
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

GenSync: A New Framework for Benchmarking
and Optimizing Reconciliation of Data

Novak Boškov, Ari Trachtenberg, David Starobinski

Abstract—In the set reconciliation problem, remote parties
seek to reconcile similar sets of data according to an efficiency
objective, such as minimizing communication or computation.
Though investigated for many individual distributed applications,
this problem still lacks a holistic treatment, and this is the aim of
this work. Specifically, we design and analyze GenSync, a unified
set reconciliation framework that incorporates several state-of-
the-art set reconciliation protocols with an integrated testbed.
We compare and analyze the various protocols and offer general
guidelines for selecting a good protocol for a given application.
Through extensive experiments, we demonstrate that the optimal
choice of protocol is highly sensitive to several parameters,
including network properties (e.g., bandwidth and latency) and
computing power. Notably, none of our framework’s protocols are
universally dominant under diverse conditions. To demonstrate
our framework, we measure the effects of protocol choice in
reconciling memory pools of adjacent Bitcoin nodes.

Index Terms—Peer-to-peer computing, Data communication,
Approximate computing

I. INTRODUCTION

Set reconciliation is a building block of many disparate dis-
tributed systems. For instance, recently proposed transaction
and block dissemination protocols of popular cryptocurrencies
rely on set reconciliation as the means of tackling scaling
issues [1]–[3]. On the other hand, information systems, such as
distributed databases [4]–[8] and distributed file systems [9],
utilize reconciliation for loosely consistent replica synchro-
nization. In collaborative editing, set reconciliation is used
to support decentralization [10], [11] and maximize perfor-
mance on mobile devices [12]. Even wireless sensor networks
(WSNs) apply reconciliation to reduce the communication
overhead among sensors [13].

In the classical scenario, the set reconciliation problem
involves two remote parties, Alice and Bob, with their data
sets SA and SB , respectively. When Alice seeks to learn the
elements of SB \SA (i.e., the elements in SB but not in SA),
we use the term one-way set reconciliation [11], [14]–[16]. If
in addition, Bob seeks to learn SA \ SB , we call this process
a full set reconciliation. In the latter case, Alice and Bob can
deduce the symmetric difference, which is defined as follows

SA ⊕ SB = (SA \ SB) ∪ (SB \ SA).

Over the past years, the set reconciliation problem has
been actively studied and a multitude of protocols have
been proposed [11], [17]–[26], largely falling into two

This research was supported in part by NSF grant CCF-1563753.
The authors are with the ECE Department, Boston University, Boston, MA,

02215, USA. (email: {boskov,trachten,staro}@bu.edu).

camps. The first camp makes use of carefully gauged ap-
proximate set membership data structures (ASM) such as
Bloom filters (BF) [13], [26], invertible Bloom lookup tables
(IBLT) [19], cuckoo filters [18], [21]. The second camp
makes use of a fundamental connection between reconcili-
ation and error correcting codes [14], applying, for exam-
ple, Bose-Chaudhuri-Hocquenghem (BCH) [24] and Reed-
Solomon (RS) codes [11], [20], [27] to the reconciliation
problem.

Although the common idea permeating all the proposed
protocols is to trade-off a little accuracy in favor of efficiency,
there are significant performance differences among the proto-
cols, depending on the application. Indeed, the performance of
each protocol depends on a number of factors, ranging from
network conditions to the computational capabilities of the
nodes. While some protocols may perform exceptionally well
under conditions of low latency and high bandwidth, others
may dominate under a constrained bandwidth budget. As a
result, it is currently challenging to reason about the best
reconciliation protocol for a given application.

Contributions

In this work, we study the relative efficiency of several
popular set reconciliation protocols through a novel framework
we call GenSync.

More specifically, these main contributions herein include:
• We introduce GenSync, the first extensible public frame-

work that unifies popular data reconciliation algorithms
under a common programming interface [28].

• We contribute the GenSync testbed, a novel benchmarking
tool for experimental comparison of data reconciliation
algorithms.

• We offer experimental and analytical comparisons of the
set reconciliation algorithms that are part of GenSync, and
categorize situations where each excels or lags.

• As a proof of concept, we evaluate the performance of the
GenSync’s algorithms for Bitcoin mempool reconciliation
using data from two live Bitcoin full nodes.

A key finding is that there is no universally dominant set
reconciliation protocol among those we examined. Although
IBLT-based set reconciliation dominates when there is suffi-
cient bandwidth and symmetric computational power, cuckoo-
based methods dominate under asymmetric computation. Yet,
if bandwidth is the bottleneck, coding-inspired approaches pre-
vail. Our findings come from a novel approach to comparing
set reconciliation protocols, by introducing a metric called
total time to reconcile (TTR). Unlike previous metrics, TTR

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Author Algorithm Applicability Class

Skjegstad and
Torleiv [29] BF

General ASM

Tian et al. [30]

Fan et al. [26] Counting BF

Luo et al. [21] CF

Li et al. [18] Counting CF

Luo et al. [31] Marked CF

Eppstein and
Goodrich [19]

IBLT

Ozisik et al. [1] BF + IBLT Blockchain
Minsky and

Trachtenberg [27]
CPI

General

ECC

Dodis et al. [24] BCH

Gong et al. [23] Parity
Bitmap
Sketch

Jin et al. [20] CPI Disruption
Tolerant

Networks

Naumenko et al. [2] BCH +
low-fanout

flooding

Blockchain

TABLE I: Set reconciliation literature summary. BF abbr.
Bloom filter. CF abbr. Cuckoo filter. IBLT abbr. Invert-
ible Bloom Lookup Table. ASM abbr. Approximate Set
Membership. CPI abbr. Characteristic Polynomial Interpola-
tion. BCH abbr. Bose-Chaudhuri-Hocquenghem (codes). ECC
abbr. Error-Correcting Codes.

factors in key system parameters, such as network conditions
and the amount of available compute at the peers. Based on the
concept of TTR, the GenSync testbed allows for quantification
of the performance differences among the protocols for the
given system characteristics.

Roadmap

The rest of this paper is structured as follows. We review
related work and provide background on reconciliation algo-
rithms that form the backbone of GenSync in Section II. In
Section III, we introduce GenSync, including its abstractions
and design choices that underscore its programming interface.
Section IV analyzes the properties of algorithms included in
the GenSync framework. We set forth the results of our exper-
iments in Section V and focus on the benefits of interactive
protocols in Section V-E. In Section VI, we present a proof of
concept application of our framework to synchronize Bitcoin
mempool data sets. We conclude in Section VII.

II. BACKGROUND AND RELATED WORK

We next present an overview of the set reconciliation litera-
ture, summarized in Table I. As mentioned in the introduction,
there are two broad families of set reconciliation techniques:

1) Approximate set membership data structures-based
(ASM), and

2) Error-correcting codes-based (ECC).

The techniques differ in terms of their main algorithmic ideas
and applicability. While some approaches apply generally to
the set reconciliation problem presented in the introduction,
others are developed for specialized purposes such as block
propagation in blockchains or data reconciliation in disruption
tolerant networks. Later, in Section III, we discuss the concrete
implementations of several of these techniques in the GenSync
framework. We then compare them analytically in Section IV.

In the rest of this section we focus on the major algorithmic
ideas that influenced set reconciliation approaches. Through-
out this work we use

d = |SA ⊕ SB |

to denote the size of symmetric difference between the sets SA
and SB .

A. Bloom Filters (BF)

Approximate set membership (ASM) data structures provide
an approximate set representation typically with constant
access time and sub-linear memory. A common example of
an ASM data structure is the Bloom filter (BF) [32], [33],
which utilizes k different and independent hash functions to
hash each element s ∈ S in the set. The filter uses the hash
values to set the corresponding bits in the underlying bit vector.
The lookup operation follows the same procedure and answers
positively when any of the bits that k hash functions point to
is set. To achieve some given false positive rate of its lookup
queries (ε), Bloom filter uses k = log

(
1
ε

)
independent hash

functions resulting in 1
ln 2k bits per item in S.

One way to utilize Bloom filters in a set reconciliation
algorithm would be for Alice to encode her set SA into a
Bloom Filter and to send it to Bob who can then query his
elements SB to learn SB \ SA, up to the false positive rate ε.
The lookup queries on Bob’s elements that are not in SA will
come out negative while certain amount of Bob’s elements that
are not present in SA will come out falsely positive (up to ε).
Once Bob knows which of his SB elements are unique to his
set, he can hand them over to Alice. On a high level, many
ASM-based set reconciliation algorithms follow the structure
of the Bloom filter-based protocol. However, since the size of a
Bloom filter is linear in the size of the set it encodes, sending a
Bloom filter to the peer would not be communication-efficient
when the actual size of differences d is small relative to the
sizes of the sets. Also note that Bob needs to pass all his
elements through Alice’s Bloom filter because Bloom filters
do not support element listing that would allow Bob to directly
learn Alice’s set. In the rest of this section, we give a brief
literature overview of the similar ASM-based set reconciliation
protocols that do better than the previously described Bloom
filter-based protocol.

B. Counting Bloom Filter (CBF)

Fan et al. [25] introduced counting Bloom filter (CBF) as an
alternative to traditional Bloom filter when the deletion oper-
ation is needed. Instead of using bitvector as the underlying

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

data structure of the traditional Bloom filters, CBF utilizes a
vector of counters such that insertions increase the counter,
while deletions decrease the counter. The lookup queries are
similar to those in the traditional Bloom filters except that
now the presence of an element in the cell is signalized by
a non-zero value in the corresponding counter cell. Guo and
Li [26] use CBF’s to implement a set reconciliation protocol.
For this purpose, they define the subtraction and the union
operations between the two equally long CBFA and CBFB .
They define CBF-wise subtraction as the subtraction of the
counter values in CBFA by the counter values in CBFB
for each cell. Effectively, the cell pairs corresponding to the
common keys between CBFA and CBFB will cancel out
leaving only the keys corresponding to the elements that are
either unique to Alice or Bob. Analogously, they define the
CBF-wise union as the summation of the counter values from
CBFA and the corresponding counter values in CBFB for
each cell. Using such defined subtraction and union operations,
Guo et al. derive the following approximation [26]:

CBFA − CBFB ≈ CBF (A \B)− CBF (B \A) (1)

Thus, each party can approximately learn its local elements
by subtracting its own CBF by the one received from the peer
and then passing its own elements through the resulting filter.

C. Invertible Bloom Filter (IBF)

Eppstein and Goodrich [34] introduce IBF as a novel data
structure with the following two distinctive features over tra-
ditional Bloom filters: 1) decoding (“peeling”); the process that
allows for listing all the elements in an IBF, and 2) subtraction;
the operation that allows for subtracting two IBFs to obtain
SA\SB directly. Utilizing the capabilities of IBF, Eppstein and
Goodrich define their set reconciliation protocol as follows.
First, Alice encodes her SA into IBFA that can decode up
to d elements and sends it to Bob. On the other side of the
communication channel, Bob encodes his own elements SB
into IBFB and applies IBFB − IBFA, where the minus
sign denotes the IBF subtraction. With certain probability (see
Section IV-C), Bob will succeed to decode the resulting IBF
which yields SB \ SA directly.

Goodrich and Mitzenmacher [35] extend invertible Bloom
filter data structure to a lookup table that they dubbed in-
vertible Bloom lookup table (IBLT). Their data structure has
a design parameter t; the threshold on maximal number of
key-value pairs that the data structure can decode (list). Thus,
IBLT uses the space at most linear in t. As long as an IBLT
contains less than t key-value pairs, listing operation succeeds
with a high probability. As in Bloom filter and IBF, IBLT
lookup takes O(k), while listing takes O(t) time. Importantly,
Goodrich and Mitzenmacher [35] prove that IBLT’s can list
the count of identical key-value pairs that reside in the data
structure. This feature is especially helpful when SA and SB
that we need to reconcile are multisets instead of sets.

D. Cuckoo Filter (CF)

Cuckoo filter [36]–[38] is an ASM data structure based on

cuckoo hashing [39]. As opposed to traditional Bloom filters
and their variations, cuckoo filters represent keys using their
fingerprints. A key fingerprint is often a hash of significantly
shorter length than the key itself and each fingerprint is stored
in its own slot of the cuckoo filter. A small fixed number of
slots is then organized into a number of buckets. During the
key lookup, we rely on a hash function that ranges over the
number of buckets to obtain the first candidate bucket for the
key. Additionally, we utilize the technique called partial-key
cuckoo hashing to obtain the other candidate bucket. Once the
two candidate buckets are known, we linearly scan each of
them and return a positive answer when any of the buckets
contain the fingerprint of the given key. On the other hand,
the insertion process is more complex than in the case of
Bloom filter and its variants. In particular, we need to take
care of bucket overflows and possibly evict certain number
of fingerprints to their alternative buckets. This process is
recursive and may fail with some small probability. However,
for a number of practical false positive rates (ε), cuckoo filters
are more space efficient than Bloom filter. Relying on this
distinctive feature of cuckoo filters, Luo et al. [21] proposed
a set reconciliation protocol. Their reconciliation protocol is
similar to the traditional Bloom filter-based one in so that Alice
and Bob both compute their CFA and CFB and exchange
them. Each participant then passes its own elements through
the filter of the peer to learn its local elements. Once Alice
learns A\B, she sends the missing elements to Bob, and vice
versa.

Similar to the other ASM-based algorithms, cuckoo filter-
based reconciliation may falsely detect some common ele-
ments as local to the sending peer. Thus, the elements that
are already known to the receiving peer may be unnecessarily
sent to it. However, Luo et al. [21] prove that if no insertion
failure happens on Alice’s and Bob’s sides, cuckoo filter-
based set reconciliation does not send redundant elements
to the receiving end. On the other hand, even when all the
insertions succeed, cuckoo filters still have certain amount
of false positives of lookup. This is important because the
false positive rate in cuckoo filters causes false negatives of
reconciliation. In other words, Alice may look up element
x ∈ A \ B in CFB and hit a false positive. In that case,
Alice falsely concludes that x ∈ A ∩ B and does not send x
to Bob, which negatively affects the reconciliation accuracy.
Luo et al. [21] derive the probability that a cuckoo filter-based
set reconciliation has no false negatives as approximately(

1−
(

|B|
mB · 2f−1

))|A\B|(
1−

(
|A|

mA · 2f−1

))|B\A|
(2)

Where mA and mB are the number of buckets in CFA and
CFB , while f is the common size of cuckoo filter fingerprints
in bits. As opposed to the other similar ASM-based protocols,
in the case of cuckoo filter-based set reconciliation, Alice
and Bob do not need to agree on the size of their cuckoo
filters upfront. Instead, they build cuckoo filters proportional
to the size of their sets (SA and SB) and irrespective to the
difference set size (d). However, the parties must agree on the
hash functions they use to determine candidate buckets.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

E. Counting Cuckoo Filter (CCF)

Li et al. [18] propose counting cuckoo filter (CCF) as an
extension of cuckoo filters originally proposed by Fan et
al [36]. They extend the cuckoo filter data structure in so that
they attach a fixed-size counter to each slot of the cuckoo
filter. The counter is utilized when a cuckoo filter represents
a multiset. Besides the fingerprint of a multiset element, each
slot now also keeps the multiplicity of the element. The CCF-
based set reconciliation protocol is similar to the CF-based one
in so that Alice and Bob build their CCFA and CCFB , and
exchange them. As opposed to set reconciliation with CF’s,
multiset reconciliation with CCF’s uses a more sophisticated
technique of inferring the mutual differences. In the case of
multiset, Alice does not only need to learn what are her local
elements, but she also needs to learn the possible multiplicity
differences among the common elements. Li et al. [18] propose
two techniques for Alice to learn the information she needs. In
the first technique, Alice would pass her local set A through
CCFB that she previously receive to learn A \ B. In the
process of querying CCFB , she also checks the multiplicity
field of the fingerprints that she hits, and multiplies her local
elements accordingly. In the second technique, Alice uses
previously built CCFA and linearly scans its slots. For the
non-empty ones, she flags the slot as either containing a
fingerprint of a local element, or as containing a fingerprint
of a common element that she needs to multiply. In the latter
case, she also stores the multiplicity difference. Once when
Alice knows its local elements and the multiplicity differences
the rest of the reconciliation protocol follows the steps of the
CF-based set reconciliation.

F. Error Correcting Codes-based Algorithms

Minsky et al. [11] proposed a family of set reconciliation
algorithms that use univariate polynomials to represent sets
in a manner analogous to Reed-Solomon error correcting
codes [40]. In the core approach, Characteristic-Polynomial
Interpolation (CPI), Alice and Bob maintain the characteris-
tic polynomials XA(Z) and XB(Z) such that zeros of the
polynomials represent the elements of their sets. The main
observation is

XA(Z)

XB(Z)
=
XA∩B(Z) · XA\B(Z)

XA∩B(Z) · XB\A(Z)
=
XA\B(Z)

XB\A(Z)
(3)

On the basis of this observation, they define the following
set reconciliation protocol. First, Alice and Bob exchange their
characteristic polynomials. Then, each party computes the
ratio between the two characteristic polynomials and factors
the result to learn the elements unique to the other party. After
this step, both Alice and Bob know A ∪ B. A downside of
this defined protocol would be that Alice and Bob need to
communicate their polynomials in their full over the network.
Since their characteristic polynomials grow linearly with the
sizes of sets, such a protocol could not benefit from scenarios
where d� |SA|+ |SB |.

Fortunately, Alice and Bob do not have to compute the ratio
between their characteristic polynomials directly. Instead, they

DataSet

vector<*DataObject> dataPoints

GenSync

bool clientSyncBegin(int)
bool serverSyncBegin(int)

ExtractAllMetrics()
metrics

SyncMethod

bool SyncClient(&Communicant)
bool SyncServer(&Communicant)

SyncStats mySyncStats
metrics

Communicant

bool commSend(string)
string commRecv()

synchronizes

uses
1 1..*

uses
1

1..*

Fig. 1: Simplified UML diagram of the major components of
the GenSync framework.

can evaluate their characteristic polynomials at a number of
random (non-data) points and exchange these evaluations. The
evaluations can then be divided by each other and used to
interpolate the desired rational function. Importantly, Minsky
et al. [11] show that the number of evaluations needed to
recover d symmetric differences is exactly d. Hence, the
overall communication needed for Alice to learn B \A is only
(b+ 1)d+ b bits, where b is the size of the single set element
encoding. Note that this makes CPI-based set reconciliation
almost optimal in communication. Although the computational
complexity of such defined CPI-based set reconciliation is
O(d3), it can be significantly improved using the technique
we describe in Section IV-B.

Dodis et al. [24] offer a somewhat analogous set recon-
ciliation protocol that, instead of encoding the sets into their
characteristic polynomials as in CPI-based methods, uses a
Bose-Chaudhuri-Hocquenghem (BCH) codes-based construc-
tion called PinSketch. With some optimization, their approach
allows for an O(d2) decoding algorithm.

III. GenSync FRAMEWORK

GenSync is a self-contained, open-source data reconcilia-
tion framework that is extensible by design and includes an
integrated testbed. For the sake of portability, it is written in
standard C++ and has two modes of operation. First, it can be
compiled as a shared library and used as a building block of
larger systems (i.e., in-situ mode). Second, it can be compiled
with its integrated testbed and used for experimental evaluation
(see Section III-B). Its current incarnation includes implemen-
tations of IBLT, cuckoo filter, and a variety of reconciliation
protocols based on characteristic polynomial interpolation,
including the core approach (CPI), interactive CPI (I-CPI), and
prioritized CPI (P-CPI). As the current GenSync incarnation
targets a wide range of devices, our algorithm implementations
do not rely on platform-specific optimizations (e.g., special
CPU instructions and cache hierarchies). This design decision
allows one to utilize GenSync in environments without unified
platform requirements (e.g., public blockchains). In Section V,
we utilize the GenSync framework to evaluate the efficiency
of the various protocols in a variety of practical settings.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

GenSync

GenSync

...

Communicant

TCP

Communicant

TCP

...

IBLT
SyncMethod

SyncMethod

CPI

DataObject

...
...

GenSync

DataObject

...
...

Communicant

TCP

...

SyncMethod

Cuckoo
Communicant

TCP

SyncMethod

IBLT

SyncMethod

CPI
Communicant

String
Communicant

TCP

Fig. 2: GenSync usage example. Alice synchronizes her set SA with both Bob (SB) and Chuck (SC). Each time Alice
needs to synchronize with Bob, she can choose between CPI-over-TCP and IBLT-over-TCP. Alice uses Cuckoo-over-TCP for
synchronization with Chuck.

A. Core Abstractions

GenSync’s strength lies in its versatile structure, and we
thus next discuss the purpose of the four core abstractions of
the framework. The high-level relationship between these core
abstractions is depicted in Fig. 1.

DataObject: The light-weight abstraction of a data point
is called DataObject. GenSync requires each data point
involved in reconciliation to be converted to a DataObject.
A typical mapping between data points and DataObjects is
implemented through data point hashing, where the resulting
hashes consist the unique identifiers of DataObjects. With
good hashing, we ensure the uniform distribution of the
DataObject identifiers. However, for certain applications,
such as mempool reconciliation (see Section VI), we may
assume that the data (in that case Bitcoin transaction hashes)
are already uniformly distributed binary strings that do not
need an extra hashing layer. To support arbitrary length unique
identifiers, we rely on Shoup’s Number Theory Library [41]
(NTL), a popular library that, among other data structures,
supports variable length signed integers.

Communicant: The logic that allows GenSync to work
with various underlying network protocols is encapsulated in
the Communicant abstraction. The current version of the
GenSync framework includes two Communicants: 1) TCP
socket (used in this work), and 2) C++ string (for data sets that
are disconnected in space, time, or reside on the same node).
GenSync can easily be extended to support other network
protocols (e.g., UDP or SCTP — Stream Control Transmission
Protocol [42]).

SyncMethod: The minimal common substructure for all
data reconciliation protocols. It is designed to achieve three
main goals:

1) agree on reconciliation parameters between hosts,
2) invoke data synchronization, and
3) update the host’s underlying data set.

All the reconciliation protocols currently implemented in
GenSync expose the same interface by inheriting from the
SyncMethod, and the same can be done for future new
data reconciliation protocols. The GenSync testbed (see Sec-
tion III-B) relies on the SyncMethod abstraction to report
performance metrics, that are used upstream in the framework.
This allows for a standardized experimental comparison of
existing and future protocols under different network and
compute conditions.

GenSync: The topmost abstraction that connects the data
sets, data reconciliation protocols, and communicants. When
the GenSync framework is used in-situ, the GenSync object
serves as the entry point. Typically, a user would include the
GenSync library and create a GenSync object. The recon-
ciliation starts when the peer that has invoked SyncServer
receives a connection request from a peer that has invoked
SyncClient [28].

Usage Example: As depicted in Fig. 1, the GenSync
object may sequentially initiate data reconciliation with mul-
tiple peers, where each peer may use its own Communicant
and SyncMethod. This enables simultaneous reconciliation
of many hosts, possibly using different algorithms for different
host-pairs. For example, when Alice needs to reconcile her
data set with both Bob and Chuck, she may first probe the
bandwidth on both Alice-Bob and Alice-Chuck connections.
Based on her observations, Alice may decide to run one
algorithm on the Alice-Bob and the other on Alice-Chuck
connection. Fig. 2 depicts such a complex usage scenario.

B. GenSync Testbed

To evaluate the performance of the GenSync algorithms,
we need a testbed that allows for 1) network parameters
adjustments, and 2) isolation of the server and client execution
environments. We address these requirements by combining
our testbed with the Mininet [43] network emulator.

We use Mininet to emulate the network conditions (i.e.,
bandwidth, latency and packet loss) between the two peers
relying on the single-switch-two-nodes topology. For the pur-
poses of the asymmetrical bandwidth emulation, we rely on
the Traffic Control [44] feature of the Linux kernel.

Additionally, Mininet exposes access to core Linux kernel
virtualization functions, which allow for execution environ-
ment isolation. For the purpose of the GenSync testbed, we rely
on Linux cgroup capabilities and the kernel’s Completely
Fair Scheduler [45]. In conjunction with the information from
the PassMark benchmark database [46], we constrain the
computing power of the nodes to reflect the single-core per-
formance of the modeled CPU’s. More precisely, our testbed
configures the cgroup parameters to assure that the emulated
nodes consume only the desired fraction of the host machine’s
CPU single core capacity.

Limitations: The host machine and the virtualization
techniques that we use impose some technical limitations to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Algorithm
class Communication Computation Multiset Set of sets Prioritized Interactive

CBF [26] O(d) O(|SA|+ |SB |) 3 7 7 7
CPI [11] (b+ 1)d+ b O(d3) 7 7 3 3

BCH [24] d · b O(d2) 7 7 7 7
IBLT [19] O(d) O(d) 3 [35] 3 [49] 7 3
CF [21] O(|SA|+ |SB |) O(|SA|+ |SB |) 3(via CCF [18]) 7 7 7

TABLE II: Asymptotic communication and computation complexities for the set reconciliation algorithms from the literature.
For each algorithm, we indicate its suitability for the four common variations of the set reconciliation problem.

the GenSync testbed. For example, the single core performance
of the CPU that runs our testbed (host machine) imposes
an upper limit on the compute power of the nodes we can
emulate. In this work, we use a dedicated testbed host with
an Intel Core i7-7700 CPU, v5.10.11 Linux kernel,
and v2.14.1 Open vSwitch [47]. On the other hand, the net-
work parameters of the GenSync testbed are constrained by the
capabilities of the Mininet emulator. For example, Mininet’s
packet loss model does not capture network mobility.

Since our testbed is integrated into the GenSync frame-
work, it allows users to independently experiment with the
implemented algorithms. For instance, GenSync users can run
the testbed within their own environments and adjust both
computational and network parameters to gain insight beyond
the configurations used in this paper. Moreover, the modularity
of GenSync allows users to overcome technical limitations
of the existing testbed. For instance, users may decide to
execute the GenSync Runners [28] in a network emulator
that better captures wireless network dynamics (e.g., Mininet-
WiFi [48]).

IV. ANALYTICAL COMPARISON

In this section we focus on various factors that affect the
performance of set reconciliation algorithms. To this end, we
evaluate the asymptotic communication and computation be-
havior of the algorithms included in GenSync and summarize
these behaviors in Table II. We categorize the algorithms ac-
cording to the four common variations of the set reconciliation
problem;

1) multiset reconciliation (storing multisets not sets),
2) sets of sets reconciliation (storing sets of sets),
3) prioritized reconciliation (tagging elements with priori-

ties), and
4) interactive reconciliation (reconciling in multiple rounds

of communication)
For sake of brevity, we do not explicitly describe the recon-
ciliation of multisets and sets of sets in this work.

We next focus on techniques that aid with symmetric dif-
ference estimation, followed by a discussion of the accuracy-
performance tradeoffs in the IBF and IBLT-based algorithms.

A. Symmetric Difference Upper Bound

The problem of establishing a tight bounds on the number
of mutual differences (d) between remote sets is common to
many set reconciliation protocols including the ones based
on IBF, CBF, IBLT, and non-interactive CPI-based protocols.

Such a bound is significant because better initial upper bound
estimates may reduce the amount of information transferred
over the network during reconciliation. On the other hand, an
underestimate of d may cause some reconciliation protocols
to fail.

In the general case, the problem of determining the exact
size of mutual differences between remote hosts requires
as much communication as a full set reconciliation [50].
For that reason, it is practical to rely on the heuristic ap-
proaches such as comparing random samples [51] and min-
wise sketches [52], [53]. Although these heuristics may suffice
when there are many differences among the sets, their accuracy
deteriorates as the ratio of the mutual differences to overall set
size decreases.

To address this deficiency, Eppstein et al. [19] propose the
strata estimator (an approach that resembles the probabilistic
distinct elements counter of Flajolet and Martin [54]). In the
context of b-bit words, the strata estimator E represents a
hierarchy of b IBF’s of some constant size C (say, C = 80
buckets). As the first step in the reconciliation protocol, Alice
inserts her elements into her strata estimator such that each
element x is inserted into EA[i], where i is the number of
trailing zeros in the binary representation of x. Alice then
sends her strata estimator EA alongside with her main IBF to
Bob. By the same token, Bob builds his EB and then computes
EB [i]− EA[i] for i ∈ {b− 1, ..., 0}.

At each step, Bob decodes EB [i] − EA[i]. If decoding
succeeds, he adds the count of the decoded elements to a
global sum c. Otherwise, Bob terminates the process and
estimates the number of differences as 2i

∗
c, where i∗ is the

level at which the decoding process failed. After Bob has
estimated d, he can build his own main IBF and continue
the reconciliation as in Section II-C.

The strata estimator gives accurate estimations of d only
when d is small relative to the set sizes. In other cases, one
may opt for a carefully gauged combination of strata estimator
and Min-wise sketches that sums up to a predetermined
constant size [19], [55]. Importantly, not all the reconciliation
protocols included in GenSync need an initial set difference
size estimate. Interactive CPI that we discuss next is one such
example.

B. Interactive CPI

Minsky and Trachtenberg [27] have proposed a variation
of the base CPI approach called partitioned set reconciliation.
This is a “divide-and-conquer” algorithm that relies on re-
cursive partitioning of the space of all bitvectors of size b

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

until a CPI reconciliation with some constant upper bound on
symmetric differences size (m) succeeds.

The “divide-and-conquer” algorithm begins by trying to
reconcile all the differences at once using a small fixed m.
As this may fail due to an underestimated m < d, Alice and
Bob partition the bitvector space into p non-overlapping sub-
partitions, Pi, i ∈ {1..p}, and invoke CPI on each of the
sub-partitions. During the process of recursive partitioning,
both Alice and Bob maintain an auxiliary data structure called
p-tree. The nodes in p-tree represent the sub-partitions and
each sub-partition can be in one of the three states; 1) ac-
tive (sub-partition is currently being reconciled), 2) terminal
(reconciliation succeeded at this sub-partition), and 3) inactive
(reconciliation not yet attempted at this sub-partition). The
algorithm completes when the entire bitvector space gets
covered by terminal sub-partitions. The correctness of this ap-
proach relies on the fact that for all pairs of sets (SA, SB) and
their non-overlapping partitions Pi such that SA,B = ∪iPi,
where i ∈ {0..p}, we can reconcile each SA∩Pi with SB∩Pi
individually. That is, SA ∩ Pi = SB ∩ Pi for all i implies
SA = SB . As the described protocol involves multiple rounds
of communication, one per each active or terminal node in the
p-tree, we refer to the partitioned reconciliation approach as
interactive CPI (I-CPI).

It should be noted that not all the set reconciliation ap-
proaches implemented by GenSync have an embedded mech-
anism for detecting reconciliation failure. For example, the
cuckoo filter-based protocol as described in Section II-D does
not include a mechanism to detect that the reconciliation has
failed. On the other hand, CPI-based algorithms can detect
that the reconciliation has failed simply by observing that the
rational function interpolation has failed due to an insufficient
number of evaluation points [11].

I-CPI With Priorities: Jin et al. [20] propose P-CPI as
a CPI-based set reconciliation protocol for the sets where
some elements have higher priority than the others. The
protocol guarantees that the elements with a higher priority
get reconciled first and considers the scenario in which Alice
and Bob communicate over a disruptive network (i.e., the
communication channel may be cut at any moment). In the
moment of the network failure, when Bob becomes unreach-
able, Alice would prefer to have received the maximal fraction
of the high-priority elements from SB \ SA. In other words,
if the reconciliation protocol gets interrupted at some point
before the reconciliation of all the high-priority elements has
completed, all the reconciled elements will be the high-priority
ones. Conversely, if any low-priority elements are reconciled,
then all the high-priority elements are already reconciled
before that.

P-CPI is also a “divide-and-conquer” approach and can be
seen as a generalization of I-CPI of Minsky and Trachten-
berg [27]. In P-CPI, Alice’s and Bob’s sets are first divided
into subsets by priority of their elements and the ratio of
the high-priority elements to the size of the set is denoted
as η (when η = 1, P-CPI is equivalent to I-CPI). Next, the
subsets are sorted in the decreasing order of their priorities
and I-CPI is invoked on each subset as previously described
in Section IV-B. Based on the results in [27], the maximum

number of CPI invocations is

I(m) ≤ 1 +
m

m
pdb logp(2)e (4)

Taking into account that one invocation of CPI requires
computation that is Θ(bm3 + bmk) [27], we have that the
worst-case computational complexity of P-CPI is [27]

Θ

(
mm2b2

p

log p

)
.

From the same reference, we see that the worst-case com-
munication complexity of P-CPI is Θ(m p

log pb
2), since the

communication complexity of CPI is Θ(mb). However, for
certain applications, such as the one from Section VI, we can
safely assume that the set differences are uniformly distributed
over GF (2b). In that regards, Jin et al. [20] give the following
theorem.

Theorem 1: When there are two sets with ηm uniformly
distributed symmetric differences, P-CPI reconciliation makes
O(ηm log(ηm)) invocations to CPI, with probability at least
1− 1

ηm .
As a corollary, the computational cost of I-CPI is O(m ·

ηbm(m2 + k) · log(ηm)) with high probability. To generalize
and clarify the conclusions of Jin et al. [20], we give a revised
proof of Theorem 1 in Appendix A. We further demonstrate
the practical benefits of I-CPI in Section V-E as the part of
our experimental evaluation.

C. IBF and IBLT

To make IBF’s and IBLT’s practical for set reconciliation,
one needs to ensure that their decoding (“peeling”) operation
succeeds with a high probability. Otherwise, Alice and Bob
will not be able to fully list the elements from the result of
the subtraction between their corresponding IBF’s. A failure
in listing the result of the subtraction results in the failure
of the reconciliation protocol. To this end, we must set
the appropriate parameters so that IBFA and IBFB are
sufficiently large at the start of reconciliation. At the same
time, there is a desire to minimize the communication cost of
the reconciliation protocol, leading to a preference for smaller
IBF’s.

Eppstein and Goodrich [19] have shown that for a fixed d,
the listing of IBFA − IBFB fails with probability at most
O(d−k), where k is the number of hash functions used in
IBF’s. Since the number of cells in the IBF’s is proportional
to d, this implies that larger IBF’s have a lower probability of
decoding failure.

For certain applications, it is desirable to optimize over a
fixed decode success rate (p). In such cases, one may fix d and
p and exhaustively search through the space of IBF parameters
to find the optimally small ones. For the difference set sizes d
below 1000 and the minimum of 95% probability of decode
success, Ozisik et al. [1] have inferred the parameters that
yield optimally small IBF’s using such an exhaustive search.
We will use these optimized parameters in our experimental
evaluation of Section V.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Total time to reconcile (TTR)
Bob

 Alice

Message 0 Message n

Time

...
Pre-processing Post-processing

Fig. 3: Generic set reconciliation protocol structure and total
time to reconcile (TTR).

Config.
Name

Latency
(ms)

Bandwidth
(Mb/s)

Packet loss
(%)

Mobile Broadband

I 30 18 10−1

II 20 35 10−3

III(a) 1 20 10−1

III(b) 1 0.1 10−1

Consumer Internet

IV 10 60 10−1

IV (a) 10 12/16
(uplink/downlink)

10−3

TABLE III: Network configurations chosen to mimic both
mobile broadband and consumer internet networks. We con-
sider both symmetrical and asymmetrical bandwidth internet
connections.

V. EXPERIMENTAL PERFORMANCE COMPARISON

We next conduct a series of experiments to assess the per-
formance of the GenSync protocols under practical networking
and computational constraints. In particular, we are interested
in measuring:

1) communication cost;
2) total time to reconcile (TTR).

We define the communication cost as the number of bits
transmitted between Alice and Bob until SA == SB , and
TTR as the total wall-clock time elapsed until this happens
(see Fig. 3). More precisely, we start our measurements at the
moment that Alice initiates the process and stop when Alice
learns that the set reconciliation has succeeded. Depending
on the specific reconciliation protocol being used, Alice may
learn this information on her own or through a status message
received from Bob. However, for the purpose of this work, we

Config.
Name Alice’s CPU Bob’s CPU

B Apple A13 Bionic
@2.7 GHz

Apple A13 Bionic
@2.7 GHz

C Intel Core i7-7700
@3.6 GHz

Intel Core i7-7700
@3.6 GHz

CA Intel Core i7-7700
@3.6 GHz

Samsung Exynos 9810
@2.3 GHz

CB Intel Core i7-7700
@3.6 GHz

Apple A13 Bionic
@2.7 GHz

TABLE IV: Compute configurations include both symmetrical
(i.e., A, and B) and asymmetrical (i.e., CA and CB) compute
scenarios.

set the parameters of all benchmarked algorithms such that the
reconciliation succeeds for all experimental runs.

The network configurations that we consider in this work
are given in Table III. Configurations I and II roughly em-
ulate mobile broadband networks with different performance
and their parameters are derived from available measurement
research [56], [57]. Configurations III(a) and III(b) corre-
spond to low-latency-low-bandwidth networks that will be of
interest later in Section V-D. Configurations IV and IV (a)
emulate typical internet connections and their parameters
are drawn from popular low-end residential internet provider
plans. Note that IV emulates a symmetrical bandwidth sce-
nario whereas IV (a) emulates an asymmetrical one that, for
example, may occur in some DOCSIS [58] implementations.

Computational constraints: To model various computa-
tional constraints, we use the four compute configurations
shown in Table IV. Note that we consider both symmetri-
cal and asymmetrical computation. The former refers to the
process of reconciliation between the devices with equally
powerful CPU’s, the latter refers to the scenarios where
devices have CPUs of differing power. We use the single-letter
configuration names to denote the symmetrical cases and two-
letter names to denote the asymmetrical ones. We also use the
ordered pair (N,C) to denote the configuration that consists
of network configuration N and compute configuration C.

A. Impact Of Set Difference Size

In the first set of experiments, we fix the set sizes, compute,
and network configurations for both Alice and Bob while
varying the difference size (d). Each experiment is repeated
100 times and the measured quantities are reported with 95%
confidence interval.

As shown in Fig. 4(a), IBLT requires the least amount of
time to complete the reconciliation for the small numbers
of set differences relative to the set sizes. Both CPI and
cuckoo protocols perform around 40% worse than IBLT in
these scenarios. As suggested by the results in Fig. 5(a), the
TTR performance of the cuckoo protocol can be attributed
to its non-optimal communication cost, proportional to the
size of the sets of Alice and Bob (see Table II). The TTR
performance of CPI can be attributed to its computational
complexity disadvantage over IBLT (i.e., roughly cubic in d
for CPI and linear for IBLT).

Note also that the TTR of I-CPI sharply increases at the
point when it needs to perform multiple rounds of commu-
nication (i.e., at d = 32, emphasized using vertical lines in
Fig. 4). Intuitively, the more rounds of communication needed,
the more time spent idle, waiting for data to arrive, relative
to the calculation time of the CPI algorithm. In other words,
when there are multiple rounds of communication, the network
latency becomes the bottleneck.

Considering Fig. 4(b), we observe that, as the amount
of mutual differences approaches 10% of the set sizes (i.e.,
d = 103), the TTR performance of the cuckoo filter-based
protocol approaches the TTR performance of the IBLT-based
protocol. As suggested by Fig. 5(b), at the higher d values, the
communication cost of IBLT and cuckoo approach each other.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

0 25 50 75 100
Set difference size (d)

0.4
0.5

1

3
4
5

TT
R

 (
s) CPI

I-CPI (m=32)
IBLT
Cuckoo

(a) d ranges from 0 to 100.

0 250 500 750 1000
Set difference size (d)

0.3
0.5

1

10

TT
R

 (
s) CPI

I-CPI (m=256)
IBLT
Cuckoo

(b) d ranges from 0 to 103.

Fig. 4: TTR when |SA| = |SB | = 104 in the (I, C) configu-
ration (log scale).

0 25 50 75 100
Set difference size (d)

102

103

104

B
yt

es

CPI
I-CPI (m=32)
IBLT
Cuckoo

(a) d ranges from 0 to 100.

0 250 500 750 1000
Set difference size (d)

102

103

104

105

B
yt

es

CPI
I-CPI (m=256)
IBLT
Cuckoo

(b) d ranges from 0 to 103.

Fig. 5: Communication cost when |SA| = |SB | = 104 in the
(I, C) configuration (log scale).

Since IBLT and cuckoo-based protocols also have comparable
computational complexities as d approaches |SA| = |SB |, this
implies that when their communication costs converge so does
their TTR performance.

Fig. 4(b) also suggests that when the mutual differences con-
sist of a significant portion of the sets, the TTR performance
of the CPI-based protocols deteriorates as the number of dif-
ferences increases. That is, when the number of differences is
sufficiently high, computation becomes the bottleneck for the
CPI-based protocols. This effect conforms with our analysis
in Section IV.

B. Impact Of Set Size

Next, we fix the number of differences (e.g., d = 30) and
vary the sizes of sets kept by Alice and Bob. For each set
size, we run 100 experiments using the (I, C) configuration
(as described in Tables IV and III). As shown in Fig. 6(a),
CPI-based protocols have a 25-300% worse TTR performance
than IBLT as set size ranges from 100 to 106. Although the

102 103 104 105 106

Set sizes

0.40.5

1

9

TT
R

 (
s)

CPI
I-CPI (m=32)
IBLT
Cuckoo

(a) TTR

102 103 104 105 106

Set sizes

103

104

105

106

B
yt

es

CPI
I-CPI (m=32)
IBLT
Cuckoo

(b) Communication

Fig. 6: Difference size d = 30. Set sizes |SA| = |SB |
vary from 100 to 106 (in (I, C) configuration). TTR and
communication cost shown in log scale.

0 20 40 60 80 1000.3
0.4
0.5
0.6
0.7
0.8
0.9

config. (,)

0 20 40 60 80 100

config. (,)

0.0 0.2 0.4 0.6 0.8 1.0
Set difference size (d)

0.00

0.25

0.50

0.75

1.00

TT
R

 (
s)

CPI IBLT Cuckoo

(a) Network configuration I.

0 20 40 60 80 1000.2
0.3
0.4
0.5
0.6
0.7
0.8 config. (,)

0 20 40 60 80 100

config. (,)

0.0 0.2 0.4 0.6 0.8 1.0
Set difference size (d)

0.00

0.25

0.50

0.75

1.00

TT
R

 (
s)

CPI IBLT Cuckoo

(b) Network configuration II.

Fig. 7: The impact of the network performance and available
computing power to TTR-performance. Symmetric compute
(left) versus asymmetric compute (right).

TTR performance of all the protocols deteriorates as the set
sizes increase, IBLT remains dominant. Note that the TTR
performance of the cuckoo-based protocol is comparable to the
performance of CPI-based protocols as long as the set sizes are
sufficiently small. Once when the sets reach a critical size, the
TTR performance of cuckoo drastically deteriorates as the size
of the sets increases. On the other hand, the TTR performance
of the CPI protocol only slightly worsens for large sets.

C. Impact Of Compute And Network Parameters

To compare the GenSync protocols across various network
and compute contexts, we fix the size of reconciling sets to 104

and consider relatively small numbers of mutual differences
(i.e., from 0 to 100). For such defined sets, we emulate the
reconciliation between the following devices: 1) server-to-
server (C), 2) low-end smartphone and the server (CA), and 3)
high-end smartphone and the server (CB) (see Appendix B).
Additionally, each of these compute configurations is emulated
in the context of networks I , II , IV , and IV (a) from
Table III. Further in this section, we outline the major network
and compute parameters that affect the TTR performance of
the GenSync algorithms.

Comparing the two system configurations (config. (I, C)
and config. (I, CA)) from Fig. 7(a) to their counterparts
(config. (II, C) and config. (II, CA)) from Fig. 7(b), we
observe that the network performance has a significant impact
on the performance of the reconciliation protocols. All the
protocols that we consider improve their average performance
under better network conditions (i.e., network configuration
II). The improvement ranges from 16% (for IBLT in compute
configuration CA) to 43% (for Cuckoo in compute configura-
tion C).

Even more important is that there is no dominant reconcil-
iation protocol across all the compute configurations. While
for the compute configuration C (symmetric compute), IBLT-
based protocol exhibits the best TTR performance, for the
compute configuration CA (asymmetric compute), cuckoo-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

0 50 100
Set difference size (d)

0.06

0.08

0.10

0.12

0.14

TT
R

 (
s)

CPI
IBLT

(a) 20 Mb/s bandwidth
III(a)

0 25 50 75 100
Set difference size (d)

0.2

0.4

0.6

TT
R

 (
s)

CPI
IBLT

(b) 0.1 Mb/s bandwidth
III(b)

Fig. 8: TTR for |SA| = |SB | = 104. Compute configuration
C. 95% confidence interval. 100 iterations per point.

based protocol is dominant. As we can see in config. (II, CA))
from Fig. 7(b), the cuckoo filter-based protocol overtakes IBLT
for all set difference sizes and both network configurations
(i.e., I and II). For 20 < d ≤ 100, cuckoo also dominates
CPI, while for very small set difference sizes (i.e., d < 20),
cuckoo and CPI have comparable performance.

The domination of the cuckoo-based protocol in the condi-
tions of highly asymmetrical compute (i.e., CA) appear to be
related the following factors; 1) faster decode time of cuckoo
filter relative to IBLT, and 2) relatively small size of sets with
respect to the available bandwidth. As previously mentioned in
Sections II-E, the decoding process of cuckoo filters consists
of looking up each set element, where each lookup can
be done in constant time. However, the decoding process
of IBLT requires a computationally more intensive process
often referred to as ‘peeling”. Since the TTR performance
is bounded by the computation power of the computationally
less efficient peer, the simplicity of cuckoo lookup procedure
results in a better TTR performance. On the other hand, the
inefficient communication of the cuckoo-based protocol is not
a bottleneck as long as the network bandwidth is sufficiently
large relative to the set sizes.

Unlike the case of asymmetrical compute power of the
nodes, asymmetrical network bandwidth is not a decisive
factor in determining the best GenSync reconciliation protocol
as long as the bandwidth in any direction is not a bottleneck.
The experimental results that support these conclusions are
presented in Appendix B. In the next section, we discuss the
best protocol choice when there is a bandwidth bottleneck.

D. Impact Of Low Bandwidth

Besides the asymmetrical compute, the best reconciliation
protocol choice may also be determined by the network
conditions. For example, when a low-latency network offers
just a fraction of its bandwidth to the reconciliation protocol.
To capture such a scenario, we construct the two low latency
network configurations III(a) and III(b) as in Table III, and
run our experiments in the compute configuration C, while
keeping the set sizes at 104.

As depicted in Fig. 8(a), when the full bandwidth is dedi-
cated to the reconciliation protocol, IBLT performs no worse
than CPI for all values of d. However, when the available
bandwidth drops to 0.1Mb/s, as in Fig. 8(b), the performance

0 20 40 60 80 100
Round

0.25

0.3

0.33

0.35

TT
R

 (
s)

pd=1%
pd=2%
pd=3%
pd=10%

(a) I-CPI

0 20 40 60 80 100
Round

0.5
1

10

60

TT
R

 (
s)

pd=1%
pd=2%
pd=3%
pd=10%

(b) CPI (log scale)

Fig. 9: TTR in each round. Configuration (II, C).

of IBLT deteriorates significantly. Although for 0 < d ≤ 30
the TTR of CPI and IBLT are comparable, for d > 30 CPI
dominates IBLT and at d = 100 becomes 5x better than IBLT.
The linear increase of TTR in the case of IBLT-based protocol
may be attributed to its sub-optimal communication cost. On
the other hand, as shown in [11], the CPI-based protocol
has near optimal communication cost. When bandwidth is the
bottleneck, the communication-optimal protocol also becomes
the best protocol choice.

E. Benefits Of Interactive Protocols

The high-level applications that utilize GenSync may use its
set reconciliation protocols in two distinct ways; 1) cold start,
and 2) incremental reconciliation. The first case occurs when
an application chooses not to keep any reconciliation-related
data between two invocations to the reconciliation protocol
(e.g., to optimize for memory usage). The second case occurs
when an application reconciles the same data set repeatedly
many times and chooses to keep the reconciliation-related state
between the invocations to the reconciliation protocol. In this
section, we produce a set of experiments for comparing the
effectiveness of interactive and non-interactive protocols for
incremental reconciliation. In particular, we will focus on CPI
and its interactive counterpart I-CPI.

As a matter of background, recall that interactive protocols
such as I-CPI maintain reconciliation state over time (as
described in Section IV-B). In the case of I-CPI, the state is
represented as a p-ary tree that evolves as the reconciling sets
change. The first invocation to I-CPI creates the p-ary tree,
while each subsequent invocation operates on an existing data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

structure and thus spends less time in the pre-processing phase.
We proceed to demonstrate the comparative advantage that I-
CPI has over CPI in the context of incremental reconciliation.

Consider a reconciliation between Alice and Bob where they
agree to reconcile after they each add N = 100 elements to
their sets, and stop when the sets reach 104 elements (i.e.,
there will be 100 rounds of reconciliation in total). We make
a few simplifying assumptions to aid with our evaluation: (i)
we assume that additions to SA and SB happen in parallel at
roughly the same time, and (ii) each element x that is being
added to SA is either new to Alice (i.e., x /∈ SA), or new to
both Alice and Bob (i.e., x /∈ SA ∪ SB). This is likewise the
case for any y being added to SB . We define pd to be the
probability that any elements (x, y), where x is about to be
added to SA and y to SB , are new both to Alice and Bob (i.e.,
{x, y} 6⊂ SA∪SB). Note that such x and y will end up as the
symmetric differences between Alice and Bob.

For various values of pd, we evaluate CPI and I-CPI
protocols while keeping our testbed in configuration (II, C)
for all experiments. Fig. 9(a) shows that the TTR performance
of I-CPI is close to constant across all rounds and almost
identical for all values of pd. That is, I-CPI exhibits a stable
TTR performance as the set sizes increase as long as the
number of differences being reconciled in each round is close
to constant.

On the other hand, the TTR performance of the non-
interactive version (CPI) is significantly worse than I-CPI
when it comes to incremental reconciliation. As shown in
Fig. 9(b), the TTR performance of CPI is negatively affected
both by the size of the sets and by the higher values of pd.
These trends appear to be due to the fact that CPI does not
keep any reconciliation-related state between the rounds. Thus,
it cannot benefit from any differences already reconciled in the
previous rounds. On top of that, there is another significant
disadvantage of CPI over I-CPI in the context of incremental
reconciliation; it requires an upper bound on the number
of symmetric differences (d). Although in our experiments
this information can be derived from pd, in some practical
applications pd may not be known. As previously mentioned
in Section IV-B, I-CPI does not require such a bound.

Besides I-CPI, GenSync offers other protocols that support
interactive reconciliation. For example, the IBLT protocol may
also be used in the interactive mode. When that is the case,
then both Alice and Bob maintain their corresponding tables
over time, inserting new elements as they arrive. However,
as discussed in Section IV-C, the number of inserted elements
may affect the IBLTs ability to decode, consequently affecting
the accuracy of reconciliation. For this reason, it is necessary
to ensure that IBLT’s have sufficient capacity. One way to
address this shortcoming is to periodically rebuild the IBLT as
it fills up. As IBLTs are not adjustable in size, it is necessary
recreate them by decoding the old table and reinserting its
elements into the new table. The accuracy of I-CPI, on the
other hand, does not deteriorate as the new elements arrive.

F. Summary of Findings
We summarize our overall insight into choosing the best

protocol in GenSync as follows:

(A) IBLT is the best choice for symmetrical computational
resources, sufficient bandwidth (at least tens of Mb/s),
and a small ratio of set differences to set size (≤ 10%).

(B) Cuckoo is the best choice for asymmetrical compute and
set sizes close to 104 as long as bandwidth is sufficiently
high (approximately tens of Mb/s).

(C) CPI is the best choice for the low latency (tens of ms)
but low bandwidth (hundreds of Kb/s) conditions.

Among the protocols considered, CPI is the closest to the
information-theoretic communication minimum [11].

VI. BITCOIN DATA SET EVALUATION

We next describe the use of our framework on a practical
data set taken from the Bitcoin network. We expect that this
approach can be used as a template for evaluating reconcilia-
tion performance in other applications of interest.

Application Scenario : In the following experiments, we
reconcile the mempools of two neighboring Bitcoin full nodes.
These pools maintain the Bitcoin transactions that a node has
received but not yet included in a block of the underlying
blockchain. More precisely, we conduct experiments that rec-
oncile the sets of 32-byte long transaction identifiers generated
by the two invocations of the SHA256 hash function (i.e.,
identifiers are uniformly distributed in GF (2256)). Our exper-
imental setting is motivated by the results of Imtiaz et al. [3],
which have recently shown that synchronization of mempools
can significantly impact the average transaction propagation
delay in the event of churn (intermittent connection between
peers). To increase the synchronization among neighboring
peers, they proposed a proof-of-concept scheme called Mem-
poolSync and implemented it in the Bitcoin software. However,
the authors did not attempt to make their scheme efficient.
Instead, they suggested replacing their scheme with a set
reconciliation protocol in the future. As GenSync supports
comparison of various protocols, we utilize this framework to
gain insight into which protocol would be a good replacement
for MempoolSync. Note that GenSync could be integrated as
a library in the Bitcoin software, if desired (as discussed in
Section III).

Data Collection : To collect the experimental data sets,
we have conducted a three day long measurement campaign
on two live Bitcoin nodes and collected the snapshots of
their mempools each minute. Altogether, we collected a data
set that consists of 4320 pairs of sets (SA and SB) where
each set represents the collection of non-verified Bitcoin
transaction identifiers. Fig. 10 summarizes the outcomes of our
measurement campaign. Note that the mean set size (|S|) is
40835, while the mean size of the set of symmetric differences
(d) is 1930. On average, the two sets differ in about 4.7% of
their elements. However, both the standard deviations of the
set sizes and difference sizes are relatively high: 10654 and
656, respectively.

Results Analysis : To emulate our network of interest,
we utilize the GenSync testbed in the configuration (I, C) (see
Section III-B for hardware/software specification) . In other
words, we assume that the neighboring Bitcoin nodes have
symmetrical computing power. We then sequentially execute

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Day 1 Day 2 Day 3
25

50

×103

|SA|
|SB|

Day 1 Day 2 Day 3

2.5
5.0
7.5 ×103

d

(a) Over time.

20 40 60
|S| ×103

0.00

0.25

0.50
×103

2.5 5.0 7.5
d ×103

0.0

0.5

1.0

×103

(b) Overall.

Set size
(|SA| or |SB |)

Difference size
(d) d / (|SA| or |SB |)

min 17080 379 ≈ 0.76%
max 66401 7300 ≈ 16.7%

(c) Extreme values.

Fig. 10: Distribution of mempool sizes (|SA| and |SB |) and
symmetric difference sizes (d).

IBLT Cuckoo CPI

100

101

102

(a) TTR (s)

IBLT Cuckoo CPI
0

48

96

144

192

240

(b) Communication cost (KB)

Fig. 11: GenSync protocols applied to mempool reconciliation.
Configuration (I, C). 95% confidence intervals.

the reconciliation protocol on each pair of sets in the cold
start mode and measure the TTR and communication cost.
As shown in Fig. 11(a), the IBLT protocol exhibits the best
mean TTR performance among the benchmarked GenSync
protocols (around 600ms with a low variance). Applied to the
problem of mempool reconciliation, this result may suggest an
initial estimate on the maximum frequency of reconciliation.
Roughly speaking, since IBLT reconciles the mempools within
a second, Bitcoin full nodes may decide to reconcile their
mempools each second.

However, as shown in Fig. 11(b), the communication cost
of IBLT is only slightly worse than cuckoo, but significantly
inferior when compared to CPI. Thus, there is a trade-off
between the maximum frequency of reconciliation and the
consumed bandwidth. Additionally, as we discussed in Sec-
tions V-C and V-D, the latency and bandwidth variations of
the network of interest should also be taken in consideration.

It is also important to emphasize that cuckoo protocol has
a better mean communication cost when compared to IBLT
for this data set. Considering only the analytical results from
Table II, this may seem surprising. The communication cost of

cuckoo filter-based reconciliation protocol is O(|SA|+ |SB |),
while the communication cost of the IBLT-based protocol is
only O(d). However, as we discussed earlier in Section V-A, as
the ratio between the difference size and the set sizes increases,
the actual communication costs of the two protocols converge.
Recalling Fig. 5(b), as this ratio exceeds 10%, the actual
communication cost of IBLT becomes worse than cuckoo.
Since for the data set in Fig. 10 and the (I, C) network and
computation parameters cuckoo filter-based protocol achieves
a comparable mean TTR performance (under 1s), it may be
a plausible alternative to IBLT. Furthermore, if we need to
optimize for bandwidth, then CPI-based methods should also
be considered. As we have demonstrated in Section V-E, the
TTR performance of CPI-based methods can be significantly
improved when its interactive version is utilized. However,
this optimization comes at a cost of increasing the rounds of
communication. When the network latency is high, multiple
rounds of communication may significantly affect the TTR
performance. This trade-off has been discussed in Section V-A.

VII. CONCLUSION

In this work, we produced a taxonomy of several prominent
set reconciliation approaches and compared their analyti-
cal properties focusing on communication and computation
complexity. For the purpose of a standardized experimental
evaluation, we introduced a novel metric called total time to
reconcile (TTR) that captures key system properties, such as
network conditions and compute capabilities of the peers. To
assist with experimental evaluation, we produced GenSync,
an open-source data reconciliation framework with an inte-
grated testbed that unifies a number of popular protocols.
Unlike previous approaches, GenSync allows for a methodical
comparison among the protocols in a wide range of practical
system conditions. Thus, GenSync can be utilized for deter-
mining the best protocol for a given system model. Thanks
to its modularity, GenSync can both serve as a benchmarking
tool and as a library to be integrated in existing software.
We have leveraged the GenSync testbed to evaluate each
reconciliation protocol across a set of exemplar network and
compute parameters.

In all, we found that the optimal choice of the reconciliation
protocol depends significantly on a number of factors, includ-
ing statistical properties of data being reconciled, network
bandwidth and latency, symmetry of the computing power
of peers, and whether reconciliation is done in cold start
or incremental mode. Indeed, our experiments show that (i)
IBLT-based reconciliation exhibits the best performance when
bandwidth is not a bottleneck and peers have similar com-
putational power; (ii) cuckoo-based reconciliation dominates
when bandwidth is sufficiently high but there is a gap in
computational power of peers, and (iii) CPI-based approaches
perform best when there is a bandwidth bottleneck.

More generally, our experiments have shown that a poor
choice of reconciliation protocols may lead to up to a 5x
hit in performance. Moreover, when it comes to incremental
reconciliation, we have found that the interactive protocols
(e.g., I-CPI) may exhibit multiple orders of magnitude bet-
ter performance than their non-interactive counterparts. We

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

showcased some of these effects (and the evaluative power
of GenSync) concretely through a measurement campaign on
two live Bitcoin full nodes, examining the effects of different
reconciliation protocols for mempool reconciliation.

Our conclusions demonstrate that the reasoning about the
performance of set reconciliation protocols in practical con-
texts is a complex task that can benefit from an integrated
framework and testbed such as GenSync.

An important area for future work is to extend our frame-
work to include adaptive set reconciliation protocols. Although
some systems are designed for a narrow range of system
parameters, other need to tolerate larger parameter fluctuations
(e.g., bandwidth and available compute) without interruption
or losing performance. Future work should focus on meeting
the requirements of such systems through adaptive solutions
that can switch between reconciliation protocols dynamically
in response to large fluctuations of system parameters.

ACKNOWLEDGMENT

We want to thank Sean Brandenburg, Eliezer Pearl, Zifan
Wang, and Shubham Arora for contributing code to an earlier
version of GenSync. Furthermore, we want to thank the anony-
mous reviewers for the valuable comments and suggestions
that lead us to the final version of this work.

REFERENCES

[1] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: Efficient interactive set reconciliation applied
to blockchain propagation,” in Proceedings of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 303–317, doi:
https://doi.org/10.1145/3341302.3342082.

[2] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschast-
nikh, “Erlay: Efficient transaction relay for bitcoin,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 817–831, doi:
https://doi.org/10.1145/3319535.3354237.

[3] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis,
“Churn in the bitcoin network,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1598–1615, 2021, doi:
https://doi.org/10.1109/TNSM.2021.3050428.

[4] D. Chen, C. Konrad, K. Yi, W. Yu, and Q. Zhang, “Robust set
reconciliation,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 135–146,
doi: https://doi.org/10.1145/2588555.2610528.

[5] M. Mitzenmacher and R. Pagh, “Simple multi-party set reconciliation,”
CoRR, vol. abs/1311.2037, 2013. [Online]. Available: http://arxiv.org/
abs/1311.2037

[6] M. Stonebraker, “In search of database consistency,”
Commun. ACM, vol. 53, no. 10, p. 8–9, oct 2010, doi:
https://doi.org/10.1145/1831407.1831411.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: Amazon’s highly available key-value store,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, p. 205–220, oct 2007, doi:
https://doi.org/10.1145/1323293.1294281.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju,
H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas, “Windows
azure storage: A highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, ser. SOSP ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 143–157, doi:
https://doi.org/10.1145/2043556.2043571.

[9] S. J. Roy, D. Grenader, and O. Lvovitch, “Managing operations between
heterogeneous file systems,” Jan. 24 2019, US Patent App. 16/040,375.

[10] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “Sporc:
Group collaboration using untrusted cloud resources,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’10. USA: USENIX Association, 2010, p.
337–350, doi: https://doi.org/10.5555/1924943.1924967.

[11] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation
with nearly optimal communication complexity,” in Proceed-
ings. 2001 IEEE International Symposium on Information
Theory (IEEE Cat. No.01CH37252), 2001, pp. 232–, doi:
https://doi.org/10.1109/ISIT.2001.936095.

[12] K. P. Puttaswamy, C. C. Marshall, V. Ramasubramanian, P. Stuedi,
D. B. Terry, and T. Wobber, “Docx2go: Collaborative editing
of fidelity reduced documents on mobile devices,” in Proceed-
ings of the 8th International Conference on Mobile Systems, Ap-
plications, and Services, ser. MobiSys ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 345–356, doi:
https://doi.org/10.1145/1814433.1814467.

[13] T. Chen, D. Guo, X. Liu, H. Chen, X. Luo, and J. Liu,
“Bdp: A bloom filters based dissemination protocol in wire-
less sensor networks,” in 2009 IEEE 6th International Conference
on Mobile Adhoc and Sensor Systems, 2009, pp. 593–602, doi:
https://doi.org/10.1109/MOBHOC.2009.5336950.

[14] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,” IEEE Transactions
on Information Theory, vol. 49, no. 7, pp. 1788–1793, 2003, doi:
https://doi.org/10.1109/TIT.2003.813498.

[15] A. Orlitsky, “Communication issues in distributed computing,” Ph.D.
dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, 1986.

[16] D. Starobinski, A. Trachtenberg, and S. Agarwal, “Efficient pda syn-
chronization,” IEEE Transactions on Mobile Computing, vol. 2, no. 1,
pp. 40–51, 2003, doi: https://doi.org/10.1109/TMC.2003.1195150.

[17] H. Yan, U. Irmak, and T. Suel, “Algorithms for low-latency re-
mote file synchronization,” in IEEE INFOCOM 2008 - The 27th
Conference on Computer Communications, 2008, pp. 156–160, doi:
https://doi.org/10.1109/INFOCOM.2008.40.

[18] S. Li, L. Luo, D. Guo, and Y. Zhao, “Multiset synchronization with
counting cuckoo filters,” in Wireless Algorithms, Systems, and Applica-
tions, D. Yu, F. Dressler, and J. Yu, Eds. Cham: Springer International
Publishing, 2020, pp. 231–243, ISBN: 978-3-030-59016-1.

[19] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference? efficient set reconciliation without prior context,” in
Proceedings of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM
’11. New York, NY, USA: Association for Computing Machinery,
2011, p. 218–229, doi: https://doi.org/10.1145/2018436.2018462.

[20] J. Jin, W. Si, D. Starobinski, and A. Trachtenberg, “Prioritized data
synchronization for disruption tolerant networks,” in MILCOM 2012 -
2012 IEEE Military Communications Conference, 2012, pp. 1–8, doi:
https://doi.org/10.1109/MILCOM.2012.6415678.

[21] L. Luo, D. Guo, O. Rottenstreich, R. T. Ma, and X. Luo, “Set reconcili-
ation with cuckoo filters,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, ser. CIKM ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
2465–2468, doi: https://doi.org/10.1145/3357384.3358065.

[22] L. Luo, D. Guo, J. Wu, O. Rottenstreich, Q. He, Y. Qin,
and X. Luo, “Efficient multiset synchronization,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, p. 1190–1205, apr 2017, doi:
https://doi.org/10.1109/TNET.2016.2618006.

[23] L. Gong, Z. Liu, L. Liu, J. Xu, M. Ogihara, and T. Yang, “Space-
and computationally-efficient set reconciliation via parity bitmap sketch
(pbs),” Proc. VLDB Endow., vol. 14, no. 4, p. 458–470, dec 2020, doi:
https://doi.org/10.14778/3436905.3436906.

[24] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - EUROCRYPT 2004, C. Cachin and J. L. Camenisch, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 523–540,
ISBN: 978-3-540-24676-3.

[25] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
cache: A scalable wide-area web cache sharing protocol,”
IEEE/ACM Trans. Netw., vol. 8, no. 3, p. 281–293, jun 2000,
doi: https://doi.org/10.1109/90.851975.

[26] D. Guo and M. Li, “Set reconciliation via counting bloom filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp.
2367–2380, 2013, doi: https://doi.org/10.1109/TKDE.2012.215.

[27] Y. Minsky and A. Trachtenberg, “Practical set reconciliation,” in
40th Annual Allerton Conference on Communication, Control, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Computing, vol. 248, 2002. [Online]. Available: https://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.456.7200&rep=rep1&type=pdf

[28] N. Boskov, A. Trachtenberg, D. Starobinski, and contributors. GenSync
Framework. [Online]. Available: http://www.github.com/nislab/gensync

[29] M. Skjegstad and T. Maseng, “Low complexity set reconcil-
iation using bloom filters,” in Proceedings of the 7th ACM
ACM SIGACT/SIGMOBILE International Workshop on Foundations
of Mobile Computing, ser. FOMC ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 33–41, doi:
https://doi.org/10.1145/1998476.1998483.

[30] X. Tian, D. Zhang, K. Xie, C. Hu, M. Wang, and J. Deng, “Exact
set reconciliation based on bloom filters,” in Proceedings of 2011
International Conference on Computer Science and Network Technology,
vol. 3. IEEE, 2011, pp. 2001–2009.

[31] L. Luo, D. Guo, Y. Zhao, O. Rottenstreich, R. T. B. Ma, and
X. Luo, “Mcfsyn: A multi-party set reconciliation protocol with
the marked cuckoo filter,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 11, pp. 2705–2718, 2021, doi:
https://doi.org/TPDS.2021.3074440.

[32] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422 — 426, Jul. 1970, doi:
https://doi.org/10.1145/362686.362692.

[33] S. Z. Kiss, E. Hosszu, J. Tapolcai, L. Ronyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in IEEE INFOCOM 2018
- IEEE Conference on Computer Communications, 2018, pp. 1412–1420,
doi: https://doi.org/10.1109/INFOCOM.2018.8486415.

[34] D. Eppstein and M. T. Goodrich, “Straggler identification in round-trip
data streams via newton’s identities and invertible bloom filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 2, pp.
297–306, 2011, doi: https://doi.org/10.1109/TKDE.2010.132.

[35] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup
tables,” in 2011 49th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), 2011, pp. 792–799, doi:
https://doi.org/10.1109/Allerton.2011.6120248.

[36] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the
10th ACM International on Conference on Emerging Networking Ex-
periments and Technologies, ser. CoNEXT ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 75–88, doi:
https://doi.org/10.1145/2674005.2674994.

[37] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren,
“A capacity-elastic cuckoo filter design for dynamic set representation,”
IEEE Transactions on Network and Service Management, vol. 18, no. 4,
pp. 4860–4874, 2021, doi: https://doi.org/TNSM.2021.3099433.

[38] F. Zhang, H. Chen, H. Jin, and P. Reviriego, “The logarithmic
dynamic cuckoo filter,” in 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), 2021, pp. 948–959, doi:
https://doi.org/ICDE51399.2021.00087.

[39] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal
of Algorithms, vol. 51, no. 2, pp. 122–144, 2004, doi:
https://doi.org/10.1016/j.jalgor.2003.12.002.

[40] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting
codes. Elsevier, 1977, vol. 16, ISBN: 978-0-444-85010-2.

[41] Victor Shoup and others, “NTL: A Library for doing Number Theory.”
[Online]. Available: https://libntl.org/

[42] R. Stewart and C. Metz, “Sctp: new transport protocol for
tcp/ip,” IEEE Internet Computing, vol. 5, no. 6, pp. 64–69, doi:
https://doi.org/10.1109/4236.968833.

[43] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies, ser. CoNEXT ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 253–264,
doi: https://doi.org/10.1145/2413176.2413206.

[44] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing &
traffic control,” in Ottawa Linux Symposium, vol. 213. sn, 2002.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.620.1459&rep=rep1&type=pdf

[45] Linux Kernel, “Completely Fair Scheduler.” [Online]. Available: https:
//www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

[46] PassMark Software, “CPU Benchmarks.” [Online]. Available: https:
//www.cpubenchmark.net

[47] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI

15). Oakland, CA: USENIX Association, May 2015, pp. 117–130,
ISBN: 978-1-931971-218.

[48] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and
C. E. Rothenberg, “Mininet-wifi: Emulating software-defined wire-
less networks,” in 2015 11th International Conference on Net-
work and Service Management (CNSM), 2015, pp. 384–389, doi:
https://doi.org/10.1109/CNSM.2015.7367387.

[49] M. Mitzenmacher and T. Morgan, “Reconciling graphs and sets of sets,”
in Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, ser. SIGMOD/PODS ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 33–47,
doi: https://doi.org/10.1145/3196959.3196988.

[50] S. Agarwal and A. Trachtenberg, “Approximating the number of dif-
ferences between remote sets,” in 2006 IEEE Information Theory
Workshop-ITW’06 Punta del Este. IEEE, 2006, pp. 217–221, doi:
https://doi.org/10.1109/ITW.2006.1633815.

[51] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC ’98.
New York, NY, USA: Association for Computing Machinery, 1998, p.
604–613, doi: https://doi.org/10.1145/276698.276876.

[52] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher, “Min-wise independent permutations,” Journal of Computer
and System Sciences, vol. 60, no. 3, pp. 630–659, 2000, doi:
https://doi.org/10.1006/jcss.1999.1690.

[53] A. Broder, “On the resemblance and containment of docu-
ments,” in Proceedings. Compression and Complexity of SE-
QUENCES 1997 (Cat. No.97TB100171), 1997, pp. 21–29, doi:
https://doi.org/10.1109/SEQUEN.1997.666900.

[54] P. Flajolet and G. Nigel Martin, “Probabilistic counting algorithms for
data base applications,” Journal of Computer and System Sciences,
vol. 31, no. 2, pp. 182–209, 1985, doi: https://doi.org/10.1016/0022-
0000(85)90041-8.

[55] M. Gentili, “Set reconciliation and file synchronization using invertible
bloom lookup tables,” 2015, Bachelor’s Thesis, Harvard University,
Cambridge, MA.

[56] N. Becker, A. Rizk, and M. Fidler, “A measurement
study on the application-level performance of lte,” in
2014 IFIP Networking Conference, 2014, pp. 1–9, doi:
https://doi.org/10.1109/IFIPNetworking.2014.6857113.

[57] C. Midoglu, L. Wimmer, A. Lutu, O. Alay, and C. Griwodz, “Monroe-
nettest: A configurable tool for dissecting speed measurements in mobile
broadband networks,” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2018,
pp. 342–347, doi: https://doi.org/10.1109/INFCOMW.2018.8406836.

[58] CableLabs, “DOCSIS Technology Specifications.” [Online]. Available:
https://www.cablelabs.com/technologies/docsis-4-0-technology

[59] D. Dubhashi and A. Panconesi, Concentration of Measure for the Anal-
ysis of Randomized Algorithms, 1st ed. USA: Cambridge University
Press, 2009, ISBN: 0521884276.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

APPENDIX A
PROOF OF THEOREM 1:

Our proof is somewhat similar to that of randomized Quick-
sort in [59] with a modified partitioning process that requires
separate analysis.

Proof: Without the lost of generality, we consider a binary
partition tree (p = 2) and write m′ = m′0 = ηm to denote
the overall number of the high-priority differences. We call a
node in the partition tree good if each of its children contains
at least one third of its differences. Otherwise, the node is
bad. If we now consider a t nodes long root-to-leaf path that
consists of only good nodes, we will see that the number of
differences at level t is

m′t ≤
(

2

3

)
m′t−1 ≤

(
2

3

)t
m′0 (5)

Since we know that each good node must contain at least
one difference, we can use Eq.(5) to derive the maximal
number of good nodes in any path as

t ≤ log2m
′

log2

(
3
2

) < 2 log2m
′ (6)

Next step in our proof is to show that the following holds
for any root-to-leaf path P that may contain both bad and
good nodes

Pr[|P | > 4 log2m
′] <

1

m′2
(7)

Let Xi be a random variable that takes value 1 when the
i-th node on path P is bad, and 0 otherwise. If we denote the
number of differences at node i as si, then by the definition
of good nodes we have

Pr[Xi = 1] = 1−

2si−1/3∑
j=si−1/3

(
si−1

j

)
2si−1

≤ 2

3
(8)

Now, let X be the random variable that denotes the number
of bad nodes along P . Since all Xi are independent, we can
use Eq. (8) and the union bound to derive

E[X] =

|P |∑
i

Xi ≤
2

3
|P | (9)

Then, we assume |P | ≥ 3
2e log2m

′, and apply the Chernoff-
Hoeffding bounds for some q > 2eE[X] as follows [59]:

Pr[X > q] ≤ 2−q ≤ 2−2 logm′ =
1

m′2
(10)

Since the length of any path is the sum of its good and
bad nodes (i.e., |P | = X + t by definition), we can combine
Eq.(6) and Eq.(10) to show that Eq. (7) holds for all paths
P

Pr[X > q] = Pr[|P | > 4 logm′] ≤ 1

m′2
(11)

Importantly, for |P | < 3
2e log2m

′, we have that Eq. (7) is
trivially satisfied as P [|P | > 4 log2m

′] is zero.
Next, we see that our partition tree can have at most m′

leafs, since each leaf must contain at least one difference.

Hence, the maximal number of root-to-leaf paths is m′. We
can apply the union bound to prove that all the root-to-leaf
paths will be shorter than 4 log2m

′ nodes with probability
1− 1

m′ as follows

Pr[∃P, |P | > 4 log2m
′] ≤ m′ · Pr[|P | > 4 log2m

′]

≤ 1

m′
(12)

Finally, P-CPI calls CPI at each node of the partition tree.
Thus, the overall number of CPI invocations is O(m′ logm′).
�

Note that in practice we usually have that m � 2b, thus
the worst-case number of CPI invocations of O(mb) (see
Eq. (4)) is worse than O(m logm) CPI invocations in the
high-probability case from Theorem 1.

Combining the high-probability upper bound on the number
of CPI invocations from Theorem 1 and the worst-case compu-
tation complexity of CPI from [27], we get that the computa-
tion complexity of P-CPI is O(m·ηbm(m2+k)·log(ηm)), with
probability 1 − 1

ηm . By the same token, the communication
complexity is O(m ·mηb · log(ηm)) with the same probability.
Importantly, m is a fixed constant known in advance.

APPENDIX B
IMPACT OF ASYMMETRICAL NETWORK AND COMPUTE:
As indicated in Section V-C, asymmetry in the network

bandwidth does not have a decisive effect on the best protocol
choice as long as the bandwidth in any direction is not a
bottleneck. In Fig. 12, we present experimental evidence that
supports this claim. We run the same set of experiments as in
Section V-C, but now we use the network configuration IV
from Table IV (in Fig. 12(a)) and its asymmetrical bandwidth
version IV (a) (in Fig. 12(b)). Comparing config. (IV, C)
with config. (IV (a), C), and config. (IV, CA) with config.
(IV (a), CA), we observe that the order of the considered
protocols remains the same. On the other hand, comparing
the left parts of Fig. 12 to their counterparts on the right,
we observe that asymmetrical compute may decide the best
GenSync protocol (the effect we described in Section V-C).

In Fig. 13, we present the impact of network conditions
on the GenSync protocols performance when reconciliation
happens between a high-end smartphone and the server (CB).
First, comparing the left part of Fig. 13 to its right part,
we observe that the better network conditions translate to a
better TTR performance for all considered protocols (as we
pointed out in Section V-C). However, comparing to config.
(I, C) and config. (II, C) from Fig. 7, we observe that the
best GenSync protocol does not change. That is, the IBLT-
based protocol remains the best among the ones offered by
the GenSync framework. The reason for this lies in the fact
that our compute configurations C and B from Table IV
have comparable single-thread performance according to the
PassMark benchmarks [46]. According to these benchmarks,
B has only a 17% weaker single-thread rating than C. On
the other hand, the compute power disrepancy between A
and C is 3.5 times larger (i.e., A has a 59% weaker single-
thread rating than C). As opposed to small compute power
discrepancies (e.g., CB), the larger ones (e.g., CA) may have

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

0 20 40 60 80 1000.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5 config. (,)

0 20 40 60 80 100

config. (,)

0.0 0.2 0.4 0.6 0.8 1.0
Set difference size (d)

0.00

0.25

0.50

0.75

1.00

TT
R

 (
s)

CPI IBLT Cuckoo

(a) Network configuration IV — symmetrical bandwidth.

0 20 40 60 80 1000.1
0.3
0.5
0.7
0.9
1.1
1.3 config. ((a),)

0 20 40 60 80 100

config. ((a),)

0.0 0.2 0.4 0.6 0.8 1.0
Set difference size (d)

0.00

0.25

0.50

0.75

1.00

TT
R

 (
s)

CPI IBLT Cuckoo

(b) Network configuration IV (a) — asymmetrical bandwidth.

Fig. 12: The impact of asymmetrical network bandwidth to
TTR-performance. Symmetrical compute (left) and asymmet-
rical compute (right).

0 20 40 60 80 1000.2

0.3

0.4

0.5

0.6 config. (,)

0 20 40 60 80 100

config. (,)

0.0 0.2 0.4 0.6 0.8 1.0
Set difference size (d)

0.00

0.25

0.50

0.75

1.00

TT
R

 (
s)

CPI IBLT Cuckoo

Fig. 13: The impact of the network conditions to TTR-
performance for the CB compute configuration. Network con-
figuration I (left) versus network configuration II (right). CB
has a 3.5 times smaller compute power discrepancy than CA.

a decisive impact on the best protocol choice (as we discussed
in Section V-C).

Novak Boškov is a Ph.D. candidate in Computer
Engineering at Boston University. His research in-
terests include the performance optimizations of
globally distributed systems and security in multi-
tenant clouds. He recently focuses on improving
information propagation in blockchains as well as
the side-channel analysis of software container de-
ployments in commercial cloud computing services.

Prior to joining Boston University in 2018, he has
received his Bachelor with Honours and Master de-
grees in Electrical and Computer Engineering from

University of Novi Sad, Serbia in 2015 and 2016, respectively.

Ari Trachtenberg received the S.B. degree from
MIT in 1994, and the M.S. and Ph.D. degrees in
computer science from the University of Illinois
at Urbana–Champaign (UIUC) in 1996 and 2000,
respectively. He is a Professor of Electrical and
Computer Engineering, Computer Science, and Sys-
tems Engineering at Boston University (BU), where
he has been since September 2000. He has also been
a Distinguished Scientist Visitor with Ben Gurion
University, a Visiting Professor with the Technion
— Israel Institute of Technology, and worked with

Red Hat, TripAdvisor, MIT Lincoln Lab, HP Labs, and Johns Hopkins Center
for Talented Youth. His research interests include cybersecurity (side-channels,
smartphones, offensive and defensive), networking (security, sensors, localiza-
tion), algorithms (data synchronization, edits, file sharing) and error-correcting
codes (rateless coding, feedback). He has been awarded the ECE Teaching
Awards from BU in 2003 and 2013, a Kern fellowship from BU in 2012,
the NSF CAREER from BU in 2002, and the Kuck Outstanding Thesis from
UIUC in 2000.

David Starobinski (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
Technion–Israel Institute of Technology, in 1999. He
is a Professor of Electrical and Computer Engineer-
ing, Systems Engineering, and Computer Science
with Boston University. He was a Visiting Postdoc-
toral Researcher with the EECS Department, UC
Berkeley from 1999 to 2000, an invited Professor
with EPFL from 2007 to 2008, and a Faculty Fellow
with the U.S. DoT Volpe National Transportation
Systems Center from 2014 to 2019. His research

interests are in cybersecurity, wireless networking, and network economics.
He received the CAREER Award from the U.S. National Science Foun-

dation in 2002, the Early Career Principal Investigator Award from the U.S.
Department of Energy in 2004, the BU ECE Faculty Teaching Awards in 2010
and 2020, and the Best Paper Awards at the WiOpt 2010, IEEE CNS 2016,
and IEEE ICBC 2020 conferences. He has been on the editorial boards of the
IEEE Open Journal of the Communications Society, the IEEE Transactions
on Information Forensics and Security, and the IEEE/ACM Transactions on
Networking.

