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Abstract—The plethora of Internet of Things (IoT) protocols
and the upcoming availability of new spectrum bands for
wirelessly connected devices have made software-defined radio
(SDR) technology increasingly useful to interact with radio-
based communication. While SDR-based tools have grown in
popularity in recent years due to their flexibility and adapt-
ability towards new protocols, SDR software interfaces remain
highly complex and technical, and inherently require special-
ized skillsets in digital signal processing (DSP) to operate. To
address this problem, we present Snout, an SDR middleware
platform that encapsulates and abstracts much of the current
complexity in SDR toolchains. This allows SDR developers to
create wireless networking applications usable by a wide range
of users. For instance, network security professionals can monitor
the IoT landscape across multiple protocols without needing
to interact with the underlying software-defined DSP. Snout
implements interfaces with common network analysis tools to
allow for integration with traditional network security solutions,
facilitating use cases such as traffic analysis or rogue device
detection. Its software architecture enables scalability in terms of
protocols and processing by modularizing the signal processing
pipeline. To demonstrate Snout’s capabilities, we show how it
can encapsulate GNU Radio flowgraphs, facilitate simultaneous
multi-protocol scanning, and convert existing SDR-based protocol
implementations into fully contained applications. We further
demonstrate how Snout can handle GNU Radio flowgraphs
with other signal processing software simultaneously. Through
extensive experiments, we demonstrate that Snout incurs limited
CPU performance overhead below 4% and a memory footprint
below 100MB, and handles large amounts of events with sub-
millisecond latency.

Index Terms—software-defined radio, GNU Radio, middle-
ware, wireless devices

I. INTRODUCTION

Software-defined radio (SDR) technology has become in-
creasingly accessible from both cost and signal processing
perspectives, thanks to open-source, community-based SDR
frameworks, such as GNU Radio [1], [2], and a large ecosys-
tem of hardware platforms (such as RTL-SDR [3], Ettus
USRP [4], HackRF One [5], LimeSDR [6], and BladeRF [7]).
However, end users of a typical SDR application need to be
skilled in digital signal processing (DSP) to be able to process
raw signal data.

While GNU Radio is the most popular open-source SDR
framework, it is notoriously complicated and hard to develop
for [8, p. 59]. GNU Radio provides a block-based “flowgraph”
model for interacting with signals received and transmitted
by SDR software, which requires the end user to be able

J Becker and D Starobinski are with the Department of Electrical and
Computer Engineering at Boston University, Boston, MA.
Contact: {jkbecker,staro}@bu.edu

to understand and manage flowgraph blocks in the low-
level signal processing pipeline, such as managing bitrate and
bandwidth settings or configuring discrete filters and signal
demodulation algorithms, which are skillsets that are hard
and span a huge number of areas [9]. This limits its use to
users with advanced, niche technical skills, and prevents large
groups of potential users who could benefit from an SDR-
based toolbox, but lack the technical experience, from using
it.

There is a lack of middleware that abstracts the low-level
complexity of signal processing and SDR-specific knowledge
away from the user, while still allowing the user to configure
the underlying functionality in a more user-centric way, e.g.,
by selecting a Zigbee channel on which to scan for devices,
rather than to require detailed knowledge of the technical
implementation of the flowgraph that handles the protocol.

In this work, we propose a middleware framework, coined
Snout, to bridge this gap. Snout provides an abstraction
layer decoupling user interaction from low-level receivers and
transmitters implemented in GNU Radio flowgraphs or other
signal processing code. Snout provides a simple description
language that lets users configure and operate SDR-based
scanning capabilities without the need for deep signal pro-
cessing knowledge. Snout further allows for composability
of flowgraph-based capabilities, i.e. executing receivers for
multiple communication protocols in parallel, which is usually
non-trivial and requires advanced knowledge in both signal
processing and proficiency in the GNU Radio flowgraph editor.
As a result, Snout allows SDR developers to create applica-
tions that are usable by non-experts, and that interface with
non-SDR software in a flexible way, while still benefiting from
the advantages of the underlying SDR platform. Ensuring that
the performance of the underlying, computationally intensive
system is not impacted by such a middleware layer is a
key challenge, which our work addresses and validates via
extensive testing.

The contributions of this work are as follows:
1) We present a middleware architecture, Snout, that en-

capsulates the complexity of GNU Radio.
2) We develop an extensible interface that allows for third

party plugins to extend functionality.
3) We introduce a configuration language for control and

instrumentation of SDRs via Snout.
4) We develop a standardized communication architecture

that allows data exchange between Snout, the underlying
SDR platform, and other systems (such as databases or
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Fig. 1. A typical SDR setup consisting of a host computer, an SDR device
connected via USB, communicating with wireless devices (adapted from [10]).

third-party analysis tools) via established communica-
tion libraries.

5) We introduce four case studies that showcase applica-
tions of Snout for popular IoT protocols.

6) We thoroughly evaluate and characterize the perfor-
mance overhead of Snout in terms of CPU and memory
usage compared to running bare low-level signal pro-
cessing code, and benchmark the performance of the
underlying message-passing system.

The rest of this paper is structured as follows: Section II
introduces existing software radio frameworks and expands on
the underlying technologies that are most relevant to Snout.
Section III discusses related works. Section IV describes
the middleware architecture and its design considerations.
Section V introduces case studies to demonstrate Snout and
measure its performance. Section VI summarizes our findings
and discusses avenues for future work.

II. BACKGROUND

This section introduces general software-defined radio ter-
minology, surveys major software radio frameworks, expands
on the GNU Radio framework in particular, and explains the
basics of ZeroMQ-based messaging.

A. Software-defined radio terminology

While software-defined radio systems can be implemented
using a plethora of different hardware and software platforms,
there are generic components that make up a typical SDR
setup in the way it is presumed in this work. A typical setup
consists of a host computer and one or more SDR devices, or
radios.

The host computer runs hardware-specific drivers to com-
municate with its radio, typically via USB or Ethernet (see
Figure 1). These drivers may be proprietary or open-source,
and may apply to a range of radios that share a common
architecture, or be specific to one particular type of radio.

SDR devices consist of a radio front-end (i.e. the circuitry
handling the analog radio frequency (RF) signals received
by and transmitted via its antennae), analog-to-digital (and
vice versa) converters (ADC/DAC), and a variable number of
additional digital signal processing components. SDR hard-
ware [3]–[7] is available in a wide range of capabilities, and
is typically characterized by its frequency range, the number
of transceivers, maximum instantaneous bandwidth (i.e., the
widest-possible RF signal it can capture from the spectrum),
the sample size (i.e., the bit-resolution of the ADC/DAC), and

their communication interface to the host computer, as well as
additional optional features such as field-programmable gate
array (FPGA) chips.

In a simple configuration, most of the digital signal pro-
cessing for handling arbitrary radio protocols is developed in
software, which is executed on the host computer, in which
case the data transmitted between the SDR and the host
computer is a stream of quadrature (complex) signal samples.
In more capable (and expensive) systems, parts of the signal
processing can be implemented in the SDR’s FPGA chip,
which offloads computational load from the host computer’s
CPU and reduces the load on the data connection between
the host and the SDR. This enables more advanced and
high-throughput protocols, such as Wi-Fi [11], LTE [12], and
5G [13].

The Snout middleware executes on the host computer and
supports a large number of SDR platforms, as discussed in
Section IV-A, and crucially, does not limit or interfere with
the performance considerations and design trade-offs discussed
above.

B. Software radio ecosystem
a) Software radio frameworks.: There exist several pop-

ular software radio frameworks that let users develop any
kind of digital signal processing capabilities and/or compose
new functionality from existing building blocks. The Math-
Works Communication Toolbox is a commercial solution for
“analysis, design, end-to-end simulation, and verification of
communications systems” [14]. It supports numerous wireless
protocols and a range of common SDR platforms. Similarly,
National Instruments’ LabVIEW SDR Lab [15] is a power-
ful SDR-based development framework for USRP (Univer-
sal Software Radio Peripheral) SDR devices. However, the
costs associated with their commercial licensing makes these
frameworks inaccessible for a large number of potential users
of SDR technology. In contrast, SDR frameworks such as
GNU Radio [1], [2], [16], Pothosware [17] and the underlying
SoapySDR framework [18], RedHawk SDR [19] or LuaRa-
dio [20] enable building powerful SDR applications based on
open-source code.

While each of these frameworks has slightly different
hardware support and functionality, they all share a common
model of using composable data flowgraphs to model signal
processing functionality, and then compiling the flowgraph
representation into some executable code that can be run with
a number of SDR hardware platforms.

b) General-purpose DSP-based SDR software: typically
implements a “waterfall-style” view of the raw signal data
in a graphical window, accompanied by a range of tools for
filtering, demodulating, analyzing, and processing the raw sig-
nal, either providing standalone implementations (e.g., QIRX
SDR [21]) or building on one of the aforementioned SDR
frameworks such as SoapySDR (e.g., CubicSDR [22], SigDig-
ger [23], and OpenWebRX [24]) or GNU Radio (e.g., Gqrx
SDR [25], ShinySDR [26], and Project sdrangelove [27]).
Some tools, such as SDRangel and OpenWebRX, offer web-
based user interfaces, which allow for distributed and remote
interaction with SDR data sources [24], [28].
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While many of these tools use one of the aforementioned
SDR frameworks to achieve compatibility with a range of
hardware platforms, other tools such as inspectrum [29] focus
entirely on signal analysis and only take raw sample files
as input, avoiding any direct dependency on SDR hardware
altogether, but sacrificing any real-time capabilities.

c) Special-purpose SDR software: exists for multiple
applications dealing with RF technology. Tools such as Sodi-
raSDR [30], Linrad [31], Studio1 [32], and HDSDR [33] focus
on AM/FM decoding and other Ham radio-specific function-
ality. QRadioLink [34] (based on GNU Radio) additionally
supports VoIP functionality. These tools have highly technical
interfaces that are aimed at amateur radio enthusiasts.

SDR-based wireless security monitoring software solutions
such as SCEPTRE [35] or Skylight [36] often go far beyond
simple signal decoding and offer feature detection, raw sig-
nal playback, supporting multi-antenna setups and advanced
database integration and monitoring of multiple wireless proto-
cols for surveillance purposes. While these tools are extremely
powerful, they are built on an opaque technology stack. They
are also inaccessible to large parts of the wireless community
due to their surveillance and defense-focused licensing. Even
more so than amateur-oriented SDR software, these tools
are geared towards highly skilled users with deep signal
processing and communications intelligence expertise.

C. GNU Radio

Of the aforementioned software radio frameworks, GNU
Radio [1], [2] is by far the platform with the largest developer
and user community. Its user interface and top-layer code
are implemented in Python, whereas the signal processing
is implemented in C++, which is made accessible to the
Python code via SWIG (until GNU Radio 3.8) and PyBind11
(since GNU Radio 3.9). GNU Radio allows users to develop
and install so-called out-of-tree (OOT) modules to extend its
functionality in arbitrary ways, and currently lists over 300
community-developed modules as installable “recipes” [37],
[38]. GNU Radio is compatible with a large range of
SDR devices using OOT modules such as gr-uhd [39],
gr-osmosdr, gr-iio, gr-soapy, and gr-limesdr1.

a) Anatomy of a GNU Radio flowgraph: As of GNU
Radio 3.8, flowgraph files are formatted in YAML [41],
and contain a textual description of all contained variables,
parameters, blocks as well as their connections. These files
are typically generated and edited using the GNU Radio
Companion flowgraph editor, and compiled to native Python
code via the GNU Radio Companion Compiler (grcc). The
resulting application can be run from within GNU Radio
Companion or executed as a stand-alone Python application.

Figure 2 shows the visual representation of a simple GNU
Radio flowgraph in GNU Radio Companion. In this flow-
graph, Bluetooth LE advertising signal data on channel 37
(at 2402MHz) is received from a USRP source block, pro-
cessed through multiple subsequent blocks until the resulting
bytestream of demodulated raw packet data is passed into a
ZeroMQ PUSH sink (see also Section IV-C).

1These modules are available via the list of official GNU Radio recipes [37].

Fig. 2. A simple GNU Radio flowgraph for receiving a Bluetooth LE (BLE)
signal (adapted from [40]).

GNU Radio flowgraphs can either be compiled to Python
code as a stand-alone application, or to a so-called hierarchical
block. This type of block does not compile to an application,
but instead compiles to a block that is available inside GNU
Radio Companion to connect with other components. This
allows for encapsulation of complex low-level processing into
sub-blocks to improve manageability of the overall flowgraph,
such as in the WiFi transceiver module of Bloessl et al. [42].

In addition to data processing blocks, which can be con-
nected to each other, Parameter and Variable blocks (see top of
Figure 2) can be used to store reused values in a central place,
or calculate flowgraph block parameters based on formulae
that depend on them. The key difference between the two is
that Parameters can be passed to the application as command-
line arguments, whereas variables are internal to the flowgraph.

b) Runtime communication with a GNU Radio flow-
graph: At runtime, interaction with a flowgraph is possible
in multiple ways. If the flowgraphs contain graphical user
interface (GUI) elements, such as sliders or numerical input
fields, their values will update the flowgraph in real-time.
When a flowgraph is run in command-line mode, variables
can be read out and changed using an XMLRPC Server2 or
ControlPort [43].

If more direct control over a flowgraph is desired, compiled
flowgraphs can be imported into other applications as regular
Python modules. Then, all methods for running and stopping,
as well as getter and setter methods for any variables or
parameters in the flowgraph are directly accessible via the top-
block class representing the flowgraph as a whole.

III. RELATED WORKS

In 2009, Li et al. [44] proposed an architecture for secure
software-defined radio, which comprises a secure radio mid-
dleware to protect SDR applications from unwanted reconfig-

2The XMLRPC Server is part of the core GNU Ra-
dio installation, available in the official repository [16] at
gr-blocks/grc/xmlrpc_server.block.yml.
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uration and the execution of malicious code. While this archi-
tecture is also based on GNU Radio, it otherwise builds on an
architecture that leverages virtual machine encapsulation and
focuses on enforcing certain security policies when executing
SDR code. While Snout can be used in the context of security
research in the context of wireless device security, it does not
focus on protecting the SDR code from a host-based threat,
and does not require virtualization-based encapsulation of its
runtime.

Shome et al. [45] presented a Software-Defined
Networking-oriented (SDN) framework for controlling
SDR-based hardware using a control plane and data plane
architecture and the OpenFlow protocol. While this framework
focuses on making SDR hardware interoperable with SDN
principles, our work focuses on the abstraction of protocol-
specific tools as well as multi-protocol scanning using SDR,
which are not covered in the work of Shome et al.

In 2017, Gawlowicz et al. [46] presented UniFlex, a wireless
network control framework that is able to abstract various
protocols and hardware adapters. UniFlex is geared toward
node control and management across multiple nodes using a
central broker-based abstraction layer. Our work is different
architecturally, as it implements more explicit and tighter
integration with GNU Radio flowgraph control. Snout is also
different in purpose, as it is more geared toward local control
of SDR equipment, rather than network management level
coordination between multiple nodes across a network.

Batista et al. [47] presented a middleware environment
for IoT, which ties together multiple wireless protocols,
applications, and cloud services. While their work focuses
on communication between individual wireless gateways and
the cloud, our work is complementary as it deals with the
complexity of software-based implementation of individual
wireless protocols as well as their abstraction and encapsula-
tion (i.e., at the gateway level rather than the fog/cloud level).
While the architecture proposed in [47] aims at improved
interoperability of IoT devices during the development phase
of IoT devices by providing common APIs and standardized
gateway layers, Snout focuses on reducing the complexity
and hardware required to dynamically access arbitrary IoT
protocols via SDR tools in an operational setting of existing
devices.

González-Barbone et al. [48], [49] proposed a method for
adding introspection and control to GNU Radio flowgraphs
by extending generic GNU Radio blocks via inheritance in
Python, thereby integrating finite state machines, as well as
event-based communication between blocks. This method is
limited to adding capabilities inside an existing flowgraph,
whereas Snout goes far beyond the flowgraph layer and only
integrates GNU Radio flowgraphs as components, without
requiring customized blocks inside the flowgraph files.

In 2020, Goldsmith et al. [50] presented a demonstrator for
a novel way of visualizing and controlling Radio Frequency
System on Chip (RFSoC) devices. This work focuses largely
on FPGA development inside the RFSoC architecture and the
Python-based PYNQ framework used to interact with it, as
well as a JupyterLab-based visualization. As such, our work
has low direct overlap and could potentially have comple-

mentary character, as it focuses on the creation of a general
purpose, protocol-agnostic abstraction layer between existing
low-layer SDR frameworks and application layer software.

In 2021, Zubow et al. [51] introduced the GrGym mid-
dleware that instruments GNU Radio flowgraphs in order
to make their internal state accessible for machine learning
problems. GrGym demonstrates that instrumentation of GNU
Radio flowgraphs using ZeroMQ can be achieved efficiently,
performing well even in distributed settings with fairly slow
network connectivity. GrGym differs from Snout in that it
instrumentalizes GNU Radio flowgraphs by adding specific
observation and machine learning-specific blocks to the flow-
graph, whereas Snout integrates modularized flowgraph frag-
ments into its higher-level codebase by using hierarchical
blocks (see Section 6). Furthermore, GrGym is a middleware
with a focus on OpenAI Gym instrumentation of GNU Radio
flowgraphs, whereas Snout’s architecture allows for generic
integration with various existing frameworks via its API.

A preliminary version of this work was presented as a
poster in [52], which demonstrated scanning IoT protocols
such as Bluetooth LE and Zigbee via a common command-
line application. The Snout middleware builds on this work by
a fundamentally different, and more flexible ZeroMQ-based
approach to data flow handling between GNU Radio compo-
nents and user-facing application layers, and a clear software
architecture definition with decoupled interfaces between the
hardware support layers and client applications. Furthermore,
this work emphasizes modularity and supports multi-protocol
configurations or even multiple SDR frameworks in the same
runtime (e.g., mixing GNU Radio component with other signal
processing software, see Section V-D).

IV. SOFTWARE ARCHITECTURE

In this section, we describe the software architecture of the
Snout frameworks, from a module, data flow, and configuration
perspective.

A. Module architecture

The Snout software architecture is layered as a middleware,
which serves one or more clients via a standardized API,
abstracting away the complexity of underlying processes, such
as GNU Radio flowgraphs, custom SDR tools, or other arbi-
trary processes. Figure 3 visualizes the module hierarchy of
the software architecture, building up from different hardware
components and their respective drivers to different layers of
the proposed middleware. The API module defines both the
communication protocol (see Section IV-C) as well as a set of
base classes that all other components of the software inherit
from in a generic way that enables plugin-based integration
of third-party variants, which extend its functionality (see
Section IV-E). Execution of individual commands, such as
running, stopping, or changing parameters of a GNU Radio
flowgraph, is managed in a Runtime module, which can
be configured using a text-based description language (see
Section IV-D).

Inside the Runtime module, task execution is handled by
one or more Instruments, which are standardized wrappers
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Fig. 3. The Snout module architecture showing the module hierarchy of
different components in the system. Note, that arrows indicate composition
rather than communication paths. Lower layers support the GNU Radio
runtime (pictured in orange) or any other radio protocol implementations
supported by the host operating system.

around any kind of sub-process. In their most basic form,
Instruments can run arbitrary commands as a shell command
and interact with them via stdin, as well as collect their
stdout and stderr streams. More elaborate Instrument
variants may have specialized ways of interacting with the API
of specific applications, e.g., GNU Radio, or protocol-specific
software/hardware stacks like srsRAN for LTE / 5G [53].

GNU Radio flowgraphs compile to an executable Python
script that implements a so-called “Top Block”, which is a
data structure in which all elements of the flowgraph are stored
and controlled. As Snout is Python-based, implementing direct
control over GNU Radio flowgraphs can be achieved without
the need of the aforementioned control via shell commands.
Instead, the GNU Radio Handler class instantiates a GNU
Radio top_block class, as well as the GNU Radio blocks
for interacting with the SDR hardware (e.g., the uhd_rx and
uhd_tx blocks from the gr-uhd [39] module for USRP
devices). Then, it imports the desired SDR functionality as a
hierarchical block and dynamically assembles a GNU Radio
flowgraph that can be controlled from the parent GNU Radio
Handler (and subsequently, its parent Instrument class). This
is further illustrated in Section V-A. While the GNU Radio
Handler is of central importance to Snout as a middleware
for controlling GNU Radio flowgraphs, it should be noted
that other SDR subsystems, such as the other software radio
frameworks mentioned in Section II-B, could be supported
by developing a suitable handler class, and by changing the
hardware abstraction subsystem (see Section IV-B).

Data received by Instruments from their child processes can
be passed into a Pipeline module (see Section IV-C). This
allows for heavy processing to occur outside of the GNU Radio
flowgraph, which typically is tightly real-time constrained. The
Pipeline consists of a series of processing Stages, each of
which run their own worker process. Each worker process

Fig. 4. A Design Structure Matrix (DSM) indicating the ways different
architecture components of Snout communicate with each other. Subsystem
(a) represents the hardware abstraction layer implemented for GNU Radio
[2], (b) represents the Snout middleware environment, and (c) represents the
client application layer.

receives data to work on, performs its task and passes the
processed data on to the next Stage.

Finally, a Model class allows for the collection of Message
and Device information in a way that allows for Instruments or
Pipeline Stages to use traffic analysis statistics (such as device
uptime, number of message received per device, etc.) as input
to logic gates or processing algorithms.

B. Modular decoupling

A Design Structure Matrix (DSM) is a modeling tool “used
to represent the elements comprising a system and their inter-
action, thereby highlighting the system’s architecture” [54]. It
can be interpreted as an adjacency matrix of system compo-
nents, in which matrix elements represent (directed) interac-
tions or dependencies between them. Figure 4 shows a DSM
of the Snout framework’s main components3. Decomposing
Snout in this way helps to visualize its decomposition into
multiple subsystems.

a) GNU Radio & hardware abstraction: The red box
labeled (a) in Figure 4 represents the low-layer interactions
between the GNU Radio runtime, the SDR drivers, and the
SDR hardware. Notably, Snout only communicates with the
GNU Radio runtime using a GNU Radio Handler class,
which natively controls the GNU Radio flowgraph classes.
Furthermore, all hardware-related interaction is encapsulated
inside of this subsystem, and is performed by the interaction
of GNU Radio [16] and the UHD library [39] or any other

3Figure 4 uses the inputs in rows (IR) notation used by Eppinger et al. [54],
in which an element on the intersection of row i and column j represents an
input to component j coming from component i.
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supported hardware support layer (e.g., osmocom GNU Radio
blocks [55]). If a different hardware platform was desired,
changes to this subsystem would not spill over into other parts
of the Snout framework, except for the handler class, which
directly interacts with it.

b) Snout server: The blue box labeled (b) represents
the Snout server subsystem. It exhibits a fairly hierarchical
structure, in which all the DSM elements above the diagonal
are controlling dependencies, e.g., where the Snout Server
class exerts control over the Runtime and Instrument class, and
receives status information from the Runtime class in return.
An exception to this hierarchy is the Model component, which
is queried by Runtime elements, but not directly controlled.
All Runtime elements report information to the Snout server
via ZeroMQ (denoted zmq) communication, which is further
described in Section IV-C. An (optional) exception to the
decoupling of this subsystem with the underlying GNU Radio
and hardware subsystem is the fact that the GNU Radio
runtime is capable of sending information from the flowgraph
via ZeroMQ by using the gr-zeromq module [16], which
may be useful for low-layer data, e.g., flowgraph debugging
messages.

c) Snout client(s): The green box labeled (c) represents
the Snout client as well as any external application, which re-
ceives input from Snout (i.e., consumer). In order to decouple
the external interface of Snout with hardware, GNU Radio and
Snout’s internal structure, the Snout API provides information
to these programs in a standardized way while allowing the
client to control the server (see Section IV-C).

C. Data flow architecture

The data flow between different modules of Snout is imple-
mented using ZeroMQ [56], which is a brokerless messaging
library for distributed systems.

While Snout data flow could be implemented by a number
of available messaging systems, ZeroMQ was chosen for three
key reasons. First, ZeroMQ has stable support for GNU Radio
via the official gr-zeromq package that is distributed with
the GNU Radio distribution [16]. Further, as Kang et al.
note [57], ZeroMQ performs extremely well in terms of
throughput and latency for small message payloads4 when
compared to other popular message-passing systems like the
OMG Data Distribution Service (DDS) or MQ Telemetry
Transport (MQTT). Last, as a brokerless system, ZeroMQ
does not suffer from the additional dependency, overhead, and
potential bottleneck of a message broker [57].

ZeroMQ enables a number of flexible message queueing
patterns that can be used within a process, across processes on
the same machine, or between applications running on remote
hosts. It allows applications to communicate in a thread-safe
and language-agnostic way. Two or more nodes can connect
to a common ZeroMQ socket using multiple communication

4For message sizes below 1 kilobyte, Kang et al. find that ZeroMQ performs
two orders of magnitude faster than OMG DDS and three orders of magnitude
faster than MQTT [57]. As typical IoT wireless packets are usually on the
order of a hundred kilobytes or smaller in size, this makes ZeroMQ well-suited
for a middleware that handles small control messages as well as typical IoT
packet messages.

Fig. 5. ZeroMQ-based data flow between the Snout Server and Client.
Dashed lines represent optional components. Wide black arrows represent
data flows and communication via native Python-based interaction without
using ZeroMQ.

patterns. Similar to plain socket-based communication, one
node binds to a socket, and one or more additional nodes
can dynamically connect to the same socket in order to
communicate. The key patterns used in the context of this
work are (see also Hintjens, Ch. 2 [58]):

• Request-Reply. This a typical client-server configuration
in which a client makes a request to one or more servers,
and receives a reply. If multiple servers are available, the
client will make each request to one of the servers in a
round-robin fashion.

• Push-Pull. This pattern allows nodes to push messages
to one or more downstream nodes, and receive messages
from one or more upstream nodes.

• Publish-Subscribe. In this pattern, one or more nodes
publish messages that other nodes can subscribe to.
This pattern typically utilizes multi-part messages, in
which the first part of the message is a subscription
channel identifier (such as logging.DEBUG to indicate
a debugging message). Subscribers can choose to receive
all messages distributed by the publisher, or just those
matching a certain channel value.

More advanced patterns are possible, as described in the
ZeroMQ documentation [56] and in the official guide by
Hintjens [58].

Communication between Snout components can be broken
down into three major categories:
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• Command & Control data flows, between the Client
and the underlying Server. This comprises a number of
explicit control commands (such as init, run, stop,
etc.) or requests for information on the current system
status (e.g., status).

• Event data flows, which can be produced by any of the
modules inside of the Snout server runtime, and may be
consumed by the Client or additional Consumers.

• Pipeline messages, which are handed from one process-
ing Stage of the Pipeline to the next in a Push-Pull pattern
(see Figure 5). The same pattern is used to push messages
from Instruments to the start of the Pipeline.

The case of command & control data flow is a typical
client-server scenario in which the client makes a request to a
server, which handles the request and returns a response. This
is implemented in a Request-Reply pattern. The server binds
to a socket in REP (Reply) mode and remains available for its
entire duration of service. A client then connects to this socket
in REQ (Request) mode to issue commands to the server.

Event data requires a more complex messaging architecture,
as many of the components that may produce events, as well
as any event consumers are optional (indicated by dashed
lines in Figure 5), and the overall system must function
reliably with any of them disconnecting. To ensure reliable
distribution of events in the context of potentially transient
event producers and consumers, the server component always
binds to a socket and allows any peripheral component to
connect or disconnect at any time. Using a “Pub-Sub Network
with a Proxy” pattern [58], the server binds to a socket that we
refer to as event collector socket in SUB (Subscriber) mode,
and binds to an event broadcast socket in PUB mode. Then, any
number of event producing components, such as the Runtime,
any number of Instrument instances, or even underlying GNU
Radio components, can connect to the event collector socket
and publish arbitrary event messages. The server then forwards
all received events on its own event broadcast socket, reliably
forwarding them to the client or any other event consumer
(such as logging or database applications).

Event messages are multi-part messages, in which the first
part always represents a channel key, and the second part
is the actual event payload. The channel identifies the type
of data and dictates the data type that is used in the event
payload, e.g., in case of a logging event, the channel may
be “log.INFO”, and the event payload is simply the log
message as a string. In more complex cases, the channel could
indicate a data frame received via GNU radio, in which case
the channel may be “rx.ble” and the event payload could be
the decoded byte stream of the frame. These channel identifiers
allow user applications to subscribe to events of a certain type,
e.g., a message transcript window may subscribe to decoded
packets, a status terminal may subscribe to logging informa-
tion and runtime control message, and so forth. Crucially,
these applications are not required to be known to, or even
explicitly compatible with Snout. Instead, messages broadcast
in this way are interoperable with any software that supports
subscribing to ZeroMQ publishers.

As shown in Figure 5, Pipeline stages are connected by a
series of Push-Pull pattern message queues. This allows for

1 ---
2 meta:
3 name: Bluetooth LE Physical Layer Receive
4 description: >
5 This is a basic Bluetooth LE scanning setup.
6 author: A. N. Onymous
7 email: name@example.com
8 date: 2021-05-21
9

10 instrument:
11 bleadv:
12 class: gnuradio
13 handler:
14 - bleadv
15 output: pipeline
16

17 parameters:
18 channels:
19 - 37
20 - 38
21 - 39
22 timeout: 10
23

24 runs: 3
25

26 steps:
27 - run:
28 instrument: bleadv
29 command: run
30 - stop:
31 instrument: bleadv
32 command: stop
33 condition:
34 type: time elapsed
35 criteria: timeout
36

37 pipeline:
38 - bleadv_linklayer
39 - blepdu_scapy

Listing 1. Example of a Snoutfile illustrating the standard schema
used to describe Snout configurations.

individual Stages to be executed either locally or on a remote
processing host, and it supports fan-out patterns to multiple
workers that can process a stage if certain workloads would
otherwise be a performance bottleneck.

D. Description language

Snout configurations can be developed using a standardized
format, which we refer to as a Snoutfile. Snoutfiles are based
on a subset of the YAML 1.2 [41] data serialization language,
which contain all necessary definitions of the composition of
the runtime, as well as definitions of a sequence of steps that
will be executed at runtime. Listing 1 shows an example of a
Snoutfile.

A Snoutfile follows a schema of top level keywords con-
taining configuration information for each component of the
Snout framework. The schema is enforced by using the
StrictYAML [59] parser, which ensures type safety of the con-
figuration and mitigates security concerns commonly associ-
ated with the default implementation of YAML in Python [60].
The schema defines the following sections:

• meta: Metadata about the configuration, such as title,
description, and author information.

• instrument: Contains a dictionary of named instruments.
The output of each instrument can be configured (in
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1 [options.entry_points]
2 smp_plugins =
3 instrument_ = smp.instr:Instrument
4 instrument_process = smp.instr:ProcInstrument
5 instrument_gnuradio = smp.instr:GRInstrument

Listing 2. An excerpt of entry point definitions for Instrument variants.

this example it points at the Pipeline for further post-
processing of the incoming data). In Listing 1, the dic-
tionary contains one instrument named bleadv which is
a gnuradio Instrument using ad GNU Radio Handler
with the identifier bleadv.

• parameters: Defines parameters that can be passed to
the runtime, and used by instruments. Parameters with
values indicated as lists can be used to iterate through
multiple values (such as channels 37, 38, and 39
in Listing 1). In this case, the instrument will be run
with three sequential parameter sets (37, 10), (38,
10), (39, 10) to cover all desired channels for a
duration of 10 seconds each.

• runs: Indicates the number of times the individual ex-
ecutions resulting from the given parameters should be
repeated. This is useful if Snout is used to run a repeatable
experiment, and multiple runs of the exact same sequence
of actions are desired for statistical analysis.

• steps: Contains a list of steps to be executed by an
instrument when certain conditions are met. In Listing 1,
two steps are defined, the first of which executes the
run() method on the bleadv Instrument at time t = 0,
and the second executes the stop() method on the
bleadv Instrument at t = timeout (referring to the
variable defined in the parameters Section of the file).

• pipeline: defines a list of Pipeline Stages. In Listing 1, the
received byte-stream of Bluetooth LE advertising frames
is sent from the bleadv instrument to the beginning
of the pipeline, where the bleadv_linklayer Stage
performs the necessary de-whitening of the payload,
and subsequently the blepdu_scapy parses the byte-
stream to a scapy [61] packet, which is then broadcast
via the event collection mechanism described in Sec-
tion IV-C.

E. Plugin-based extensions

Snout uses Python’s entry points mechanism [62] to define
variants for classes such as Instruments or Pipeline Stages.
This allows new components to be developed in a separate
project, and the correct class variation to be imported at
runtime via a Factory pattern [63].

Listing 2 shows an abbreviated list of entry point defini-
tions for variants of Instrument classes. When the Runtime
is constructed from the Snoutfile, the class identifier of
an instrument (e.g., gnuradio in Listing 1, Line 12) is
concatenated with the generic class name (instrument) to
look for a suitable specialized class. In the case of Listing 2,
looking up instrument_gnuradio will return a reference
to the appropriate GRInstrument class which is defined in
the snout.instr module.

Fig. 6. A Snout-based application scanning BLE traffic. Blue lines indicate
control flow, green lines indicate data flow of the received traffic.

Fig. 7. A simple command-line application collecting device statistics
based on incoming scan traffic collected using a Snout-based BLE scanning
application.

V. VALIDATION AND EVALUATION

In this section, we present four representative case studies to
validate key capabilities supported by Snout. We demonstrate
how one or multiple protocol implementations, and even
multiple distinct software stacks can be integrated with Snout,
and evaluate its performance overhead.

A. Implementation of a BLE advertising scanner

We first demonstrate a BLE advertising scanner application,
as shown in Listing 1. In order to integrate SDR-based BLE
advertising into the Snout framework, only small modifica-
tions to the flowgraph shown in Figure 2 are required: the
USRP Source, as well as the ZMQ PUSH Sink blocks are
removed, and replaced with the Pad Source and Pad Sink
blocks5, respectively. This partial flowgraph is compiled to a
hierarchical block (as opposed to a typical top block that can
be run directly from the GNU Radio Companion or as a stand-
alone application). The resulting block can then be imported to
the GNU Radio Handler component. The GNU Radio Handler
maintains its own generic top block and USRP Source block,
and connects the output of the source block to the imported
BLE receiver partial flowgraph, and its output to a ZeroMQ
PUSH block, which relays its output to the processing pipeline.

5Pad Source and Pad Sink blocks are GNU Radio blocks that can either be
attached to the beginning (source) or end (sink) of a flowgraph to terminate it.
A flowgraph that contains pad sources or sinks can be used as a subcomponent
of a larger flowgraph, with its pad source blocks acting as block inputs,
and pad sinks acting as block output. Snout leverages this GNU Radio
functionality to compose a top level flowgraph at runtime that individual
flowgraphs with pads are plugged into.
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Fig. 8. A GNU Radio flowgraph implementing two parallel receivers for different protocols, Zigbee (red) and BLE (blue). The complexity of this flowgraph
lies in the signal processing as such, as well as the numerous variable blocks, which may contain additional (hidden) calculations. Snout aims at reducing
the complexity and visual clutter of such a flowgraph to the two protocol implementations shown in dashed boxes, and configures everything around it
automatically at runtime.

Functionally, this flowgraph is now performing the exact
same task as as the flowgraph in Figure 2, namely receiving
and demodulating a physical layer signal to byte-streams of
BLE advertising frames. However, since the USRP Source as
well as the output blocks are controlled by the middleware,
any of its settings can be configured in the Snoutfile, and
further adapted by custom instrument or handler classes, which
do not have to touch the GNU Radio flowgraph fragment.
Figure 6 shows the control flow (blue) and data flow (green)
of the resulting application. Figure 7 shows the output of
an independent command-line client monitoring BLE devices
based on this Snout-based implementation.

B. Implementation of multi-protocol scanning

Figure 8 illustrates the complexity of a pure GNU Radio-
based minimal implementation of BLE and Zigbee parallel
receiver in the GNU Radio Companion, which is a typical use
case for multi-protocol IoT reconnaissance (e.g., IoT-Scan by
Gvozdenovic et al. [64]). In such a scenario, multiple protocol-
specific flowgraph components are combined to receive traffic
from several channels and/or protocols at the same time. In
addition to the visual complexity of the flowgraph in Figure 8
based on the connectivity between its processing blocks, many
of the variable blocks (i.e., the blocks that do not have any
edges going in or out of them) can hold either static values, or
calculation formulae, which depend on an arbitrary number of
other blocks. Constructing such a flowgraph requires in-depth
signal processing skills. Furthermore, managing the evolution
of such a block is complex due to the hidden logic and values
behind each block.

When interacting with GNU Radio flowgraphs directly, any
configuration change usually has to be implemented by manu-
ally adding, moving, and connecting new blocks to a flowgraph

1 instrument:
2 multiscan:
3 class: gnuradio
4 handler:
5 - bleadv
6 - zigbee
7 output: pipeline

Listing 3. Snoutfile changes implementing a multi-protocol scanning
instrument comprising of a BLE advertising scanner as well as a
Zigbee scanner.

to achieve the desired functionality. The partial flowgraph
abstraction discussed previously in Section V-A allows for
the creation of single-purpose flowgraph fragments with a
standardized interface (e.g., based on the sub-flowgraphs noted
“Zigbee” and “Bluetooth LE” in Figure 8). These partial
flowgraphs can be designed individually and without the
need for managing the auxiliary elements required to piece
them together into a combined flowgraph. Snout builds the
additional elements at runtime based on information provided
in the Snoutfile.

Using Snout, adding another wireless protocol, e.g. Zigbee,
to the previous application therefore only requires two modi-
fications: (a) the creation of a partial flowgraph, e.g., based on
the IEEE 802.15.4 transceiver by Bloessl et al. [65] with pad
source and sink blocks, and (b) changing the Snoutfile to add
any desired configuration parameters (e.g., as Zigbee channels)
as well as the additional GNU Radio Handler component to the
configuration. Listing 3 shows the modified instrument defini-
tion accommodating two GNU Radio Handlers and Figure 9
shows the resulting data flow.

This not only reduces the visual clutter of complex GNU
Radio Companion projects, but furthermore allows these sim-
ple building blocks to be simultaneously and automatically
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Fig. 9. A Snout-based application integrating both BLE and Zigbee scanning
in a GR Handler block, connecting both protocols to the USPR Source
dynamically at runtime.

Fig. 10. A Snout-based application integrating the IEEE 802.11 transceiver
library by Bloessl et al. [42], shown inside the grey box.

controlled by the runtime logic (whereas GNU Radio Compan-
ion only allows the user to manually start or stop a flowgraph).
This is crucial in experimental setups that require repeatable
runs or complex parameter variation, e.g., permutations of
multiple gain and delay values across a large number of
parametrized runs, as required for experimental setups [10].

C. Encapsulating a Wi-Fi testbed

Bloessl et al. [42] presented a GNU Radio-based IEEE
802.11 transceiver testbed, which allows for SDR-based ex-
perimentation on Wi-Fi networks, including the 802.11p vari-
ant for vehicular ad-hoc networks. The reference flowgraph
provided by Bloessl et al. primarily consists of a hierarchical
block reponsible for the physical layer, as well as an OFDM
MAC layer block (see Figure 10). Snout can encapsulate
this library to facilitate SDR-based Wi-Fi monitoring without
requiring the user to be familiar with the development of
software radio flowgraphs. In contrast to the previous case
study, Snout provides a standardized USRP Sink block in
addition to the USRP Source block, both of which interface
with the physical layer hierarchical block that is provided by
the library [42] and handle transmission and reception of the
signal.

D. Integrating different toolchains

Previous case studies presented different variations of GNU
Radio-based tools addressing different use cases. As shown
in Figure 3, Snout is not limited to GNU Radio-based SDR
implementations, and different toolchains can be combined
without changing high level behavior.

Fig. 11. A heterogeneous configuration in which both a GNU
Radio-based instrument, as well as standalone binary controlled by a
ProcessInstrument are used by a common runtime.

One example of such a use case is an experimental setup
for BLE physical layer fuzzing. Fuzzing, i.e. the introduction
of arbitrary disturbances and malformed input to a system in
order to discover unexpected output, can be applied to wireless
protocols to discover undefined protocol behavior, security
vulnerabilities, and bugs (we refer to McNally et al. [66] for
an overview on fuzzing and to Knight and Speers [8] for
an introduction on radio frequency (RF) fuzzing). Fuzzing
wireless protocols requires control over the entire protocol
stack, including the capability to produce signals that are
not protocol-compliant. This can be achieved by using tools
such as the GNU Radio-based TumbleRF [8]. In such a case,
one would implement the transmission part of the experiment
based on GNU Radio and TumbleRF (or other suitable fuzzing
tools), whereas one could rely on a simple standalone binary
on the receiver side, such as Xianjun Jiao’s BTLE [67] as
implemented in Becker et al. [68].

Such a setup employs multiple instruments, namely one
GRInstrument for the transmission (TX) chain, and a sep-
arate ProcessInstrument controlling the receiver (RX)
binary, as shown in Figure 11. This allows for an arbitrarily
complex fuzzing toolchain based on GNU Radio flowgraphs
controlled via the TX instrument, while a simple and low-
resource tool like the btle_rx binary [67] is used to process
incoming packets. Notably, switching between this receiver
toolchain and the GNU Radio-based described in Section V-A
(cf. Figure 6) can be performed without technical knowledge
of their respective inner workings, by simply modifying the
Snout file.

E. Experiments and performance evaluation

1) CPU and memory overhead: GNU Radio flowgraphs
are complex applications with considerable resource demands.
Executing a flowgraph imposes certain real-time constraints,
which, if not respected, result in dropped packets due to
buffer over- or underruns within components of the flowgraph.
It is therefore important to demonstrate that a middleware
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Fig. 12. Running different wireless protocols via Snout compared to a stand-
alone GNU Radio flowgraph does not incur significant overhead in CPU load,
as measured on a 6-core system. The results are consistent across experiments,
as shown the by tight 95% confidence intervals (black bars).

controlling GNU Radio flowgraphs does not incur significant
processing overhead, which may negatively impact its real-
time signal processing performance.

To investigate this potential overhead, we measure and
compare the resource consumption of Snout running different
flowgraphs with the resource consumption of only running the
flowgraphs directly via GNU Radio6. We perform the measure-
ments by running each setup inside a Docker container, and
measuring CPU and RAM usage externally via the docker
stats7 command, which measures per-core loads of a con-
tainer (i.e. up to 100% per physical core). All experiments are
performed on a PC equipped with an AMD Ryzen 5 3600
CPU with 6 physical cores (12 threads), with 32GB DDR4
RAM, PCIe4 NVMe storage, and running 64-bit Linux kernel
5.10. The Docker container is based on the official Ubuntu
20.04 image and the official GNU Radio 3.8 installation
packages [69] as well as the gr-ieee802-15-4 [65] and
gr-ieee802-11 [42] packages.

As shown in Figure 12, Snout does not incur measurable
CPU overhead when running low-bandwidth IoT protocols
like Zigbee and Bluetooth LE, compared to the bare GNU
Radio flowgraph. Each of the measurements is based on
600 samples (10 runs of 60 seconds) with very tight 90%
confidence intervals, which shows that both the pure GNU
Radio flowgraph and the Snout-controlled flowgraph produce
a consistent, sustained processing load during execution. For
Wi-Fi, measurements using the Wi-Fi transceiver of Bloessl et
al. [42] indicate a small but measurable performance overhead
of about 4%, which may be attributed to the size of 802.11
frames. This is an expected result, as ZeroMQ performs best
with small packets [57]. We view this overhead as unproblem-
atic given the overall load below 300% on a 6-core system
(i.e., only utilizing half of the physical cores, and a quarter of
the available threads).

Snout does incur an increased memory requirement, neces-
sitated by the data structures managing runtime control as well
as message passing. In the above test cases, memory overhead
was consistently in the range of 80 to 90MB above the memory

6The GNU Radio flowgraph is run in command-line mode in order to
prevent any GUI overhead impacting the experiment.

7See https://docs.docker.com/engine/reference/commandline/stats/.

Fig. 13. The command and control message system (a subset of the data flow
laid out in Figure 5).

footprint of the GNU Radio flowgraph alone, which ranged
from around 73MB for the BLE and Zigbee flowgraphs and
around 112MB for the Wi-Fi flowgraph. On a current system
with available memory in the order of multiple Gigabytes, this
does not raise serious concerns.

2) Message handling performance: Aside from overall
system load overhead incurred by Snout measured in the
previous Section, a performance evaluation of its internal
message handling system can provide additional insights into
middleware performance in terms of message throughput and
latency.

a) Command & Control message handling: As previ-
ously introduced, Snout uses a request-reply pattern for its
command and control handling. Investigating this message
passing subsystem in isolation (see Figure 13), we can measure
the performance impact of passing commands into the Snout
middleware. While Kang et al. [57] demonstrated that ZeroMQ
excels at small message sizes, is it important to investigate
behavior at various message sizes to prevent performance
issues in case of larger command messages.

We consider message sizes of 101, 102, . . . , 105 bytes. We
send 100 command messages for each size in the fastest
possible succession (i.e., as soon as acknowledgement of
a command is received, the next command is sent). This
experiment is repeated 103 times in order to stress-test the
system and produce a significant amount of data points. For
each message size, we measure the mean and the 95% and
99% quantiles of the round-trip latency to quantify message-
passing performance. The results are shown in Figure 14.
For messages of small size, a single command only requires
about 65 µs roundtrip time (i.e., from sending the message
to receiving an acknowledgement of the server) with the 99%
quantile remaining below 100 µs. These statistics remain fairly
constant up to the 104 byte message length mark, and then
increase visibly. However, despite such a significant increase
in message size, roundtrip latency remains at a mean of around
110 µs, and a 99% quantile of just over 140 µs.

In a typical experiment, these command and control mes-
sages correspond to steps defined in the Snoutfile or status
requests, both of which would typically not be performed with
large amounts of messages. It can therefore safely be assumed
that the command and control message subsystem contributes
a negligible amount of load to the overall system.

b) Event message handling: The message passing sub-
system transporting events from their respective source in the
Snout runtime via the server to data consumers may potentially
produce a large number of messages based on received traffic.
We consider a system with five event producers and three event
subscribers, as shown in Figure 15.
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Fig. 14. Roundtrip times between client and server remain consistently low
for message lengths of up to 10, 000 bytes.

Fig. 15. The event message message system (a subset of the data flow laid
out in Figure 5).

Again, we consider sizes of 101, 102 . . . , 105 bytes per
event message. Each event producer embeds the creation
timestamp of an event into the message transferred to the
event subscribers, which calculate message latency based on
their timestamp of receipt. Each producer generates 104 event
messages at a rate of 103 messages per second (i.e., a total of
50×103 event messages) for each message size and publishes
them.

Figure 16 shows the results of overall event message latency,
again measuring the mean, 95%, and 99% quantiles. For events
of sizes up to 103 bytes, the mean latency stays at around
200 µs with a 99% quantile around 320 µs. Event messages
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Fig. 16. Total latency of event messages arriving at an event consumer is
0.2 µs on average for event messages up to 1,000 bytes in length, and roughly
doubles for event messages of 100,000 bytes in length.

of 104 bytes length experience a performance deterioration of
about 25% and messages of 105 bytes take about twice as
long as the shortest messages. All in all, this demonstrates
throughput of 5 × 103 event messages per second relayed to
their respective consumers in well under a microsecond, i.e.,
an order of magnitude faster than graphical user interfaces on
high refresh-rate 120 Hz monitors would be able to notice.
It should be noted that such a large number of messages –
synthetically generated – are a very brute-force stress test
that would rarely make sense to perform in practice. For
reference, the resulting 500 Mb/s corresponds to three times
the raw sample output of a HackRF One [5] (20 mega samples
per second times 8 bits per sample) or two thirds of the
entirety of raw sample data of a USRP B200 [70] (61.44 mega
samples per second times 12 bits per sample) streamed to three
consumers. Considering the typical GNU Radio setup in which
raw sample data is processed within the flowgraph and only
aggregated information (such as demodulated binary signals) is
passed on to downstream applications, this guarantees almost
imperceptible and consistently low event message latency in
virtually all imaginable scenarios.

VI. CONCLUSION

In this work, we presented Snout, a middleware that en-
capsulates SDR-based protocol implementations and enables
applications based on GNU Radio flowgraphs that do not
require digital signal processing skills from the user. Its mod-
ular software architecture allows for flexibility and expansion
on all three layers: First, client applications can connect
to the middleware in a standardized way, and subscribe to
relevant data via a ZeroMQ subscription pattern. Second, a
text-based description language facilitates changes in both
instrument as well as pipeline behavior without requiring any
code modifications, while entry point-based plugin loading of
class variants enables third party code to extend functionality.
Last, the hardware abstraction layer supports a number of SDR
devices, and can be extended by the GNU Radio community
without impacting the top layers of the framework. In addition,
it can operate with building blocks made of GNU Radio
flowgraphs, or any other SDR application via the use of
customizable Instrument abstractions. We validated the
architecture and evaluated its performance with several popular
IoT protocols, demonstrating that it has no negative effect on
the computational load of the host computer, limited memory
overhead, and that the message passing system can sustain
message volumes of typical real-world applications with sub-
microsecond latency.

We envision that Snout will constitute a platform supporting
experimental work in wireless research, which will facilitate
security auditing, wireless device benchmarking, and physical
layer characterization. Additionally, graphical user interface
concepts for high level monitoring and control of SDR-
based tasks could be explored, such as web-based interfaces
proposed by Goldsmith et al. [50], which allow for local or
remote operation of the SDR instrumentation. Furthermore, the
current GNU Radio-based hardware abstraction layer could be
extended to support other popular SDR frameworks, such as
srsRAN [53].
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