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Abstract—Earth-observing measurements performed by Earth
Exploration-Satellite Service (EESS) passive satellites are critical
to meteorological and climatological assessments of the state of
planetary conditions. Radiometers, which perform these mea-
surements, are highly sensitive to anthropogenic transmissions.
Therefore, other user access to the spectrum must be carefully
managed during an overpass. In this work, we present a statistical
characterization of interarrival times and durations of EESS-
passive satellite overpasses to support studies between active
and passive users co-existing within the radio spectrum. Our
work analyzes datasets compiled from multiple EESS-passive
satellites to determine the frequency and duration of service
interruptions to support the design and evaluation of spectrum
sharing approaches. EESS-passive satellite observations that fall
within a 100 km region surrounding 15 selected cities are
used to produce complementary cumulative density functions
(CCDFs) for interarrival times and durations. While the CCDFs
for the interruption durations appear location-independent, the
interarrival CCDFs demonstrate a high correlation with city
latitude due to the nature of EESS-passive orbits. The interarrival
time mean and standard deviation are found to be similar and
are characterized with simple quadratic functions of latitude that
achieve R-squared values of 0.993 and 0.996. The similarity of
the mean and standard deviation suggests that a Poisson arrival
process (having exponentially distributed interarrival times) is
a reasonable assumption in spectrum sharing studies, though
more precisely fitted distributions are also discussed. We apply
our findings to an economic model of spectrum sharing between
EESS-passive and wireless communications services at a given
location. We find that the location’s latitude has a significant
impact on the profitability of the wireless provider.

Index Terms—Spectrum access modeling, Datasets for commu-
nity use, Emerging spectrum co-existence use cases.

I. INTRODUCTION

Earth Exploration-Satellite Service (EESS) passive satellites
provide crucial measurements of our planet’s land, ocean,
and atmosphere that inform weather forecasting models, cli-
mate studies, and other applications [1], [2]. It is important
that these environmental measurements remain accurate and
trustworthy for the sake of accurate short-term forecasts and
the maintenance of longer-term climate records. The latter is
of particular interest because of the need for monitoring the
ongoing evolution of Earth’s environmental processes.

EESS-passive radiometers observe background microwave
radiation as the signal of interest when recording their mea-
surements. This background radiation is often referred to as

“noise” in active systems. The passive nature of radiometer
measurements results in a high sensitivity to any presence
of active transmissions, making it critical that the sensing
environment be free of anthropogenic noise to preserve the
accuracy of measurement data. In recent years, modified allo-
cations have been made in and around frequency bands used
by radiometers. For example, the 23.8 GHz band is used by
radiometers to characterize atmospheric water vapor for mete-
orological measurements and provide corrections to altimeter
measurements. At the World Radiocommunication Conference
(WRC) 19, the International Telecommunication Union (ITU)
allocated the 24.25-27.5 GHz band for 5G services. At the time
of the allocation, 5G was in its early stages of development,
making it difficult to assess the effectiveness of the restrictions
agreed upon [3], [4]. Allocations such as these can increase
unwanted out-of-band emissions in microwave radiometry,
resulting in noise-corrupted measurements. In addition to the
threat of out-of-band emissions, emissions also occur in bands
having only a secondary or no allocation for EESS-passive
services. For instance, the 6.425-7.125 GHz band has been
widely used by microwave radiometers for measuring sea
surface temperatures (SST) due to the sensitivity of SST to
changes in emissions in this frequency range. However, at
WRC-23 the decision was made to allocate this band for 5G
use as well [5], [6].

Conducting a statistical analysis of radiometer arrival fre-
quencies and overpass durations, we find that interarrival times
approximately follow an exponential distribution regardless of
location, with a strong correlation between latitude and the dis-
tribution of interarrival times. Conversely, statistics of overpass
durations are insensitive to location and can be described with
a common distribution. We note that knowledge of specific
corresponding radiometer orbit properties are available, as are
information such as radiometer antenna gain and scan patterns.
Thus, if a particular radiometer were being modeled, a statisti-
cal model would not be necessary because the information on
overpass frequency and duration could be derived determinis-
tically from the known information. However, our interest is in
the full collection of EESS-passive radiometers operating in
a given spatial-frequency domain, not any given radiometer.
The relatively large (and increasing) number of observing
satellites combined with the utility of statistical descriptions in



TABLE I: EESS radiometers used in the trace data

Satellite Space Agency Sensor Source

Aqua NASA AMSU-A [7]
GCOM-W JAXA AMSR2 [8]
GPM Core Observatory NASA GMI [9]
Metop-B EUMETSAT AMSU-A [10]
Metop-C EUMETSAT AMSU-A [10]
NOAA-15 NOAA AMSU-A [11]
NOAA-18 NOAA AMSU-A [12]
NOAA-19 NOAA AMSU-A [12]
JPSS-1 (NOAA 20) NOAA ATMS [13]
JPSS-2 (NOAA 21) NOAA ATMS [13]
SNPP NOAA ATMS [12]
Sentinel-3A ESA MWR [14]
Sentinel-3B ESA MWR [14]
Sentinel-6A EUMETSTAT AMR-C [15]
SWOT NASA AMR [16]

some applications motivates the statistical treatment reported
here. For example, an economic model need not necessarily
care about the specific time slots at which frequencies are
available, but rather requires information on overall utilization
to determine, for example, the level at which to set wholesale
spectrum access fees.

We also demonstrate that the EESS-passive service utiliza-
tion rate is correlated with latitude, with effective utilization
in the range 0.4-1% between the Equator and just south of
the Arctic Circle (latitude 66.85). These variations in EESS-
passive utilization could potentially impact the actions of rev-
enue maximizing providers. Thus, a target location’s latitude
is an important factor that must be accounted for in economic
modeling of EESS-passive spectrum sharing. We provide a
concrete example to demonstrate that the correlation between
latitude and EESS-passive utilization rates has a significant
impact on the corresponding fees and provider profits for
commercial users occupying the remaining portions of the
spectrum. Remarkably, for certain economic parameters, the
difference in profits at different latitudes is many times higher
than the difference in utilization rates.

The remainder of this paper is organized as follows. In
Section II we review related works discussing our moti-
vating scenario of modeling EESS-passive remote sensing
for spectrum co-existence. In Section III we analyze the
interarrival times and overpass durations. In Section IV, we
discuss Maximum Likelihood Estimation (MLE) fits of the
resulting distributions to approximate distributions at arbitrary
locations. Finally, in Section V, we apply an example of our
findings to an economic model that shows how statistical usage
patterns can be leveraged to make utilization assertions without
requiring access to specific trace data.

II. RELATED WORK

The competing requirements between active and passive
use have expanded as technologies continue to develop and
demands for additional bandwidth increase [17]–[19]. While
our focus in this work is the remote sensing (EESS-passive)
service, such conflicts are also observed in the related passive
sensing domain of radio astronomy, where conflicts occur

TABLE II: List of cities analyzed and their corresponding
number of trace points

City Latitude Longitude Number of Trace Points

Boston, MA 42.36 -71.06 130,108
Columbus, OH 40.00 -83.02 117,187
Dallas, TX 32.78 -96.80 94,615
Mexico City, Mexico 19.42 -99.14 94,615
Quito, Ecuador -0.25 -78.47 86,786
Pituffik, Greenland 76.53 -68.82 261,252
Fairbanks, AK 64.83 -147.70 230,351
Edmonton, Canada 53.53 -113.50 144,554
Chicago, IL 41.87 -87.64 116,840
Omaha, NE 41.26 -95.95 107,982
Cheyenne, WY 41.14 -104.82 106,340
Salt Lake City, UT 40.76 -111.89 102,997
Barcelona, Spain 41.38 2.17 101,632
Rome, Italy 41.92 12.48 107,936
Sofia, Bulgaria 42.71 23.32 108,676

between radio telescopes and commercial satellite clusters
operating on the same frequencies [20], [21]. Promoting
coexistence that ensures support for EESS-passive applications
while maintaining viable access to the predominately com-
mercial active use is essential, and is the subject of multiple
prior works in the EESS-passive context [22]–[26]. Several of
these references make assumptions about the frequencies and
durations of service interruptions, but the arguments advanced
by these works can be reinforced by a statistical model for
service interruptions.

The work in [27] proposes a joint game-theoretic and
queueing-theoretic model for analyzing spectrum sharing sce-
narios between EESS-passive users and active users. The
model is based on the M/G/1 queue (i.e., Poisson arrivals and
general service distribution). The model is justified through
a comparison with a simulation of the queue performance
with traces from 14 Earth-observing microwave radiometers
in the vicinity of Boston, Massachusetts, USA. A good match
in the queueing performance is used to justify the Poisson
arrivals assumption for this model. In contrast, in our work,
we directly fit statistical distributions to the satellite arrivals
and overpass durations data, making the resulting statistical
models more broadly applicable and not limited to a specific
queueing setting. Another key contribution of our work is in
capturing the relationship of these distributions to the latitude
of a given location.

III. STATISTICAL ANALYSIS OF EESS-PASSIVE
SATELLITES

The data associated with each location in Table II are
comprised of all measurements acquired by the 15 microwave
radiometers listed in Table I from September 1, 2023 to
October 31, 2023 having a reported location within a radius
of 100 km from the coordinates in Table II. The reported
measurement locations are based on that of the 23.8 GHz
channel for each radiometer, but because a 100 km footprint
is used around each city, this analysis will remain true for
other frequency bands as long as they are available on all
radiometers listed in Table I. A plot of these measurement



(a) Measurements over two month span (b) Measurement over selected one week span

Fig. 1: Bar plot of the number of measurements in the 100 km region around Boston, Massachusetts (a) over the two month
span of September and October of 2023 and (b) zoomed in on the 1-8 September 2023 time frame. Each bar is a 5 minute
interval within that time frame.

data for one of the regions (centered on Boston, MA USA),
binned into 5-minute intervals over the two month period, is
shown in Fig. 1(a) as an example of the measurement patterns
over time. A zoomed-in version is shown in Fig. 1(b). There
are two parts of the plot that we want to characterize: the
duration of a service interruption and the interarrival times
between interruptions.

A. Interarrival Times

In this section, we discuss the statistical characterization
of interarrival times, approximately corresponding to the time
between each of the bars in Fig. 1. A single interruption
typically corresponds to the period of time in which a single
low Earth orbiting (LEO) EESS-passive satellite observes the
area of interest, which can include multiple measurements
reported by the radiometer. The interarrival time then typically
corresponds to the interval between satellite overpasses. Re-
ported radiometer measurement times are used in the analysis;
the 5 minute binning period in Fig. 1 is used only for
simplifying the figure.

For each location, an array of EESS-passive measurement
times occurring within 100 km and the satellite conducting the
measurement (numbered 1-15) are compiled, with the arrays
sorted by time. Using the satellite number array, the time array
is divided into 15 separate arrays corresponding to each of
the satellites in Table I. Then, each array is put into a logic
array spanning the two-month period with half-second bins.
Finally, the 15 arrays are put through an or gate, resulting in
the final array from which inter-arrival times and durations can
be calculated.

Using this method, interarrival times were calculated for
each of the 15 cities in Table II. Then a complementary
cumulative density function of the interarrival times was gen-
erated for each city. Fig. 2(a) illustrates the resulting CCDFs
for seven cities spanning latitudes -0.25 and 76.53 degrees.
The plot shows that as latitude increases, the distributions
become dominated by shorter interarrival times, with the effect

becoming particularly pronounced close to and within the
Arctic Circle (66.85).

This trend results from the near-polar orbits of most EESS-
passive satellites, which result in more frequent overpasses at
higher latitudes. By extension, we would expect that locations
along the same (or similar) latitude should have similar
distributions. In Fig. 2(b) we plot the CCDFs for 9 cities
of latitude 40.00 to 42.71 degrees with the corresponding
longitudes varying from -111.89 and 23.32 degrees. The
high correspondence in the results confirms the similarity of
interarrival time properties as a function of longitude.

While the plots in Figs. 2(a) and 2(b) have some features
similar to the CCDF of an exponentially distributed random
variable, it is apparent that such a distribution would not
be a perfect fit, especially when considering more north-
ern latitudes. Further, the behavior of the empirical CCDFs
suggests a combination of multiple distributions given the
distinct properties of each EESS-passive satellite considered.
We discuss this further in Section IV. Rather than attempting
more specific distribution fits, we instead perform an analysis
of the interarrival time mean and standard deviation.

Fig. 4(a) shows the mean interarrival time µ and standard
deviation σ as a function of latitude. The high correlation
to latitude is apparent; accordingly a quadratic least squares
(LS) regression was developed for each parameter. An R-
square value of 0.993 for the mean and 0.996 for the standard
deviation fit resulted, with

µ = 1.52− (2.74× 10−3)|L| − (1.71× 10−4)L2 (1)

σ = 1.80 + (3.08× 10−3)|L| − (2.83× 10−4)L2 (2)

where L represents the latitude in degrees. Note that no dis-
tinction between Northern and Southern latitudes is expected
because of the symmetry of the orbits considered, so the results
can also be expressed in terms of the absolute value of the
latitude.



(a) Varied Latitudes (b) Similar Latitudes

Fig. 2: Plot of the complementary cumulative distribution function of the time between successive of an EESS-passive satellite
overpasses within the 100 km region surrounding cities of interest. (a) features seven cities with varying latitudes; (b) features
nine cities with similar latitudes, but varying longitudes.

(a) Varied Latitudes (b) Similar Latitudes

Fig. 3: Plot of the cumulative distribution function of the duration of an EESS-passive satellite overpass within the 100 km
region of cities of interest. (a) features seven cities of varying latitudes; (b) features nine cities with of similar latitudes and
varying longitudes.

(a) Interarrival distributions (b) Overpass distributions

Fig. 4: Plots the mean and standard deviation for the interarrival time distributions (hours) (a) and overpass duration distributions
(seconds) (b) as a function of latitude as well as their respective fits.



B. Overpass Durations

In this section, we statistically characterize the overpass du-
ration. Overpass durations are computed by first identifying the
gaps between satellite arrivals as in the previous section and
then computing the length of time during which measurements
occurred between these gaps.

The plots of the resulting overpass duration CCDFs for
multiple locations of varying latitudes and of similar latitude
but varying longitudes are shown in Figs. 3(a) and (b),
respectively. The resulting curves are similar for all locations,
having a mean of 24.879s and a standard deviation of 7.139s.
The justification for a single value of the mean and standard
deviation is shown in Fig. 4(b). The similarity of the curves for
varying locations is expected given the 100 km radius applied
for each site. The CCDFs show a steep drop-off at 15 seconds
duration, followed by a plateau to approximately 18 seconds, a
second plateau near 23 seconds, and a final decrease beginning
around 30 seconds.

IV. DISCUSSION

The distributions obtained in Figs. 2 and 3 do not appear
highly similar to those of standard distributions. We conducted
a Maximum Likelihood Estimation fit for a variety of distri-
butions for both the interarrivals and overpass distributions.
Because the interarrival CCDF has some attributes similar
to an exponential distribution, we considered a number of
distributions from the exponential family for comparison: the
Exponential, Gamma, Half-Normal, and Weibull distributions
as well as the Log-Logistic and Log-Normal distributions
due to the heavy tail nature evident in the figures. For the
overpass duration distributions, we considered a variety of
heavy-tail distributions: the Generalized Pareto, Logistic, Log-
Logistic, Log-Normal, and the Weibull distribution, as well as
the Exponential distribution for comparison purposes (expo-
nentially distributed service is a common default assumption
in communications theory).

To evaluate the performance of each fit, we evaluate the R-
Square error for each fit and location combination. The results
are plotted in Fig. 5. For the interarrival time distributions,
Fig. 5(a) shows that the log-normal MLE fit is the best of
those tested. R-Square values for an exponential model remain
approximately 0.9 or greater, so the exponential model may
also be reasonable in some applications, particularly given the
low service interruption rate and the analytical desirability of
an exponential approximation in some methods. For the over-
pass duration distributions, Fig. 5(b) shows that the logistic
fit performs best, but multiple random variable types achieve
R-Square values near 0.9 and could be considered reasonable
in particular applications. More generally, the empirical dis-
tributions are likely better described as a combination (i.e.
convolution) of multiple distributions as a consequence of the
multiple distinct types of radiometers included in the analysis.
Analyses focused on the use of combined distributions will be
reported in future work.

Overpass duration properties are particularly impacted by
the varying scan types of distinct radiometers. Some systems

(e.g. AMSR-2 and GMI) have a conically scanning antenna
whose footprint scans through a semicircular swath as shown
in Fig. 6(a) and (b). Observations in the area of interest can
occur within a scan over azimuth and then in a subsequent
scan separated by approximately 1.5 to 2 seconds. Other
radiometers (AMSU-A) have a cross-track scan pattern pro-
ducing the grid of observations shown in Fig. 6(c) that may
be separated by approximately 6 to 8 seconds. Radiometers
onboard altimeter missions (e.g. Sentinel 3A, Sentinel 6A) in
contrast perform only a “single-spot” measurement at a fixed
look angle (i.e. no scanning) as shown in Fig. 6(d). These
differences in scan patterns result in different time delays
between successive measurements and overpasses, with the
“single-spot” radiometers having the longest time between
repeat passes due to their narrow swath. The different scan
types also result in varying amounts of time over an area
of interest, consistent with the “multi-scale” attributes of the
duration distribution observed in Fig. 3(b).

V. APPLICATION TO ECONOMIC MODELING

The variety of overpass properties reinforces the desire for
a stochastic view of service interruptions, as economic models
are interested in overall utilization. Indeed, we find regardless
of latitude, EESS-passive radiometers utilize spectrum for a
relatively small fraction of time. Fig. 8 plots the mean fraction
of time that is not used in radiometer observation. From
south of the Arctic Circle (latitude 66.85) to the Equator,
service is uninterrupted for more than 99% of the time,
peaking at 99.56% at the Equator. These percentages assume
the spectrum of interest is rendered unavailable when the
radiometer is present, i.e. the most restrictive buffer possible
and thus represent the worst case from a commercial user
perspective. It is this low level of utilization even in the
face of such restrictions that promotes potential co-existence
on bands utilized by the radiometers. From an economic
perspective, (wholesale) spectrum pricing models based on the
availability of the remaining spectrum can be tuned based on
location without specific knowledge of the forecast arrivals
of incoming radiometers. To demonstrate this, we revisit the
Open Access economic model of [27] as an example. In this
model, customers are willing to purchase spectrum access if
they achieve higher utility by joining the system rather than
balking (i.e., not joining the system). The objective of the
service provider is to maximize the fee which can be charged,
taking also into consideration the sensitivity of the customer
to delay and preemptions caused by EESS-passive use.

Under this framework, we consider scenarios featuring high
delay sensitivity (defined here as jobs which must complete
within 10 seconds of entering the system) and low delay
sensitivity (jobs which must complete within 100 seconds of
entering the system). In both cases, we consider scenarios
where preemption incurs costs of 1, 10, and 100 times the
reward of service. In Figs. 7(a) and (b) we plot the per-second
wholesale Open Access profits in each scenario. We plot both
the empirical results from each location in Table II, and the
estimation from our studies in Sections III. The customer



(a) Interarrivals (b) Overpass Durations

Fig. 5: Plots of the R-Square error for various Maximum Likelihood Estimation fitted distributions for the interarrival time
(a) and overpass duration (b) at each location from Table II. For the interarrival times, while log-normal is the best fit, any
of the distributions other than the Half-Normal can be considered reasonable approximations. Similarly, for overpass lengths
the logistic distribution provides the best fit but there exist other alternatives that also provide reasonable approximations
(principally the related Log-Normal and Log-Logistic distributions).

(a) GMI scan pattern (b) AMSR-2 scan pattern

(c) AMSU scan pattern (d) Altimeter scan pattern

Fig. 6: Plots of the scan pattern for different radiometers (a) conical scan from GMI (b) conical scan from AMSR-2 (c)
cross-track scan from AMSU (d) radiometer aboard altimeter satellite. The large red circle corresponds to the 100 km selected
area of interest region around Boston, Massachusetts. The smaller red points correspond to measurements co-located within
the red circle area. The blue points are measurements located outside the selected area of interest.



(a) Low Delay Sensitivity (b) High Delay Sensitivity

Fig. 7: Plot of the profit maximizing fee vs latitude under scenarios derived from the Open Access model in [27], for each
location in Table II and the estimated mean interarrival times and overpass periods in Subsections III-A and III-B. We consider
scenarios corresponding to (a) low delay sensitivity (jobs must complete within 100s of entering the system) and (b) high
delay sensitivity (jobs must completely within 10s) and varying levels of sensitivity to preemption (1, 10, and 100 times the
reward per-preemption) as examples.

Fig. 8: Plot of the average fraction of time not used by
radiometers at each location (symbols) and associated curve
fit.

traffic statistics used here are from [28]: Poisson distributed
arrivals with a mean interarrival time of 7.25s, and a service
distribution with mean service time of 6.47s and a standard
deviation of 1.78s.

We see in Fig. 7(a) that in the low delay sensitivity
case there is a definite correlation between latitude and the
maximum profit that a provider can achieve. This is most
pronounced in the high preemption sensitivity case. This is
expected; as the only preemptions possible under the model
are from the radiometers. Under a low-delay high-preemption
sensitivity scenario, the maximum profit per time unit achiev-
able at Quito, near the equator, is 2.5 times greater than that at
Pituffik, inside the Arctic Circle. This holds even though the
amount of available spectrum to non EESS-passive users at
Quito is only 1.01 times that at Pituffik (i.e., 1 percent greater).

In Fig. 7(b), we consider the high delay sensitivity case. While
the corresponding profits are lower than in the low delay
sensitivity case, the same phenomenon where the correlation
between latitude and profit becomes most pronounced as
preemption sensitivity increases is apparent, to the point where
a situation occurs at polar latitudes where no customers are
willing to join the system, resulting in 0 profits. These results
demonstrate the extent of the impact that changes in EESS-
passive access can have on commercial user incentives. De-
pending on the nature of the scenario, particularly customers’
sensitivity to quality of service factors, the changes in EESS-
passive access at higher latitudes can be significant compared
to those at the equator. This is an important factor, which
to the best of our knowledge, previous economic models of
spectrum sharing did not consider. As a result, knowledge
of the estimated data enables planning within an economic
model to be tuned by location of the service area, rather
than attempting to apply a universal assumption on the EESS-
passive utilization or requiring trace data for every given
location of interest. In turn, this simplifies planning while
enabling a baseline availability to be calculated at a granular
level to provide a more flexible service to varying locations.

VI. CONCLUSION

The interarrival times and durations of EESS-passive satel-
lite overpasses are of interest to those investigating the pos-
sibility of future spectrum sharing paradigms. The interar-
rival time CCDFs investigated had a clear dependence on
latitude, with mean and standard deviations well matched by
a quadratic least squares fit versus latitude. In contrast, the
CCDFs of overpass durations showed no significant depen-
dence on location and showed a mean of 24.879s and standard
deviation 7.139s. While the distributions obtained appear more
complex than standard simple forms, a goodness-of-fit test



showed that they could be approximated by simple forms in
some applications. For instance, economic interactions which
are tied to spectrum availability, especially those where users
are highly sensitive to service interruptions, will result in
a strong correlation between the target service location, the
estimated EESS-passive utilization rate via estimated arrival
rate, and provider profits as demonstrated by the example
model employed in Section V.

Follow-on work with these statistical characterizations will
likely involve attempting to separate the multiple distributions
from the data, as well as further economic and policy applica-
tions to refine assumptions on utilization rates and availability
to enable systems planning for co-existence regimes between
commercial users and EESS-passive on scales larger than
individual cites. In addition to further fine-tuning of underlying
commercial user behaviors, this requires a degree of coopera-
tion across a wide area, which lends itself to a statistical view
of the EESS-passive as opposed to attempting to analyze trace
data for each individual location. Finally, applications of the
statistical analysis include leveraging refined fits to simulated
data in support of game-theoretic analysis to ensure accuracy
in results where utilizing a defined statistical distribution is
necessary and exact trace data utilization is not practicable.
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