalability benefits because
(1) estimation of per-receiver packet loss probabilities is not
required; (2) the number of feedbacks used to estimate redun-
dancy is nearly constant; (3) accuracy improves with growth in
the number of receivers.

We introduce two new protocols, RS and FSLF, for wireless
data broadcasting. Our simulation results show that the FSLF
protocol, in conjunction with the moment estimator, provides
a good trade-off between the number of feedbacks used to
estimate redundancy, the redundancy transmitted, and the num-
ber of extra encoded packet transmission requests. Further, we
verify that our approach provides reasonable performance even
when the assumptions of i.i.d. packet loss probability and large
number of receivers are relaxed.

We demonstrate practical feasibility of our proposed ap-
proach by integrating RS into the Rateless Deluge OAP protocol
on a testbed of T-sky sensor motes. Our experimental and
simulation results indicate a 30% reduction in latency and
energy consumption, an improvement of particular significance
for battery-limited wireless devices.
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