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Abstract—The problem of data synchronization arises in networked applications that require
some measure of consistency. Indeed data synchronization approaches have demonstrated a
significant potential for improving performance in various applications ranging from distributed
ledgers to fog-enabled storage offloading for IoT. Although several protocols for data sets
synchronization have been proposed over the years, there is currently no widespread utility
implementing them, unlike the popular Rsync utility available for file synchronization. To that
end, we describe a new middleware called GenSync that abstracts the subtleties of the
state-of-the-art data synchronization protocols, allows users to choose protocols based on a
comparative evaluation under realistic system conditions, and seamlessly integrate protocols in
existing applications through a public API. We showcase GenSync through a case study, in
which we integrate it into one of the world’s largest wireless emulators and compare the
performance of its included protocols.

INTRODUCTION Replication is a common
thread among disparate distributed systems, typ-
ically arising when there is a need for fault
tolerance or availability. Multiple replicas enable
an administrator to reroute requests from failed
to healthy replicas, while a repair is completed.
Repaired replicas can then be returned to a con-
sistent state from existing healthy replicas.

Replication can also be used as a tool to im-
prove the performance of distributed systems with
many concurrent accesses. For instance, globally
distributed databases and content delivery net-
works use replication to speed up accesses from
geographically dispersed locations.

Beyond availability, fault tolerance and perfor-

mance benefits, replicated systems can also facil-
itate decentralization. For example, in distributed
ledger technologies (e.g., blockchains), each par-
ticipant holds a replica of an entire data set
(i.e., transactions), which allows any participant
to independently verify the state of system. As
long as enough participants maintain a substantial
level of consistency among their replicas, no one
needs to trust a central authority.

At the core of replication is data synchro-
nization (sync) or reconciliation, the process that
brings multiple replicas into a consistent state.
Assuming that there are two parties aiming at
syncing their data sets, a naive solution would
simply exchange data sets. Having both sets,
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the parties can easily identify the differing el-
ements and include them in their own replicas.
However, this is prohibitively expensive, because
communicating huge data sets can be slow for
bandwidth-constrained networks or resource con-
strained compute platforms (e.g., augmented re-
ality and wearables). Worse yet, huge sets may
differ in only a few elements, making most of
the communication redundant. The waste is tre-
bled when multiple participants exchange their
sets in a peer-to-peer fashion, as is the case for
distributed ledgers.

Better Ways to Synchronize Data
Many protocols have been developed over

time to address the weaknesses of the naive sync
approach. Perhaps the most popular is Tridgell
and Mackerras’s Rsync [1], which is included in
most Linux distributions and used as a default
network-enabled synchronization utility. Origi-
nally designed for files (or bit arrays), Rsync
operates by dividing the files into chunks, ex-
changing the hashes of chunks, and generating in-
structions on how to make two files equal. These
instructions are transferred over the network and
applied to synchronize the files.

Rsync does not readily generalize from files
to data sets, however, there have been other
approaches proposed for that purpose. One such
approach is somewhat similar to Rsync and uses
a specialized hash known as Bloom filter to com-
pactly represent the data set. Rather than exchang-
ing hashes of chunks like Rsync, this approach
exchanges Bloom filters. The main drawback of
this approach, however, is non-optimal usage of
bandwidth — it exchanges some traffic even
for the set elements evident on both sides of
the communication channel. A communication-
efficient protocol, on the other hand, should only
exchange the information related to differences
between the sets [2].

Choosing the Right Sync Protocol
Several communication-efficient protocols

have been proposed in the literature. Some
rely on coding theory, while other make use
of probabilistic data structures. These subtle
but significant differences in design make it
important to be able to compare them under
practical conditions. Yet prior to our work [3],

there were no publicly available general tools
that afforded such a systematic comparison. Our
work has shown that a protocol may dominate
under certain network conditions, but grossly
underperform when the network conditions
change. Worse yet, the best protocol choice is
a function not only of network conditions, but
also of the immediate compute capacities of the
nodes.

Contributions
There are two significant obstacles for de-

velopers in choosing the right protocol for their
applications: (1) the lack of a utility for compara-
tive analysis of the sync protocols under practical
system conditions, and (2) the complexity of inte-
grating sync protocols into existing implementa-
tions. Therefore, the main objective of this work
is to overcome these obstacles and enable the
integration of the state-of-the art sync protocols
in future applications, such as 6G-enabled En-
hanced Reality (ER), Internet-of-Things (IoT) and
Internet-of-Vehicles (IoV), where sync protocol
customization is needed at the application level.
We summarize our contributions as follows:
• We describe our middleware GenSync, to the

best of our knowledge, the first utility that
enables a systematic cost-benefit analysis of
utilizing different sync protocols.

• We demonstrate the use of this middleware
in an independent, large-scale wireless em-
ulator, Colosseum.

• We show that the choice of sync protocols
can significantly impair or improve perfor-
mance.

Applications of Data Sync
Data sync serves as a building block for a

diverse collection of applications and computing
paradigms, though it is sometimes embedded
deeply within the architecture of these applica-
tions. Next, we describe example applications that
can benefit from GenSync, focusing on distributed
ledgers, cloud storage services, and IoT storage
offloading.

Distributed Ledgers
Distributed ledgers record the decentralized

transactions of massive amounts of participants.
The most popular among distributed ledgers,
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blockchains, implement their transaction inven-
tory as a list of transaction blocks that are logi-
cally chained together with cryptographic hashes.

Recent advances in blockchain and dis-
tribute ledger technologies have opened a range
of new possibilities for tackling long-standing
problems in related areas such as IoT access
management [4], security of federated learn-
ing in fog computing [5], accident forensics
in vehicular networks (VANET) of self-driving
cars [6], or information poisoning prevention
in mission-critical unmanned aerial vehicle net-
works (UAANET) [7].

Applying blockchain technology over dis-
parate layers of Distributed Computing Contin-
uum Systems (DCCS) [8], which are charac-
terized by heterogeneous compute and network
resources, pose new challenges to performance
and reliability. To cope with these challenges,
several improvements to the blockchain’s net-
working layer have recently been proposed, based
on set reconciliation protocols, including Mem-
poolSync [9], Graphene [10], and Erlay [11]. The
performance of these protocols has been shown
to vary significantly depending on the network
conditions and compute capabilities of nodes [3],
complicating the analysis and choice of optimum
reconciliation protocol and parameters.

Cloud Storage Services

Cloud storage services such as Apple iCloud,
Dropbox, Google Cloud, and Microsoft OneDrive
have also become commonplace for modern in-
ternet users and are known to generate tremen-
dous amounts of data traffic for the cloud
providers [12]. To reduce the amount of data
transfer, these applications employ protocols that
are commonly referred to as delta synchroniza-
tion. The main objective of these protocols is to
determine and transmit only those portions of data
that have been updated locally. In that vein, the
research community has defined a metric called
TUE (Traffic Usage Efficiency) that is the ratio
between total sync data traffic and the update
size [12]. The state-of-the art delta synchroniza-
tion protocols currently in use rely on improved
versions of Rsync.

IoT Storage Offloading
One of the significant problems in IoT ap-

plications is storage offloading. A standard IoT
setup deals with a relatively large number of IoT
devices that each produce a substantial amount
of data but lack storage and compute capacity
to maintain it. Traditionally, this problem has
been addressed by moving data to the cloud for
processing. However, there are two significant
drawbacks of such approaches: (1) the data is
physically transferred to another entity, which
raises various security concerns, and (2) data
access latency may be unacceptable for real-time
applications as each data access goes through a
wide-area network. To tackle these drawbacks,
Wang at al. [13] have come up with a fog-
based architecture, based on Rsync, that allows
for data storage within the boundaries of the
entity that operates the IoT devices. The proposed
architecture has three layers. The lowest layer
consists of IoT devices that synchronize their data
with the fog layer above them. The fog layer
accumulates this data and synchronizes it with
the cloud in batches.

Other Applications
There are many other distributed systems

where data sync is used as a building block.
For instance, researchers proposed a dissemina-
tion protocol for wireless sensor networks that
use a variant of Bloom filter-based data sync
to reduce energy consumption and propagation
delay [14]. Similarly, a physiological value-based
key agreement scheme for body area networks
called E2PKA [15] uses data sync to reduce
memory footprint and energy consumption. Data
sync protocols have also been proposed as a
solution to network partitioning in information-
centric networking (ICN) [16] as well as re-
establishing consistency among replicas of dis-
tributed databases [17]. As Distributed Comput-
ing Continuum Systems [8], [18] and applications
that operate across the layers of this continuum
emerge, we expect that many more applications
could take advantage of an efficient data sync
middleware.

GenSync Middleware
We implement GenSync framework as a C++

middleware library that can be used through
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Figure 1: Middleware design.

an API, as shown in Fig. 1. The main chal-
lenges that we tackled in designing GenSync were
(1) unifying and simplifying the parameterization
of disparate state-of-the-art data sync protocols;
(2) designing generic protocol implementations
that enable GenSync utilization in various appli-
cations; and (3) constructing a lightweight yet
versatile benchmarking layer. From the GenSync
users’ standpoint, the interaction between the
application and the middleware library is carried
out through three abstractions, named GenSync,
Observation, and Builder.

GenSync is a generic representation of a data
sync protocol. Its interface consists of two main
methods, addElement, which adds elements to the
associated data set, and syncBegin, which initiates
synchronization with an external party using the
desired protocol. In a typical application, set
elements can be easily mapped to a set of unique
identifiers using a hash function and passed to
addElement. We design GenSync as an abstract
interface to allow for middleware extensions,
which is particularly useful to researchers that
design novel set reconciliation protocols and want
to benchmark against the state-of-the art, and the
practitioners that design platform-specific imple-
mentations of existing protocols. A custom sync
implementation needs only to implement the two
GenSync methods. By implementing addElement,

users can control how data set is being main-
tained, while syncBegin can be used to provide
the core implementation of the custom protocol.
Observation is the summarized result of the sync
and will be generated by syncBegin. It represents
a collection of execution statistics including the
measure of success, exact protocol parameters
that have been used and monitoring information,
such as the communication cost and time ex-
pended on data transfer and computation.
Builder is an auxiliary abstraction that facili-
tates the creation and connection of GenSyncs
to each other. For example, an application may
want to instantiate multiple GenSync objects (say,
one for each of several neighbors in a peer-
to-peer system). The builder allows the appli-
cation to attach each GenSync object to remote
peers through Communicants, which abstract out
a communication channel (e.g., a TCP, UDP, or
local Unix socket). The Builder abstraction is par-
ticularly useful in heterogeneous environments,
where peers may connect using different under-
lying transport or even physical-layer protocols,
or may want to use individually optimized sync
protocols for different neighbors. Code listing 1
shows how Builder and GenSync can be chained
together to conduct the sync and produce an
Observation.

Benchmarking Layer
To allow for performance evaluation under

realistic system conditions, GenSync is equipped
with a benchmarking layer. The benchmarking
layer creates an execution environment, based
on the cgroups feature of the Linux kernel,
that simulates the target system with a given
set of system parameters. Developers can read-
ily extract the Observations from this simulated
environment for further analysis, as we expose
GenSync’s benchmarking layer through a script
wherein developers can configure the desired sys-
tem conditions and the sync protocol to evaluate
(see listing 2).

Included Protocols
GenSync includes a number of sync proto-

cols that are based on compact auxiliary data
structures (sketches) through a similar high-level
structure. Roughly speaking, the structure of these
protocols consists of four phases: 1 compute
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#include <GenSync.h>

// Point to a remote and pick a protocol
auto builder = GenSync::Builder();
builder.setProtocol(GenSync::CPI);
builder.setCommunicant(GenSync::socket);
builder.setHost("the.peer.remote.addr");

GenSync gs = builder.build();

// Add data
for (auto data_point : data_set)
gs.addElement(hash(data_point));

// Perform sync
if ( gs.syncBegin() ) {

// Get execution statistics
Observation ob = gs.getObservation();
ob.communicationTime;
ob.computationTime;
ob.bytesTransmitted;

} else {
// Sync failed

}

Listing 1: Illustrative usage of GenSync from an
application.

# Protocol identifier
protocol=CPI
# Latency in milliseconds
latency=20
# Bandwidth in Mbps (in two directions)
bandwidth="10/25"
# Packet loss (percentage)
packet_loss=0.01
# Percentage of CPU cycles used for sync
cpu_server=100
cpu_client=20
# Repeat each experiment
repeat=100

Listing 2: GenSync’s benchmarking layer config-
uration script.

sketches of local data, 2 exchange the sketches
between syncing hosts, 3 compute local differ-
ences, and 4 exchange differences. The proto-
cols themselves are distinguished through their
choice of sketches and how the sketches are
utilized to infer the differences between the sets.
Specifically, users can currently select from the
following protocols.
CPI (Characteristic Polynomial Interpolation)
sync is based on a representing data sets as char-
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Figure 2: Logarithm of sync time as a function
of set cardinality (size) and the number of differ-
ences.

acteristic polynomials. In phase 1 , both parties
encode their elements as zeros of a characteristic
polynomial; they exchange evaluations of these
polynomials in 2 . In 3 , one party extrapolates
the rational function resulting from dividing these
polynomials, and extracts the roots of this func-
tion to determine the set differences, which are
then exchanged in 4 .
Cuckoo sync uses Cuckoo filters as sketches. In
1 , parties insert all their elements into a Cuckoo

filter, and exchange them in stage 2 . In 3 , each
party queries its own data set elements against the
Cuckoo filter of the other party. Any element for
which the Cuckoo filter returns a negative answer
is certainly only locally available and should thus
be sent over in 4 .
IBLT (Invertible Bloom Lookup Table) sync uses
IBLTs as sketches, which makes it somewhat
similar to Cuckoo. In 1 , each party constructs
their own IBLT and exchange them in 2 . In 3 ,
one party can subtract the other party’s IBLT from
their own to learn the elements that it needs to
exchange in 4 .

Navigating Trade-offs
Typical performance metrics for data sync

protocols are transferred data size (sum of all
traffic until the sets are in sync) and total sync
time. The transferred data size depends on data
set parameters (i.e., size of the sets and the num-
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Figure 3: Protocol transfer size as a function of
the number of mutual differences. Data set size
is constant at 10 000.
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Figure 4: Protocol transfer size as a function of
the data set size. The number of mutual differ-
ences is constant at 100.

ber of their mutual differences) and the protocols’
theoretical bounds on communication complexity.
The total sync time, however, depends on sys-
tem parameters, which includes network band-
width and latency (jointly referred to as network
conditions), and the compute capabilities of the
nodes (compute conditions). Given the systems’
complexity, the total sync time cannot easily
be estimated using only the theoretical bounds.
Worse yet, a bad protocol choice for the given
system parameters can cause a 5x loss in the total
sync time performance [3].

Using the GenSync’s benchmarking layer, we
modeled a bandwidth-constrained system to ex-
plore the effects of data set parameters on total
sync time. We varied set size from ten thousand to
one hundred thousand, and the number of differ-
ences between zero and 300. We ran GenSync’s
benchmarking layer on an Intel Core i7-7700

experimental server with 5.18.10 version of the
Linux kernel. The benchmarking layer parameters
appear in listing 2. The resulting surfaces are
plotted in Fig. 2, where we can observe the
following trends.

The sync time of Cuckoo is largely
invariant to the number of differences.

Trend 1

In other words, Cuckoo sync performs rela-
tively well for very small sets, but worsens as the
set size increases (regardless of the differences
count). This can be explained with two obser-
vations: (1) we are dealing with a bandwidth–
constrained network, and (2) the transfer size
for Cuckoo increases (in steps) with the set size
(Fig. 4) but stays almost constant as a function
of differences count (Fig. 3). The slight increase
in transfer size that we observe in Fig. 3 is
mostly due to the final transfer of the differences
themselves.

The sync times of IBLT and CPI are
largely invariant to the size of the data
sets being synced.

Trend 2

That is, IBLT and CPI perform well relative to
Cuckoo for very similar sets (i.e., differing in only
a few elements). IBLT and CPI generally do not
transfer data for the elements that are common.
Moreover, CPI transfers a nearly optimal amount
of data per difference [2], whereas IBLT transfers
more (Fig. 4). Whether this discrepancy in trans-
ferred data size will result in CPI’s dominance
(with respect to total sync time) is the matter of
system parameters, and can be evaluated through
GenSync’s benchmarking layer.

Sync on the Edge
To showcase the GenSync middleware’s power

in estimating the actual sync performance in
practical systems, we apply it to Colosseum, one
of the world’s largest wireless network emula-
tors [19], capable of emulating various real world
radio frequency scenarios using software-defined
radio (SDR) technology. We use Colosseum’s
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Figure 5: Bandwidth (up) and latency (down) traces from Colosseum [19], one of the world’s largest
wireless network emulators.

“Boston” cellular network scenario to emulate
the cellular network in the vicinity of Boston
Common in Boston, Massachusetts. The scenario
has stationary and pedestrian regimes, where the
latter captures moderate user movement relative
to the base station (see Table 1).

Scenario
Regime

User
Speed

Base Station
Distance

Scenario
Duration

Stationary 0 m/s 20 m 600 s

Pedestrian 5 m/s 20 m 600 s

Table 1: Emulation parameters for the Colos-
seum’s Boston scenario [19].

The resulting network traces (the available
bandwidth and latency) are plotted in Fig. 5, with
their extremes annotated. These traces show that
user movement results in wider oscillations of
available bandwidth and latency. Using the av-
erage values of bandwidth and latency during the
extreme periods, we define two sets of network
conditions against which to evaluate our sync
protocols:
(1) bad (bandwidth 1 Mbps, latency 50 ms), and
(2) good (bandwidth 7 Mbps, latency 30 ms).

The resulting total sync time for the two sets
of network conditions and the three GenSync
protocols is plotted in Fig. 6. IBLT performs the
best in both bad and good network conditions.
The reason for this effect lies in IBLT’s balance
of low computational complexity (linear in the
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Figure 6: Sync time for the three main sync
protocols in good (solid line) and bad (dashed
line) network conditions. Data cardinality is 108.
Confidence intervals are shaded.

number of differences) and communication cost
that, although higher than CPI [2], beats Cuckoo
for large data sets. As the average bandwidth in
both good and bad network conditions does not
drop below a critical point, IBLT also beats CPI.

However, an application-specific protocol that
is being constructed using GenSync may have
additional performance objectives. For instance,
it may want to be conservative about the amount
of consumed bandwidth, while still keeping
a reasonable sync time (even under bad net-
work conditions). Since the synchronizing de-
vice may run several applications concurrently,
this kind of bandwidth budgeting could be an
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Figure 7: Bandwidth consumed for the two most
bandwidth-efficient sync protocols that still com-
plete under 2 seconds in bad network conditions.

important dimension to consider when design-
ing an application-specific sync protocol. Band-
width savings in the sync protocol could gener-
ate substantial performance gains for Quality-of-
Experience-critical processes, such as streaming
point clouds in augmented reality (AR) appli-
cations [20]. In Fig. 7 we plot the amounts of
bandwidth that IBLT and CPI consume when
sync time is constrained to two seconds. In this
case, CPI achieves almost nine times better per-
formance across all difference counts. The reason
for CPI’s dominance over IBLT in this scenario is
CPI’s nearly optional communication cost, while
IBLT adds a multiplicative constant to that cost.

Conclusions and Future Goals
The GenSync middleware library is the first

open and general framework that (1) enables
comparative evaluation of state-of-the-art data
synchronization protocols in practical environ-
ments through a versatile benchmarking layer,
and (2) allows developers to seamlessly integrate
the protocol of their choice into their applications.

A current limitation of GenSync is that is
non-adaptive, in the sense that it cannot intelli-
gently detect the sways in system conditions (e.g.,
available bandwidth) and automatically replace
the current protocol with better one for the new
conditions. We leave this promising direction for
future work.

We also suggest exploring the extension of
GenSync’s protocols to file (bit array) sync, with
the hope of improving the venerable Rsync-based
techniques.
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