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Abstract—We investigate profitability from secondary spec-
trum provision under unknown relationships between price
charged for spectrum use and demand drawn at the given
price. We show that profitability is governed by the applied
admission policy and the price charged to secondary users. We
explicitly identify a critical price (market entry price) such that
if secondary demand is charged below that price, the licensee
endures losses from spectrum provision, regardless of the applied
admission policy. Furthermore, we show that an admission policy
that admits secondary demand only when no channel is occupied
is profitable for any price that exceeds the critical price. We
prove that this policy is profit-robust to variations in secondary
demand, i.e., if the policy is profitable for a certain price, it will
be profitable for any secondary demand that the price generates,
as long as the price generates demand. We also investigate
profitability from a set of policies that allow more secondary users
to access spectrum by defining the number of users that can be
concurrently served. Our results demonstrate profit-robustness
of these policies and explicitly characterize profitable prices. We
provide a numerical study to verify our theoretical findings.

I. INTRODUCTION

The emergence of secondary spectrum markets is driven

by strong beliefs that current practices in spectrum allocation,

whether carried via auctioning, lottery, or comparative hearing,

do not ensure efficient utilization of available spectrum bands.

Secondary provision of spectrum bears tremendous potential

in this regard by creating mechanisms for spectrum licensees

to allow the excess of their capacities, endowed via initial

allocation, to float in response to varying supply and demand

conditions. See [1–3] for a comprehensive discussion on this

topic. It is believed that spectrum bands of high utilization

efficiency are of diminishing value without some sort of an

outlet for secondary provision [4].

Secondary provision of spectrum has an economic incentive

for spectrum licensees as it helps generate revenue from under-

utilized bands. The private commons model for spectrum

rights, as introduced by the FCC [5], is one example in this

regard. Namely, licensees are allowed to maintain ownership

of their spectrum bands while provisioning the surplus of their

capacities to secondary users to extend their subscriber pools

and collect more revenue [6].

Amid these promises, spectrum provision should be wisely

orchestrated so that the process does not lead to excessive

blocking of primary subscribers to the licensee and causes a

net loss in revenue, especially if these subscribers are more

rewarding to the licensee. Therefore, two factors have strong

impact on economic feasibility of spectrum provision; (i) price

for secondary access of spectrum and (ii) admission policies

to share spectrum between primary and secondary users.

In this regard, obtaining a revenue-maximizing price and

a policy can be achieved via solving a classical optimization

problem. However, the reality is more subtle as relationships

between price and demand follow market dynamics which can

be hard to characterize, and thus it becomes hard to precisely

identify such a price and a policy. While in some applications a

price-demand relationship can be estimated via measurements

(see for example [7] and [8]), or via trial and error, such

procedures may not be received positively in situations that

entail a one-shot strategic decision, such as opening a network

for secondary access.

A. Main Contribution

The literature on economic viability of spectrum provision

is mainly regulatory in nature and involves market scenarios

to promote spectrum trading. See for example [9] for a

study on conditions for market liquidity in exchange-based

trading. This paper follows an alternative approach to establish

the economic incentive for secondary spectrum provision via

providing licensees with analytical guidelines for achieving

profitability, and not necessarily maximizing it, without ap-

pealing to specific models of price-demand relationships. It

turns out that solid guidelines can be defined in this regard.

Precisely, a minimum price for secondary access and an

admission policy are identified and shown to be profitable

regardless of the underlying price-demand relationship. This

paper can be considered as an extension to our work in [10]

with primary focus on isolated systems that involve no spatial

reuse of spectrum bands. This leads to more definitive results

as will be shown in the context of the paper.

The key idea is to use a policy improvement argument to

improve over a policy that caters only to primary demand. This

argument will be shown to help establish a critical price below

which no profit is achieved from secondary provision. It will

be also shown that the argument helps identify an admission

policy that is profitable for any price that exceeds the critical

price. The policy is referred to as “feasible” policy and it



is identified as a policy that accepts secondary demand only

when no channel is occupied by primary users. Furthermore,

the policy associated with this price shows robustness to

variations in secondary demand, i.e., the price is profitable

regardless of the demand it generates, as long as the price

generates demand.

We also study profitability from a set of well known

spectrum sharing policies that we refer to as threshold policies.

The value of this study is twofold: First, threshold policies

help put a cap on the number of secondary users that can

be served concurrently, and thus they are desirable from an

implementation point of view. Second, they provide better

quality of service for secondary users compared to the feasible

policy. Namely, consider the case for a threshold policy when

only one secondary user can be admitted at a time, i.e., a

secondary user is admitted as long as no secondary user

is in service. In comparison with the feasible policy, where

a secondary user is admitted only if no user (primary or

secondary) is in service, the former policy improves the odds

of secondary users being served and therefore improves the

quality of service.

Threshold policies lend themselves to an analytical frame-

work that helps establish profitability guidelines for these

policies. In particular, we establish that profitability from

threshold policies is robust to variations in secondary demand

if price is chosen above a certain level that is exactly identified

in the paper. The framework is shown to extend to cover

policies that exert no control on admitting secondary demand;

or what is referred to as complete sharing policies.

B. Paper Organization

The paper is organized as follows: In Section II, we provide

an economic model for profitability from secondary spectrum

provision and give basic definitions that will be used in the

paper. In Section III, we compute the critical price and the

feasible policy followed by a discussion on profit robustness

of this policy. In Section IV, threshold policies are discussed

and profitability of these policies is characterized including the

complete sharing policy. The paper concludes in Section V.

II. ECONOMIC MODEL FOR SPECTRUM SHARING

Consider a wireless system equipped with C orthogonal

channels. This can resemble, for example, an OFDM system

operating on a certain frequency band. Assume there are two

types of channel requests; primary and secondary arriving

independently as Poisson processes of rate λ1 and λ2, re-

spectively. If a request is admitted then it holds the channel

for a random time, during which the channel is not available.

We assume that holding times are independent and identically

distributed exponential random variables; and without loss of

generality we shall take the mean holding time as one unit.

The spectrum licensee is rewarded from the system accord-

ing to the following scheme: An admitted request generates

revenue r1 if it is primary, and revenue r2 if it is secondary.

These values may reflect deterministic charges per admitted

request or average charges if, for example, an admitted request

is charged based on usage.

We identify primary requests with legacy subscribers to

the licensee where they are admitted whenever possible.

Secondary requests, on the other hand, represent opportunity

to increase revenue beyond what can be obtained from the

primary requests. Towards that end, secondary requests may

be selectively admitted according to a certain admission policy.

Consider the system when it caters only to primary demand

without any form of admission control. Let us coin this regime

as the lockout policy since it arises if all secondary requests

are blocked. Let n denote channel occupancy of the system

under this policy. It can be shown that n evolves as a Markov

process and the probability distribution of channel occupancy

can be obtained by solving the detailed balance equations for

the Markov process. The rate of revenue from the lockout

policy is given by

RLO = r1λ1(1 − E(λ1, C))

where

E(λ1, C) =
λC

1 /C!

(
∑C

i=0 λi
1/i!)

(1)

is the Erlang blocking function.

Definition 2.1: An admission policy for secondary de-

mand is profitable for the price-demand pair (r2, λ2) if the

rate of revenue from this sharing policy, denoted here by

RSP (r2, λ2), exceeds the rate of revenue from the lockout

policy, i.e.,

RSP (r2, λ2) > RLO.

The set of (r2, λ2) pairs that are profitable under this policy

identify the profitability region of the policy.

The profitability region thus can be visualized as the part

of the secondary price-demand plane (r2, λ2) that includes all

profitable (r2, λ2) pairs. Note that it can be directly deduced

that if an admission policy is profitable for some secondary

price, it will be profitable for a higher price. Thus, profitability

region for a given policy is delineated by (r2, λ2) pairs that

form the curve

RSP (r2, λ2) = RLO.

III. CRITICAL PRICE FOR PROFITABILITY

First we aim to identify for each value of secondary demand

λ2 a price such that if secondary price r2 is chosen to be less

than or equal to that price, there exists no profitable admission

policy from admitting secondary demand. In other words, we

identify the curve that delineates the largest profitability region

for spectrum sharing. An admission policy that achieves such

a region is referred to as feasible policy since it is profitable

for all prices the exceed that price.

Given α ∈ (0, 1), let Vα(n) denote the mean discounted

revenue given that the channel occupancy process has initial

state n. Namely,

Vα(n)
.
= E[

∫ ∞

0

αtr1dA(t) | n(0) = n],



where (A(t) : t ≥ 0) is the counting process that counts the

number of admissions in the system (hence the above integral

increases by αtr1 in response to a primary request that is

admitted at time t). Also let

h(n)
.
= lim

α→1
Vα(n) − Vα(0).

The limit above exists and h(n) is the well-known differential

reward that arises in problems of infinite-horizon average-cost

optimization [11].

We use a policy improvement argument to characterize the

largest profitability region as follows: h(n) − h(n + 1) can

be interpreted as the difference in the rate of revenue of the

lockout policy if the channel occupancy process is started from

state n rather than state n + 1. This represents the cost of

admitting a request when the process is in state n. Thus, if

the arriving request is of secondary type, then the profitability

principle implies that a secondary request is admitted if the

revenue generated from that request exceeds the implied cost

of admitting the request, i.e.,

r2 > h(n) − h(n + 1).

The previous condition identifies a price such that accepting

secondary requests at prices equal to or below that price when

the process is in state n is not profitable. The minimum price

over all possible states is identified as

r∗2 = min
n=0,··· ,C−1

h(n) − h(n + 1). (2)

We refer to r∗2 as the critical price since the licensee shall

be profitable from secondary spectrum provision only if r2 is

chosen above r∗2 . Critical price resembles a balance to the op-

portunity cost that results from excessive blocking of primary

demand which could be serviced in the absence of secondary

demand. Thus, if secondary demand is priced below the critical

price, the licensee will endure losses from secondary spectrum

provision. Furthermore, an important observation can be drawn

from (2) which will be summarized in the following theorem:

Theorem 3.1: (Robustness of the feasible policy) Critical

price r∗2 does not depend on λ2 and thus the largest profitabil-

ity region is delineated by a straight vertical line in the (r2, λ2)
plane. This implies that the policy that achieves this region (the

feasible policy) is robust to secondary price-demand curves,

i.e., the policy will be profitable for any secondary price

r2 > r∗2 regardless of the demand the price generates, as long

as the price generates demand.

This result is illustrated in Figure 1. The area that lies

to the right of the vertical line r2 = r∗2 comprises the

largest profitability region for admitting secondary demand.

This region is achieved via what we refer to as the feasible

policy. A demand function represents a relationship between

secondary price and secondary demand generated as a function

of that price. Demand functions follow market conditions and

thus, apart from the assumption that demand decreases as

price increases, they cannot be precisely characterized. Here in

the figure two demand functions are considered. If secondary

price is chosen above r∗2 , then the price is profitable under
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Fig. 1. Illustration of profit-robustness of the feasible policy. The policy has
the largest profitability region that lies to the right of the straight line r2 = r∗

2

and thus the policy is profitable for any price that exceeds the critical price.

the two demand functions; Demand Function 1 and Demand

Function 2. Now assume that the largest profitability region is

not delineated by a vertical line as shown by the hypothetical

curve in the figure. In this case, price r̂2 will be profitable

under Demand Function 1 but not under Demand Function 2.

This illustrates robustness of the alluded feasible policy.

The analysis that led to Formula (2), however, provides

coarse description of the critical price and the feasible policy.

An approach to compute differences in h was given in [12]

where an involved argument was used to compute all the

differences. Here we use an alternative approach. Namely,

explicit characterization of the critical price and the feasible

policy will be provided in the following theorem:

Theorem 3.2: (Identifying the critical price and the fea-

sible policy) The critical price for profiting from secondary

demand can be identified as follows

r∗2 = r1E(λ1, C). (3)

where E(λ1, C) is given by (1). Furthermore, the feasible

policy is a policy that admits secondary demand only at the

idle state, i.e., when no channel is occupied.

Proof: Note that the largest profitability region is delin-

eated by a straight vertical line, as illustrated in Theorem 3.1,

and therefore, if (r2, λ2) is profitable then so is (r2,∞). Also

note that a secondary request is admitted and allocated a chan-

nel based on the number of occupied channels upon arrival.

Let K be the largest of these eligible numbers. By setting

λ2 = ∞, K + 1 channels are always occupied since a new

secondary request is admitted immediately following a depar-

ture at occupancy level K + 1. The state space of the channel

occupancy process thus reduces to K +1, K + 2, · · · , C. The

occupancy process under such a policy is illustrated in Figure 2

and the equilibrium distribution πo is given as

πo(i) =

{

λi

1
/i!

Go
i = K + 1, K + 2, · · · , C

0 otherwise,
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Fig. 2. Occupancy process of C channels when secondary demand λ2 → ∞.
If the system is eligible to admit a secondary request at state i then the system
leaves the state with rate ∞, i.e. βi = ∞. Otherwise βi = 0 for that state.
If K is the largest possible occupancy underwhich a secondary request is
admitted, then at least K + 1 channels are always occupied.

where Go is a normalizing constant given as

Go =
C

∑

i=K+1

λi
1

i!
.

Revenue from secondary demand is generated when K + 1
channels are occupied. A departure at this state will be directly

followed by an arrival of a secondary request since λ2 →
∞. An admitted request will generate a revenue of r2 and

will hold the channel for an average time of one unit. Thus,

K +1 secondary requests are served per unit time on average

and the rate of revenue from secondary demand is given by

(K +1)r2πo(K +1). A primary request, however, is admitted

if upon arrival less than C channels are occupied. The rate of

revenue from this demand is therefore r1λ1(1 − π(C)). The

policy is profitable if the rate of revenue exceeds the rate of

revenue from the lockout policy, i.e.,

(K + 1)r2πo(K + 1) + λ1r1(1 − πo(C)) >

λ1r1(1 − E(λ1, C)).

Algebraic manipulation of this inequality yields that it is

equivalent to r2 > r1
E(λ1,C)
E(λ1,K) and the minimum is achieved at

K = 0. This recovers form (3) along with the feasible policy.

IV. PROFITABILITY FROM THRESHOLD POLICIES

The feasible policy given in Theorem 3.2 admits a sec-

ondary request in the system if and only if no channel is

occupied at the time of arrival of the request. In other words,

C − 1 channels are exclusively reserved for primary demand

which implies that secondary demand can experience high

blocking rates, especially when λ1/C is high. In this section,

we appeal to admission policies where decisions are based on

number of secondary users in service and not on number of

occupied channels.

We study profitability from a set of admission policies that

are referred to as threshold policies. These policies enjoy

two principal features: (i) Their equilibrium distribution has a

closed form expression and thus they are analytically tractable

and (ii) their analytical framework covers the complete sharing

policy where no control is exerted on admitting secondary

demand. We aim here to understand profitability from these

policies and their robustness to variations in secondary de-

mand.

Consider an admission policy that puts a threshold 0 < T ≤
C on the number of channels that can be concurrently occupied

by secondary users. We refer to such a policy as threshold

policy T . Formally, let n1(t) and n2(t) denote, respectively,

the number of channels occupied by primary and secondary

users at time t. Under threshold policy T , a primary request

at time t is admitted if its inclusion preserves:

n1(t) + n2(t) ≤ C (4)

while a secondary requests is admitted if its inclusion pre-

serves, besides (4), the condition

n2(t) ≤ T. (5)

The state space is thus identified by the set

S = {(n1, n2) : n1 + n2 ≤ C and n2 ≤ T }.

Note that if T = C, then the policy admits without control

secondary requests as long as a channel is available. This

policy is referred to as the complete sharing policy.

The load under threshold policy T , (n1(t), n2(t)), evolves

as a reversible Markov process and the equilibrium distribu-

tion can be obtained by solving the corresponding detailed

balance equations [13] to obtain the probability vector π =
{π(n1, n2) : (n1, n2) ∈ S}. Namely, it can be shown that

π(n1, n2) =

λ
n1

1

n1!
λ

n2

2

n2!

G

where G is a normalizing constant given as

G =
∑

(n1,n2)∈S

λn1

1

n1!

λn2

2

n2!
.

By the PASTA property, blocking probability for primary

requests is given as

B1(λ1, λ2, C, T ) =
∑

(n1,n2):n1+n2=C

π(n1, n2) (6)

and for secondary requests is given as

B2(λ1, λ2, C, T ) =
C

∑

(n1,n2):n2=T ||n1+n2=C

π(n1, n2). (7)

The rate of revenue from the system can be thus computed by

the formula

RT (λ2, r2) =
∑

i=1,2

riλi(1 − Bi(λ1, λ2, C, T )).

We define profitability from a threshold policy via Defini-

tion 2.1. Namely, a policy T is profitable for the pair (r2, λ2)
if it satisfies

RT (λ2, r2) > RLO,

which leads to the conclusion that a price r2 is profitable under



this policy if and only if

r2 >

(

r1λ1

λ2

) (

B1(λ1, λ2, C, T ) − E(λ1, C)

1 − B2(λ1, λ2, C, T )

)

. (8)

Inequality (8) forms the basis for investigating profitability

for different threshold policies. However, solid results in this

regard can be obtained for the policy T = 1. Namely,

profitability under this policy shows robustness with respect

to secondary price-demand relationships. This result is for-

malized in the following theorem:

Theorem 4.1: For the policy T = 1, if the pair (r2, λ2) is

profitable under this policy, then it is profitable for all the pairs

(r2, λ2) where λ2 > 0. Furthermore, a price r2 is profitable

under this policy if and only if

r2 > r1λ1 (E(λ1, C − 1) − E(λ1, C)) . (9)

Proof: Consider the state space for the policy T = 1
given by the set

S = {(n1, n2) : n1 + n2 ≤ C and n2 = 0, 1}.

Note that following condition (5), there are two possibilities

for n2 where n2 can be either 0 or 1. Thus, blocking probabil-

ities for primary and secondary requests, as given respectively

by (6) and (7), can be written in the following forms

B1(λ1, λ2, C, 1) =

λC

1

C! + λ2
λC−1

1

(C−1)!

G

and

B2(λ1, λ2, C, 1) =
λC

1

C! + λ2

∑C−1
n=0

λn

1

n!

G

where

G =

C
∑

n=0

λn
1

n!
+ λ2

C−1
∑

n=0

λn
1

n!
.

Note that B1(λ1, λ2, C, T ) − E(λ1, C) can be written as

λ2

(

λC−1

1

(C−1)!

∑C
n=0

λn

1

n! −
λC

1

C!

∑C−1
n=0

λn

1

n!

)

G
∑C

n=0
λn

1

n!

. (10)

Also note that 1 − B2(λ1, λ2, C, T ) can be written as

∑C−1
n=0

λn

1

n!

G
. (11)

The result follows by substituting (10) and (11) in (8).

Threshold policy T = 1 shares some similarities with the

feasible policy introduced in Theorem 3.2 as both policies have

profitability regions delineated by straight vertical lines, and

thus they are both robust to variations in secondary demand.

However, There is no guarantee that the policy T = 1 achieves

the profitability region of the feasible policy. In fact, by

consulting (3) and (8), the gap between the cut-off price for

the policy T = 1 and the critical price is given by

rgap = r1 (λ1E(λ1, C − 1) − (1 + λ1)E(λ1, C)) . (12)

A trivial case for rgap = 0 is when C = 1. In this case,

threshold policy T = 1 is in fact the feasible policy as can be

verified via (12).

Figure 3 shows profitability regions for the different admis-

sion policies studied in the paper. The figure is prepared for the

following setting: number of channels C = 5, primary arrival

rate λ1 = 5.0, and primary price r1 = 1.0. Profitability region

for each policy lies to the right of the curve corresponding

to that policy. The line r2 = 0.285 delineates the largest

profitability region (the region achieved by the feasible policy).

Thus, a price at or below 0.285 is not profitable under any

admission policy.

Consider the curves that delineate profitability regions of

the different threshold policies T = 1, · · · , 5. Note that the

policy T = 1 is delineated by the straight line r2 = 0.567.

The equation of the line can be verified via (9). Among

the threshold policies, the policy with the largest profitability

region is T = 1 while the policy with the smallest region is

T = 5. This latter policy corresponds to a complete sharing

policy with no admission control on secondary demand.

Interestingly, the curves that delineate profitability regions

of the threshold policies show monotonicity. In particular, each

threshold policy is delineated by a curve that asymptotically

increases as secondary price increases. Thus, if secondary

price is chosen above the asymptote, then the policy will be

profitable at that price for any secondary demand value as long

as the price generates demand. Therefore, a threshold policy

shows robustness to variations in secondary demand if prices

are chosen to be larger than the asymptote.

Asymptote for threshold policy T can be computed using

the following argument: Let λ2 be large enough such that

λ2 → ∞. In this case, a channel abandoned by a secondary

request after service will be directly occupied by another

secondary request since λ2 is very large. This breaks the set

of channels into two separate subsets: (i) T channels that

are always occupied by secondary requests and (ii) C − T
channels that serve only primary requests arriving at rate

λ1. Furthermore, the mean holding time of channels is one

unit and thus the rate of revenue from the first subset is

r2T while the rate of revenue from the second subset is

r1λ1(1 − E(λ1, C − T )). The asymptote can be computed

by solving for r2 in the equation

r1λ1(1 − E(λ1, C − T )) + r2T = RLO,

which leads to

r2 =
r1λ1

T
(E(λ1, C − T ) − E(λ1, C)).

This formula can be directly verified for T = 1 as it reduces

to (9). The figure shows asymptotes of all threshold policies.

Finally, as discussed earlier, threshold polices provide lower

blocking rates for secondary demand compared to the feasible

policy. However, this implies higher cut-off prices to guarantee

profitability as illustrated in Figure 3. Thus, if such prices are

too high to generate demand then neither would higher prices.

Assume that a critical price always resembles a reasonable

price to generate demand. Reasonability of profitable prices
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under threshold policies can be measured via their gap from

the critical price. To understand the impact of system parame-

ters on this gap, consider for example threshold policy T = 1.

Formula (12) shows the difference between the cut-off price

under this policy and the critical price. It can be seen from

the formula that rgap is directly proportional to r1. However,

the impact of λ1 and C seems hard to characterize.

Figure 4 can help in this regard as it shows rgap for different

values of λ1 obtained when r1 = 1.0. Each curve corresponds

to a different number of channels C. The figure illustrates

unimodality of rgap in λ1. Precisely, rgap increases as λ1

increases up to a certain level and starts decreasing. Higher

peaks are obtained at larger values of C at a larger λ1. The

figure shows also that rgap tends to 0 as λ1 tends to ∞ with

a rate of decay that goes down for larger values of C.

V. CONCLUSION AND FINAL REMARKS

In this work, we provided an analytical study on profitability

from secondary spectrum provision. We clearly identified a

critical price for profitability below which licensees will en-

dure losses from such a provision. Furthermore, we identified

a feasible policy that achieves profitability for any price that

exceeds the critical price. Our results show that the policy

admits robustness to variations in secondary demand and thus

can achieve profitability in light of lack of knowledge of the

price-demand function.

We also investigated profitability from threshold policies.

We proved that a threshold policy that allows secondary users

to use at most one channel admits the same robustness property

of the feasible policy, but typically at a higher price. For

other threshold policies, we showed that robustness can be

achieved if prices are chosen above certain levels identified

via asymptotic analysis.

Perhaps one question that the paper leaves open is the

question of which admission policy among the studied policies

yields the highest revenue and thus is maximally profitable

for a price demand pair. However, there is no guarantee

that a maximally profitable policy for one pair is maximally

profitable for all price-demand pairs in its profitability region.

This implies that identifying a maximally profitable policy can

become dependent on the price-demand function. A definitive

answer to this question is not within the scope of this paper

and it is left for future research.
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