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ABSTRACT
We investigate the worst case delay ratio between the Nash
equilibrium and the social optimum in networks of N paral-
lel links (routes) with unbounded delay functions. We com-
pute this ratio, known as the “price of anarchy”, for the case
when the link delay functions correspond to M/M/1-FCFS
or M/G/1-PS. For this problem, we find that the price of
anarchy depends on the network topology in the sense that
it is precisely equal to N . We then extend our results to
M/G/1-FCFS and G/G/1-FCFS delay functions and com-
pute the price of anarchy in a heavy load regime. Our results
indicate that, even in very simple topological settings, the
price of selfish behavior can potentially be very high.

1. INTRODUCTION
Distributed and selfish decision making is an essential as-

pect of many large scale decentralized systems such as the
Internet [13]. As individual players selfishly compete for
shared resources such as network bandwidth and CPU time,
a fundamental question arises as how much worse the system
performance gets (e.g., at Nash equilibrium), compared to
that in a centrally controlled environment, where resources
can be allocated optimally [6, 8]. This question, referred to
as the price of anarchy, has attracted a great deal of research
interest [16, 15, 5].

Past work on the price of anarchy has generally focused
on bounded cost functions, which have finite cost as long
as the load is finite. In the context of network routing, if
the link delay (cost) function is affine, then the total cost
at the Nash equilibrium of selfish routing, where no player
has any incentive to individually deviate from its current
strategy, is no worse than 4/3 times of the cost under an
optimal allocation [16, 5, 14]. This result is independent of
the network topology, e.g., it remains the same for two or
more parallel links, as well as multi-commodity networks.
More generally, for networks with bounded delay functions
(that include constant delay functions), the price of anarchy
is also independent of the topology [15].
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However, in most computer and communication networks
such as in the Internet, link delays cannot simply be modeled
using bounded or constant delay functions. Indeed, in these
networks, the delay depends on the link congestion and con-
sist of queueing, transmission, and propagation delay com-
ponents. Thus, links delays have often been characterized
using unbounded delay functions such as M/M/1 or G/G/1
queueing functions that are able to model the above delay
components [11, 12, 4]. In this case, the relation between
the price of anarchy and the network topology is much more
difficult to determine. In [14], Roughgarden derived an up-
per bound on the price of anarchy for networks with M/M/1
and M/G/1 cost functions. This bound is useful in the case
where the aggregate traffic load is smaller than the capac-
ity of the slowest link in the network, otherwise it becomes
infinite.

In this paper, we perform an exact analysis of the price of
anarchy when the link cost function is unbounded. We in-
vestigate a simple network model that consists of two nodes
connected by N parallel links. This model does not have to
be interpreted literally, i.e., it can be used as an abstraction
of practical network settings. For instance, the parallel links
could represent physically disjoint paths. They also provide
a good abstraction of overlay networks, such as content de-
livery networks and peer-to-peer networks, where the same
service may be offered by multiple entities [17]. Other re-
cent papers making use of the parallel link model in related
applications include [2, 1, 7].

For this network model, we consider M/M/1 delay func-
tions and derive the price of anarchy under arbitrary system
load and link capacity configurations. We show that, in the
worst-case, the delay ratio between the Nash equilibrium
and the social optimum is precisely equal to N . We then
extend our result to more general queueing models, such as
M/G/1-FCFS and G/G/1-FCFS, and derive the price of an-
archy at high traffic load. To the best of our knowledge, our
result is among the first to show that the price of anarchy
depends on the topology for networks with unbounded av-
erage delay. Compared with known results [14], this result
is both tight (i.e., the lower and upper bounds match each
other) and general (the result holds for any feasible load
condition). One of our main observations is that as more
links are added to the network, the worst-case inefficiency
of selfish routing also increases.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe our network model in detail. We establish
fundamental bounds for price of anarchy for M/M/1 delay
function in Section 3, and extend the results to M/G/1 and



G/G/1 in Section 4. We conclude the paper in Section 5.

2. THE MODEL
We consider a packet network consisting of a source ver-

tex s, a destination vertex t, and N parallel links connect-
ing them. The setting is a non-atomic game where infinitely
many selfish agents independently generate traffic from s to
t, each of whom has negligible contribution to the total traf-
fic. The aggregate traffic arriving at s is a Poisson Process
with rate λ packets/second. The service rate of link i is µi

packets/second. Without loss of generality, we assume that
the service rate vector µ = [µ1, µ2, . . . , µN ]′ is descending,
i.e., µ1 ≥ µ2 ≥ . . . ≥ µN .

At source vertex s, each packet is independently assigned
to link i with probability pi. Note that pi captures the
overall probability of using link i, without reference to a
specific individual agent. Thus, the arrival rate at link i is
Poisson with rate piλ. We first consider an M/M/1 delay
(or cost) function for link i:

T i(pi) =
1

µi − piλ
. (1)

Let p = [p1, p2, . . . , pN ]′ denote the access probability vec-
tor. Then, for a given vector p, the average delay of a packet
in the network is

T (p) =
N

X

i=1

piT i(pi) =
N

X

i=1

pi

µi − piλ
. (2)

The delay functions in Eq. (1) is important in telecom-
munications networks, because a variety of routing prob-
lems can be characterized using the M/M/1 model [4, 11].
However, the generality of this model extends beyond the
network layer and can be found in the application layer as
well. For example, the emergence of content replication net-
works such as content delivery networks and peer-to-peer
networks can be effectively characterized using the M/G/1-
Processing Sharing (PS) model, which shares the same delay
function as Eq. (1) [17].

Note that any feasible vector p must satisfy several con-
ditions. First, to be a legitimate probability vector, the
coordinates of p must be non-negative and sum to one, i.e.,
pi ≥ 0 for all i and
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i=1 pi = 1. In addition, the coordi-
nates of p must satisfy the individual stability conditions,
i.e., pi < µi/λ, to guarantee that the arrival rate of requests
is smaller than the service rate at each link i. We denote by
P the set of vectors p that satisfy all the above constraints:

P = {p | 0 ≤ pi < µi/λ ∀i,
N

X

i=1

pi = 1}. (3)

The set P is non-empty if and only if the aggregate stability
condition λ <

PN

i=1 µi is satisfied.
The social optimum (referred to as OPT hereafter) of the

system is achieved when the vector p∗ is found so that the
average delay expression in Eq. (2) is minimized, subject to
constraint P defined in Eq. (3):

p
∗ = arg min

p∈P
T (p).

Solving p∗ for general delay functions has been the subject
of studies in the literature in the context of load sharing in
queueing networks [18, 10]. Theorem 1 below establishes
a closed-form solution to the problem when the links have

M/M/1 or M/G/1-PS delay functions, and also lays the
theoretical foundation of this paper. Interested readers are
referred to [17] for the derivation of the theorem.

Theorem 1. The optimal solution p∗ to Eq. (2) under
M/M/1 delay functions can be obtained as follows. Define

αi =
µi

λ
−

“

Pi

j=1 µj − λ
”√

µi

λ
Pi

j=1

√
µj

0 ≤ i ≤ N. (4)

Then,

1. N∗ is the maximum index i for which αi > 0.

2. I(p∗) = {N∗ + 1, N∗ + 2, . . . , N},

3. p∗
i = µi

λ
−

h

PN∗

j=1
µj−λ

i√
µi

λ
P

N∗

j=1

√
µj

∀i 6∈ I(p∗),

4. p∗
i = 0 ∀i ∈ I(p∗).

5. T (p∗) is computed via

T (p∗) =

N∗
X

i=1

p∗
i

µi − p∗
i λ

=

“

PN∗

i=1

√
µi

”2

λ
“

PN∗

i=1 µi − λ
” − N∗

λ
. (5)

In Theorem 1, N∗ can be interpreted as the number of
active links (links with positive access probability) under
OPT, and I(p∗) is the set of inactive links.

We now consider the delay at Nash equilibrium (referred
to as NE hereafter), where an agent cannot improve the
expected delay of its packets by changing its own access
probability vector. The access probability vector at NE, p̂,
must satisfy Wardrop’s first and second principles, i.e., the
average delays at all active links are the same and minimum
[19, 15]. Formally, define

S = {p | T i(pi) = T j(pj) ∀i, j 6∈ I(p)}, (6)

then the NE access probability vector p̂ satisfies

p̂ = arg min
p∈(P∩S)

`

T (p)
´

.

The following theorem, which is the analog of Theorem 1,
provides closed-form solutions for p̂ and N̂ , the number of
active links under NE [17]:

Theorem 2. The solution p̂ can be obtained as follows.
Define

βi =
λ + iµi −

Pi

j=1 µj

iλ
, 0 ≤ i ≤ N. (7)

Then,

1. N̂ is the maximum index i for which βi > 0.

2. I(p̂) = {N̂ + 1, N̂ + 2, . . . , N},

3. p̂i =
λ+N̂µi−

PN̂
j=1

µj

N̂λ
∀i 6∈ I(p̂),

4. p̂i = 0 ∀i ∈ I(p̂).



5. T (p̂) is computed via

T (p̂) =
N̂

PN̂

i=1 µi − λ
. (8)

The purpose of this paper is to bound T (p̂)/T (p∗) for any
load λ, service vector µ, and number of links N .

3. BOUNDS WITH M/M/1 DELAY
FUNCTIONS

We analytically determine the price of anarchy for M/M/1
link delay functions in this section. We will first develop a
lower bound for the price of anarchy in Theorem 3, and then
derive a matching upper bound in Theorem 4.

Before presenting our main results, we need the following
lemma, which shows that the number of active links in NE
is less than or equal to that in OPT. The proof can be found
in [20].

Lemma 1. For any service rate vector µ, load λ and num-
ber of links N , the following relation holds:

N̂ ≤ N∗ ≤ N.

Our first result is that for a given number of links N , there
exist arrival rate and service rate parameters such that the
ratio T (p̂)/T (p∗) approaches N . This situation occurs at

high load, when N̂ = N .

Theorem 3. For a network with N parallel links,

sup
λ,µ

T (p̂)

T (p∗)
≥ N.

Proof. The theorem is proved by showing that for any
given N , there exist parameters λ and µi, i = 1, 2, . . . , N,
such that T (p̂)/T (p∗) becomes arbitrarily close to N , as
done in Theorem 4 in [17].

The main result of this paper is the following theorem.
It offers a tight upper bound for T (p̂)/T (p∗) when N∗ is
known.

Theorem 4. For a given system load λ and associated
number of active links in OPT, N∗, the following inequality
holds:

T (p̂)

T (p∗)
< N∗. (9)

Proof. From Lemma 1, we know N∗ ≥ N̂ for any given
λ. We prove the theorem in two steps. In the first step, we
show that Eq. (9) holds when N∗ = N̂ . In the second step,
we construct two auxiliary systems to show that Eq. (9)

holds when N∗ > N̂ .
Step 1: The case of N∗ = N̂ . We observe that in order

for link N̂ to be active, we must have βN̂ > 0 or

λ + N̂µN̂ −
N̂

X

i=1

µi > 0. (10)

We now define the threshold service rate µT as

µT =

“

PN̂

i=1 µi − λ
”

N̂
. (11)

From Eq. (10), we can show that µN̂ > µT .
Because µ1 ≥ µ2 ≥ · · · ≥ µN̂ , we have

√
µiµj > µT , ∀ 1 ≤ i, j ≤ N̂ . (12)

By summing both sides of Eq. (12) over all indices i between

1 and N̂ , we have

N̂(N̂ − 1)µT <

N̂
X

i=1

N̂
X

j=1

j 6=i

√
µiµj . (13)

We combine Eqs. (11) and (13) and obtain

N̂2µT + λ <

0

@

N̂
X

i=1

√
µi

1

A

2

. (14)

Note that the derivation of Eq. (14) only assumes there

are N̂ active links in NE and does not require that N∗ = N̂ .
Hence it can be used in the next step as well.

Now we prove Eq. (9), when N∗ = N̂ , which is equivalent
to

N̂λ
“

PN̂

i=1

√
µi

”2

− N̂
“

PN̂

i=1 µi − λ
”

< N̂. (15)

Taking into account that µT =

“

PN̂
i=1

µi−λ
”

N̂
, we find that

Eq. (15) is equivalent to Eq. (14).

Step 2: The case of N∗ > N̂ . Our original system has
N links with service rates [µ1, µ2, . . . , µN ]. We first remove
all inactive links in OPT from the original system. The
resulting system, denoted as the u system, has a service
rate vector

u = [u1, u2, . . . , uN∗ ] = [µ1, µ2, . . . , µN̂ , . . . , µN∗ ].

Clearly, the u system’s average delay under the OPT pol-
icy, T (p∗

u) , is the same as that of the original system, T (p∗).
Furthermore, according to Lemma 1, all removed links are
inactive in NE too, so we have the same relation for NE:

T (p̂u) = T (p̂). Consequently, the ratio T (p̂)

T (p∗)
of the original

system is the same as T (p̂u)

T (p∗
u
)

of the u system.

The key of upper-bounding the delay ratio is constructing
another auxiliary system, called the v system, which also
has N∗ links. In the v system, the fastest N̂ links have
the same rates as those in the u system, but the remaining
N∗ − N̂ links are assigned the threshold service rate, µT .
The service rate vector of the v system is thus

v = [v1, v2, . . . , vN∗ ] = [µ1, µ2, . . . , µN̂ , µT , µT , . . . , µT ]

Because µT < µN̂ , v is also descending. More impor-
tantly, the u and v systems have the same NE average de-
lay, i.e., T (p̂u) = T (p̂v). This is because in the v system,
at load λ, all links with the threshold service rate µT are in-
active as shown in Theorem 2. Since the two systems have
the same service rates for the active N̂ links, they must have
the same average delay when the NE policy is used.



Before we evaluate T (p∗
v), we need to show that all links

in the v system are active under OPT. This is achieved by
first observing from the derivation of N∗ in Theorem 1, that
in the u system,

√
uN∗

N∗
X

j=1

√
uj >

N∗
X

j=1

uj − λ.

Because uN∗−1 ≥ uN∗ , we have

√
uN∗−1

N∗−1
X

j=1

√
uj >

N∗−1
X

j=1

uj − λ.

Repeating this procedure, we obtain

√
ui

i
X

j=1

√
uj >

i
X

j=1

uj − λ, i = 1, 2, . . . , N∗.

In particular,

p

uN̂+1

N̂+1
X

j=1

√
uj >

N̂+1
X

j=1

uj − λ

or

p

uN̂+1

N̂
X

j=1

√
uj >

N̂
X

j=1

uj − λ.

Because vN̂+1 = µT ≥ uN̂+1, we have

p

vN̂+1

N̂
X

j=1

√
uj >

N̂
X

j=1

uj − λ

or

p

vN̂+1

N̂+1
X

j=1

√
vj >

N̂+1
X

j=1

vj − λ. (16)

According to Eq. (4) in Theorem 1, Eq. (16) guarantees

that link N̂ + 1 is active under OPT in the v system. Be-
cause all links with indices larger than N̂ in the v system
have the same service rate, they must have the same access
probability. Thus all links in the v system must be active
under OPT.

On the other hand, the v system achieves the smallest
OPT delay among all N∗-link systems whose fastest N̂ links
have the rates µ1, . . . , µN̂ and who have N̂ active links under
NE under load λ. To see this, we observe that in all sys-
tems meeting the above requirements, we have ri ≤ µT , for
N̂ < i ≤ N∗, where ri is the service rate of the i-th link in
any system under consideration; otherwise the system would
have more than N̂ active links under NE. Each link in the
v system has the largest possible service rate among all sys-
tems meeting the above two requirements. As a result, it
achieves the same or smaller average delay under OPT than
any other system meeting the above two requirements. So
we have T (p∗

v) ≤ T (p∗
u).

Combining the above analysis in both NE and OPT, we
see that

T (p̂)

T (p∗)
=

T (p̂u)

T (p∗
u)

≤ T (p̂v)

T (p∗
v)

. (17)

Now we upper bound T (p̂)

T (p∗)
by evaluating T (p̂v) and T (p∗

v).

By definition and the structure of v, we know that

N̂µT =
N̂

X

i=1

µi − λ =
N̂

X

i=1

vi − λ

and

N∗µT =

N∗
X

i=1

vi − λ.

Hence, the v system’s delay under NE is

T (p̂v) = T (p̂) =
N̂

PN̂

i=1 vi − λ
=

1

µT

. (18)

For T (p∗
v), we have

T (p∗
v) =

“

PN∗

i=1

√
vi

”2

λ
“

PN∗

i=1 vi − λ
” − N∗

λ

=

h

PN̂

i=1

√
µi + (N∗ − N̂)

√
µT

i2

− (N∗)2 µT

λN∗µT

.

Combining the expressions for T (p̂v) and T (p∗
v) and in-

corporating Eq. (14), we have

T (p̂v)

T (p∗
v)

<
λN∗

λ + 2
“

N∗ − N̂
”√

µT

“

PN̂

i=1

√
µi − N̂

√
µT

”

< N∗.

From Eq. (17), we have

T (p̂)

T (p∗)
< N∗,

which completes the proof of the second step.

From Lemma 1 and Theorem 4, we obtain the following
corollary.

Corollary 1. The delay ratio between NE and OPT is
upper bounded by the number of links in the system:

T (p̂)

T (p∗)
< N

Finally, combining Theorem 3 and Corollary 1, we have
the following theorem.

Theorem 5. The price of anarchy in networks composed
of N parallel links with M/M/1 delay functions is N :

sup
λ,µ

T (p̂)

T (p∗)
= N.

Theorem 5 is tight in the sense that the delay ratio of N
is achievable with arbitrarily small error. Compared to pre-
vious results based on a bounded delay model [14, 15] (the
price of anarchy is infinite unless the aggregate arrival rate
is smaller than the lowest service rate), Theorem 5 is exact
and applies to any feasible load condition. It also indicates
that the worst-case inefficiency of selfish routing increases
as more links are added to the network.



4. GENERALIZATIONS FOR M/G/1-FCFS
AND G/G/1-FCFS AT HIGH LOAD

We first consider networks with M/G/1-FCFS delay func-
tions, where the average delay consists of average service
time 1

µi
and the average waiting time W i(pi), who is repre-

sented by the Pollaczek-Khinchin (PK) formula [11]:

W i(pi) =
Kipiλ

µi (µi − piλ)
, (19)

where Ki ≡ 1+C2

S(i)

2
. CS(i) is defined based on the variance

of the service time at link i, σi, and the i’s service rate µi:
CS(i) = σiµi. Thus, the link delay function T i(pi) is

T i(pi) =
Kipiλ

µi (µi − piλ)
+

1

µi

=
Ki

µi − piλ
+

1 − Ki

µi

. (20)

It is generally infeasible to obtain a closed-form solution
for T (p) when the link delay function is of the form in
Eq. (20). While a variety of numerical methods can be ap-
plied to solve this problem [3, 18, 9], they do not offer much
insight on the relative performance of NE compared to OPT.
Here, we analyze the system behavior under high load, and
are able to obtain results similar to those in Section 3.

Under high load, i.e., when piλ

µi
→ 1, for all i = 1, 2, . . . , N ,

the overall delay is dominated by the waiting time (the first
term on the right hand side of Eq. (20)):

T i(pi) ∼= Ki

µi − piλ
(21)

Using the above delay function and following the same
development procedure of Theorems 1, 2 and 3, we obtain
the access probability for OPT and NE for M/G/1-FCFS
link delay functions. We then derive the following lower
bound on the price of anarchy, which is asymptotically tight
at high load:

Theorem 6. For a network with N parallel links and de-
lay function as in Eq. (21), we have

sup
λ,µ

T (p̂)

T (p∗)
≥

PN

i=1 Ki

K1
. (22)

For G/G/1 delay functions, there does not exist simple
and general expression for the average delays. However, in
the heavy load regime, a simple, asymptotically exact ex-
pression for W i can be provided. Specifically, define the
coefficient of variation of the inter-arrival time at server i as
CA(i), then [12]

W i(pi) ∼=
C2

A(i) + C2
S(i)

2 (µi − piλ)
. (23)

Using the notation Ki =
C2

A(i)+C2

S(i)

2
, we can directly apply

Theorem 6 to lower bound T (p̂)/T (p∗), for G/G/1-FCFS
delay functions.

5. CONCLUSIONS
In this paper, we have examined the price of anarchy in

a general unbounded delay network consisting of N parallel
links. For M/M/1-FCFS and M/G/1-PS delay functions,
we have proven an exact result directly linking the price

of anarchy to the number of links N . This result differs
from existing topology-independent results for bounded de-
lay networks and indicates that the worst-case inefficiency
of selfish routing increases with the size of the network. For
the case of G/G/1-FCFS delay functions, we have been able
to derive a lower bound (Eq. (22)) on the price of anarchy.
This lower bound is tight at high load. We conjecture that
the left hand side of Eq. (22) actually represents also an
upper bound on the price anarchy for G/G/1-FCFS delay
functions. The proof of this conjecture remains an open
problem.
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