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Abstract—Microwave radiometers operating on Earth-
observing satellites provide critical support for weather
forecasting as well as oceanographic, atmospheric, and
geophysical monitoring. Maintaining spectrum access is vital
for continued support of these observations which are easily
corrupted by any anthropogenic transmissions occurring within
the time-frequency space utilized by the radiometers. Despite
these requirements, spectrum sharing is also well motivated to
accommodate the ongoing expansion of high band 5G systems,
given the relative sparsity in time of radiometer spectrum
access at a specific location. In this paper, we propose a joint
queuing and game-theoretic model to evaluate the conditions
under which commercial users have incentive to utilize shared
spectrum in the face of preemptions by EESS users. The
model is justified using real traces of EESS Spectrum access.
We assume that commercial users are served by a provider
that charges an admission fee. We determine that in such a
scenario, the resulting Nash Equilibrium is unique. However,
increasing the fraction of commercial users opting to utilize
available spectrum lowers the incentive for newly arriving users
to follow suit, impacting provider profits from admission fees.
Furthermore, we show that the socially optimal state is attained
with the profit-maximizing fee. These results demonstrate the
potential for temporal sharing between space-based Earth
observing microwave radiometers and commercial users in a
manner that provides societal benefits.

Index Terms—Spectrum co-existence, passive users, network
economics, game theory, queuing theory.

I. INTRODUCTION

Microwave radiometers operating on Earth-observing satel-
lites provide measurements that are crucial for supporting high
impact applications, such as weather forecasting; monitoring
the oceans, atmosphere, land surface, and cryosphere; and for
understanding Earth’s geophysical processes [1]. The signals
observed by microwave radiometers are naturally-generated
thermal noise in the microwave portion of the spectrum, and
the desired information on geophysical processes is obtained
only if the observed thermal noise power (reported as a
“brightness temperature”) can be measured to a precision
approaching one part in 103 or better. Multiple emerging
scientific and operational applications are resulting in demands
for even higher precision in the geophysical products obtained,

Fig. 1: Footprint locations for the GMI radiometer over an
example approximate 5 hour period.

due to the importance of understanding the evolution of
our changing planet and the impact on human activities on
these changes. Because the geophysical precision achieved is
determined by the time-bandwidth product of the spectrum
used in a microwave radiometer’s measurement, maintaining
and expanding spectrum access is crucial for supporting and
improving continued and future measurements.

Unfortunately, microwave radiometric measurements are
easily corrupted by any anthropogenic transmissions that occur
in the portion of time-frequency space used by the radiometer;
these transmissions are described as “radio frequency interfer-
ence” (RFI) to the microwave radiometer. The importance of
RFI-free observations has been recognized in past spectrum
allocation activities that have granted a primary or secondary
allocation for the passive Earth Exploration Satellite-Service
(EESS) [2]. As use of these bands for other applications has
continued to increase, the utility of secondary allocations is
being compromised, motivating new strategies for ensuring
future spectrum access. The recent concerns over RFI from
“high band” 5G systems to water vapor observing microwave
radiometers operating near 23 GHz [3], [4] provide clear
evidence of the challenges with traditional spectrum allocation
processes.



Fig. 2: Time history of GMI vertical polarization antenna gain
at Columbus, OH over a selected 3 day period.

The potential for cooperative sharing within existing sec-
ondary allocations or other non-allocated bands is evident
when it is considered that a spaceborne microwave radiometer
observes a given location only for a small percentage of the
time (e.g. during a satellite overpass). As an example of these
properties, the upper left plot of Figure 1 displays “footprint”
locations (i.e. the location on the Earth’s surface that is being
observed at one instant of time) over an approximate 5 hour
period on August 8th, 2019 for the Global Microwave Imager
instrument (GMI, [5]). The approximate 94 minute period
of a single orbit typical for low Earth orbiting satellites is
evident, as well as the wide distribution of observations in
space over a relatively short time period. The temporal aspects
of radiometer access are further explored in Figure 2, which
illustrates GMI antenna gains directed at Columbus, OH over
a 3 day period. It is noted that the access needs captured in
Figure 2 represent only a single satellite radiometer system
among many such systems.

Whether considered in bands currently allocated to EESS
applications on a secondary basis, to bands not currently
available for EESS observations, or as part of future more
dynamic spectrum allocation approaches, the sparse temporal
access needs of passive EESS users motivates a spectrum co-
existence framework whereby these users are granted access
that preempts transmissions by active commercial users. This
implies that whenever EESS users need access to a spectrum
band, commercial users must vacate that band. To assess the
viability of such a co-existence framework, this paper analyzes
its potential impact on the behavior of commercial participants,
including the provider of commercial services and its users.

Because commercial users are strategic and non-cooperative
in nature, game theory is the methodology of choice to analyze
interactions between these participants (also known as players
in the jargon of game theory). In this context, our objective is
to characterize the equilibrium outcomes of the game (i.e., the
Nash equilibria), as well as the resulting provider’s profit and
the efficiency of said equilibria. The well-established concept
of social welfare can be used to measure this efficiency. An
important goal is to evaluate how the social welfare at equi-
librium fares with respect to to the Pareto optimum: namely,
the optimal social welfare that could be achieved under a

(hypothetical) centralized allocation of resources. Ideally, the
social welfare at equilibrium should be as close as possible
to the Pareto optimum (the ratio between the latter and the
former is known as Price of Anarchy (PoA) [6]). The main
contributions of this paper in this context can be summarized
as follows:

1) We propose a framework for spectrum sharing between
passive EESS users and active commercial users, relying
on priority-based preemptions.

2) We introduce economics underpinnings for this frame-
work using a joint queuing-theoretic and game-theoretic
formulation. Spectrum access by commercial users (aka
customers) is modeled using an M/G/1 queuing system
with server breakdowns (i.e., when EESS users are using
the spectrum, the server is “broken”). Strategic customers
decide whether or not to join the system considering
the reward of service, the cost of delay, the cost of
preemptions, and the provider’s admission fee.

3) We justify the model using real traces of spectrum access
from a collection of EESS satellites (these traces were
assembled from public sources and will be made available
to the broader research community).

4) We perform an equilibrium analysis of this model, prov-
ing the existence of a unique Nash Equilibrium, and
providing a closed-form expression for it.

5) We analyze the profit maximization, social welfare and
PoA of this system, as a function of the various statistical
traffic parameters and the economic costs. The analysis
shows that the profit maximization and social welfare
optimization objectives coincide for fixed queuing param-
eters. Therefore, it is not necessary for a regulatory body
to intervene to force a socially optimal outcome.

6) Through numerical analysis, we evaluate the impact of
the delay cost, the preemption cost, and EESS spectrum
usage on the behavior of customers and on the provider’s
profit. Under typical parameters, we find that delay has
greater impact than preemption on the customers’ behav-
ior and the resulting provider’s profit.

II. RELATED WORK

The economic analysis conducted in this paper relates to the
field of queuing games, which combines queuing and game
theory. The book by Hassin and Haviv is a standard reference
in this field [7]. A survey of more recent results can be found
in [8]. Within the field of queuing games, priority queues have
been treated extensively. Most of the related literature assumes
a non-preemptive service policy, whereby a low priority in
service cannot be preempted by a higher priority customer.
In contrast, our paper considers a preemptive-resume service
policy, whereby a low-priority customer in service may be
preempted by a higher priority customer (in our case, an EESS
user). Prior research shows that preemptive service may lead to
markedly different equilibrium outcomes than non-preemptive
service [9], [10].

To model spectrum disruption by higher priority users, our
work considers a specialized M/G/1 queuing model, namely



Parameter Definition
λ, λee Arrival rate of customers and passive EESS users, respectively.
µ, µee Service rate of customers and EESS users, respectively (equal to 1 over mean service length).
µ′ The effective service rate of customers once service breakdowns are accounted for.
ρ′ The effective traffic load of customers (equal to arrival rate over effective service rate).

K, Kee Service variance parameter, where the second moment of service equals K/µ2 Kee/µ2
ee respectively for customers, EESS users.

Cd Cost of customer delay in the system per time unit.
Cp Cost of each preemption of a customer by an EESS user.
R Customer’s reward of getting service.
Q Customer queuing utility, that is the reward of service minus the average costs due to delay and preemption.
f Provider’s admission fee.
ϕ Fraction of customers joining the system.
ϕ∗ Mixed equilibrium.

ϕmax Equilibrium corresponding to profit-maximizing fee.
D Random variable representing the total system delay for customers joining the system.
P Average provider’s profit per time unit.

α, β Respectively, α ≜ λee + µee, and β ≜ 2λ2
ee +Keeλeeµ+ 4λeeµee + 2µ2

ee

TABLE I: Definition of parameters and variables related to the queuing game model. Note that ϕ∗, ϕmax, D, Q and P are
outcome variables determined by the analysis. The fee f is a parameter set by the provider. The variables α, β are notational
shorthands for certain repeating expressions. The other parameters are exogenous variables.

an M/G/1 queue with server breakdowns. The work by Avi-
Yitzhak and Naor introduces and analyzes several variants of
this model [11]. One variant (referred to as Model B in [11])
assumes that breakdowns occur only when the server is busy.
This also corresponds to the model analyzed in the probability
textbook of Ross [12, p. 531], which was adopted in previous
work on economic analysis of cognitive radios [13]. Since
breakdowns cannot occur when the system is empty, this
means that an arriving customer finding the system empty will
get served immediately. This model does not accurately reflect
spectrum sharing. In practice, a commercial user arriving while
an EESS user is using the spectrum should not be allowed to
access the spectrum immediately, even if it finds the system
empty (i.e., no other commercial user is present).

Another variant, corresponding to Model A in [11], con-
siders breakdowns that occur homogeneously in time. In
other words, server breakdowns are independent of customer
arrivals to the queue. This model better reflects reality, since
in practice the on-off process characterizing EESS spectrum
usage is independent of arrivals of commercial users to the
system. In this paper, we adopt this variant. As a result, the
economic analysis differs from prior work [13]. Additionally,
our economic model explicitly captures the economic cost
caused by preemptions, which is typically ignored in prior
work.

The sharing framework considered in this paper resembles
that of Citizens Broadband Radio Service (CBRS) [14] in
that EESS-passive users will be considered as incumbents
empowered with preemptive priority. This implies that when-
ever EESS users need access to a certain spectrum band,
commercial users must vacate that band. To manage access
and enforce the appropriate priority of the various users,
we envision a Spectrum Access System (SAS) to monitor
the spectrum space and communicate the availability of a
requested channel to transmit. Eichen discusses the feasibility
and practical considerations in building such a CBRS-like
framework for sharing the spectrum between passive scientific
users and active users [15]. Our work contributes theoretical

foundations to reason about such a spectrum sharing frame-
work. Our model evaluates the impact of service interruptions
on the delay performance and strategic choices of commercial
users, and the effect of such choices on the profit of a
commercial provider and the social welfare of the system.
A key and unique contribution of our paper consists of the
validation of the statistical models with actual time series of
spectrum access by EESS satellites.

III. ECONOMIC MODEL

In this section, we present our economic model, including
the game-theoretic formulation. Table I summarizes the nota-
tion of our model.

A. Spectrum Usage Model and Customer Delay Analysis

We start by introducing a statistical model that accounts
for the spectrum usage of EESS users and commercial users
(we refer to the latter simply as customers). We assume
that customers wait in a queue for service, hence our model
incorporates a queuing-theoretic component.

Usage of the spectrum by the EESS users represents an on-
off process. In the on-state, spectrum is available to customers
for an exponentially distributed amount of time with rate
parameter λee. During this time, the server of the queuing
system is working, and customers are served in a First-Come
First-Served (FCFS) order. In the off-state, EESS users are
using the spectrum. During this time, the server of the queuing
system is broken (and getting repaired), and no customer is
getting served. The distribution of the repair time is general
with mean 1/µee and second moment Kee/µ

2
ee. Once the

spectrum is again available, if a customer was preempted it
reenters from the point of interruption (corresponding to a
preemptive-resume model [16, p. 67]).

Customers arrive to the system according to a Poisson pro-
cess with rate λ. The work of Willkomm et al. [17] justifies the
Poisson process assumption for arrivals of customers, based
on measurements of spectrum usage in cellular networks. Due
to the costs associated with delay and preeemption and the



provider’s admission fee, only a fraction 0 ≤ ϕ ≤ 1 of the
customers join the queue. The value of ϕ is determined as the
solution of a queuing game. This game is discussed in detail
in Sections III-C and IV. The distribution of the spectrum
usage time by each customer follows a general distribution
with mean 1/µ and second moment K/µ2.

Since server breakdowns occur independently of customer
arrivals, the system under consideration is modeled as an
M/G/1 queue with server breakdowns occurring homoge-
neously in time (Model A in [11]).

The solution of the model in question is equivalent to a
queue with the following modified parameters. Let X ′ repre-
sent the service time. The mean service time is E[X ′] = 1/µ′2

where
µ′ =

µ

1 + λee/µee
. (1)

The resulting effective traffic load is ρ′ = λϕ/µ′ and the
system is stable if and only if ρ′ < 1. The formula for the
delay of a customer in the system is [11]:

E[D] =
(Kee/µee)(1− µ′/µ) + λϕK(1/µ′2)

2(1− ρ′)
+

1

µ′ . (2)

The first term in Eq. (2) represents the delay of a customer
in the queue (also known as waiting time in the literature
on queuing theory). We note that even when λ → 0 the
waiting time does not vanish; that is, even if the customers’
demand is very low, a customer may have to wait upon arrival
due to the spectrum currently being held by an EESS user.
The second term represents the effective mean service time
of a customer. This quantity is greater than 1/µ because a
customer may be preempted by an EESS user while being
served. Specifically, because EESS users hold the spectrum
for the following fraction of time

1/µee

1/µee + 1/λee
=

λee/µee

1 + λee/µee
,

customers can only access the spectrum for the remaining
fraction of time, that is,

1− λee/µee

1 + λee/µee
=

1

1 + λee/µee
.

Hence, the effective service rate µ′ is smaller than µ and given
by Eq. (1).

B. Validation of Delay Model with Traces of EESS Spectrum
Access

To validate this delay model (i.e. Eq. 2), we leverage
traces of actual EESS spectrum access. Our traces incorporate
information on spectrum access at a specific location by
the 14 microwave radiometers listed in Table II. The listed
sensors each observe in multiple frequency bands throughout
the spectrum, with all including measurements at or near 23.8
GHz. The 14 systems in Table II were selected according to
existing team access to their datasets; access for an additional
14 instruments observing near 23.8 GHz was not yet acquired,
thus the results to be shown represent only approximately

Satellite Space Agency Sensor Source
Aqua NASA AMSU-A [18]

GCOM-W JAXA AMSR2 [19]
GPM Core Observatory NASA GMI [20]

Metop-B EUMETSAT AMSU-A [21]
Metop-C EUMETSAT AMSU-A [21]

NOAA-15 NOAA AMSU-A [22]
NOAA-18 NOAA AMSU-A [23]
NOAA-19 NOAA AMSU-A [23]

JPSS-1 (NOAA 20) NOAA ATMS [24]
JPSS-2 (NOAA 21) NOAA ATMS [24]

Sentinel-3A ESA MWR [25]
Sentinel-3B ESA MWR [25]
Sentinel-6A EUMETSTAT AMR-C [26]

SNPP NOAA ATMS [23]

TABLE II: EESS radiometers included in our traces.

50% of the currently expected EESS access requests. Level 1
brightness temperature data from each sensor over the month
of September 2023 was identified for situations in which the
instrument’s observation occurred within 100 km of latitude
42.36 deg, longitude −70.06 deg (i.e. Boston, MA). The 100
km distance is intended in part to protect the radiometer
from transmissions either within the instrument antenna’s main
beam or from sidelobes of the antenna pattern, although more
precise studies using a more accurate instrument antenna
pattern model would be required to confirm the exact spatial
exclusion zone for a given instrument. There are 783 unique
satellite passes identified in this period, with mean time
between arrivals of 3,387 seconds, mean access duration of
26.71 seconds, and a variance slightly greater than that of an
exponential distribution. In terms of the model parameters, this
yields λee = 3× 10−4, µee = 0.04, and Kee = 2.11.

To demonstrate the validity of the delay model, we apply
a simulation in which the EESS users are generated from
trace data, and commercial users are generated according to
a distribution derived from studies of commercial cognitive
radios under high usage [27]. The commercial users have a
mean service time of 6.47 seconds (µ = 0.16) distributed
with a variance slightly greater than deterministic (K = 1.49).
Customers joining the system arrive according to a (thinned)
Poisson process with mean arrival rates ranging from λϕ =
0.13 to λϕ = 0.15 (i.e. the mean inter-arrival time ranges from
6.86 s to 7.67 s). These values yield effective traffic rates in
the range ρ′ ∈ [0.85, 0.95] (i.e. resulting in a heavy traffic
system while respecting the stability criteria ρ′ < 1). As seen
in Figure 3, when plotting the simulated delay times against
the analytical values expected from E[D], the simulated values
for the customer delays fall within a 95% confidence interval
of the expected value based on 30 iterations of the simulation.
This shows a good match between our analytical models and
the simulated model. As a result, we proceed with our analysis
based on the delay model established in Section III-A.

In evaluating the trace data, we make a simplifying assump-
tion that the presence of a radiometer results in the unavail-
ability of the spectrum of interest. While this ignores potential
re-allocations to white space (for example, the AMSU and
ATMS instruments have a bandwidth of 270 MHz while others



Fig. 3: Validation of delay model. The analytical curve is
plotted using Equation (2). The simulated curve leverages
trace data from radiometers listed in Table II and customer
traffic parameters derived from previous measurement studies
of commercial cognitive radios [27]. The figure shows ex-
cellent agreement between the two curves, with the analysis
consistently falling within the 95% confidence interval of the
simulation at all simulated values.

have a 400 MHz bandwidth), it is also important to recall that
the included instruments do not represent every radiometer
observing in the 23.8 GHz band. Thus, we err on the side
of a conservative estimate of the rate of spectrum usage by
EESS radiometers. We further note that the results shown are
intended only to provide an example of the temporal properties
of current EESS user spectrum access in a commonly used
frequency channel, without suggesting that any particular band
should be prioritized for future spectrum sharing. In addition,
as the number of EESS satellites continues to grow, it should
be expected that spectrum access will become more frequent,
which motivates the exploration of economic impacts for a
range of spectrum access parameters. We conduct such a study
in Section IV-C.

C. Reward Model and Game Formulation

In defining the reward and subsequent queuing game, we
leverage classical assumptions on M/G/1 queues in general
[28], and unobservable queues in particular as customers are
unable to cooperate with each other [29]. In particular, we
assume that customers are homogeneous with identical reward
R for successful service, that they do not balk from the queue
after joining, customers are risk neutral and seek to maximize
their net benefit, and users in the system have a sense of
the statistical parameters of the queue despite being unable
to directly observe the queue sizes. As a result, customers
have two choices, to utilize the spectrum, or to not do so. A
customer which does not join the queue has a reward of 0
from failing to achieve service, but a cost of 0 from avoiding
the queue in the first place. Thus, to join the queue and utilize
spectrum, the utility for doing so must be non-negative. We

additionally assume that the stability condition ρ′ < 1 holds
even when all customers join the queue and ϕ = 1.

As the reward R is constant, the defining element of
individual utility will be the costs. WLOG, we let R = 1,
thus all considered costs are normalized with respect to the
reward received. From a customer point of view, the time
spent waiting in the queue represents an opportunity cost, and
thus we consider a cost of delay. This cost equals CdE[D],
where Cd > 0 is the per-time unit cost imposed by the
customers for delay time, and E[D] is the expression for
the delay from Equation (2). In addition we consider that,
while we assume that the queue has a work conserving nature,
customers are sensitive to preemptions and incur costs related
to pausing their utilization of the available spectrum. This cost
of preemption is the per-preemption cost Cp > 0 multiplied by
the expected number of preemptions. Given that breakdowns
due to arrival of EESS radiometers occur at a rate of λee, and
the service period of an individual customer is 1/µ on average,
the expected number of preemptions during a service period
is λee/µ.

Given this formulation, we define a queuing utility function
Q(ϕ) as the individual utility of the customers opting to utilize
spectrum, which is the reward minus the costs of delay and
preemption:

Q(ϕ) ≜ 1−
(
CdE[D] + Cp

λee

µ

)
. (3)

However, we must also account for the existence of a provider
managing spectrum access, who charges an admission fee f to
each customer joining the system. The provider incurs no other
reward, nor faces ongoing costs related to access management.
As a result, the provider’s utility is equal to its reward, which
is f multiplied by the number of customers accessing the
spectrum. Conversely, the utility a customer considers when
joining the queue to access spectrum equals

Q(ϕ)− f. (4)

It is this quantity that is the focus of our optimization efforts
in the economic analysis.

IV. ECONOMIC ANALYSIS

In this section, we present an analysis of the economic
aspects of the game introduced in the previous section: the
conditions under which a given fraction ϕ of customers opting
to utilize the spectrum is an equilibrium state, the conditions
where the equilibrium state is subsequently a socially optimal
one, whether a provider profit maximization state coincides
with a socially optimal state, and a sensitivity analysis derived
from spectrum access traces.

A. Equilibrium Analysis

As established in Equation (4), the customers’ individual
utility will depend on the queuing costs and the admission fee.
The fee f however is set by the provider, who is free to set it at
whatever level it so chooses. An important case is one where a
customer is indifferent between its options for some ϕ∗. That



is, f = Q(ϕ∗), resulting in a utility of 0. This results in a Nash
Equilibrium state where a fraction ϕ∗ of customers join the
queue, and the remainder do not. The provider optimizes the
fee f as a function of Q(ϕ). To determine specific equilibrium
conditions, we assert the following:

Lemma 1: Increasing the fraction of customers utilizing
spectrum decreases the utility of all customers in the queue,
regardless of the values of the queuing parameters for customer
or EESS users.
The proof, contained in Appendix A, amounts to computing
the derivative of Q(ϕ) and determining that it is monotone
decreasing for all ϕ regardless of which values the parameters
take. This customer behavior is referred to in the literature as
Avoid the Crowd [7]. With this in mind, we define f0 ≜ Q(0)
and f1 ≜ Q(1) respectively. Letting α ≜ λee + µee and β ≜
2λ2

ee + Keeλeeµ + 4λeeµee + 2µ2
ee be notational shorthands

for repeating expressions, we thus have

f0 = 1− Cd

(
α

2
+

1

µ′

)
− Cp

λee

µ
, (5)

and

f1 = 1− Cd
(K − 2)λα3 + µµeeβ

2µµeeα(λα− µµee)
− Cp

λee

µ
, (6)

We also define the following expression for the mixed
state ϕ∗ which is a solution to f = Q(ϕ∗):

ϕ∗ ≜
µµee

(
2µeeα(Cpλee + (f − 1)µ) + Cdβ

)
λα2

(
2µee(Cpλee + (f − 1)µ)− Cd(K − 2)α

) . (7)

This leads to the following claim:
Theorem 1: Given fixed parameters, a fixed admission fee

f , and f0, f1 as defined in Equations (5) and (6), there exists
always a unique equilibrium state determined as follows:

1) If f ≥ f0, the equilibrium is ϕ = 0 (i.e. no customer
utilizes the spectrum);

2) If f ≤ f1, the equilibrium is ϕ = 1 (i.e. all customers
utilize the spectrum);

3) If f1 < f < f0, the equilibrium is the mixed equilibrium
ϕ∗ ∈ (0, 1), where ϕ∗ is equal to the expression in
Equation (7) (i.e. a fraction ϕ∗ of customers join the
queue, the remaining 1− ϕ∗ do not).
Proof: From Lemma 1, Q(ϕ) is monotone decreasing.

Thus, the maximum value of Q(ϕ) is f0, and the minimum
is f1, for ϕ ∈ [0, 1]. Subsequently, it follows that f0 is the
lowest admission fee which ensures that no customers have
incentive to join the queue; f0 is defined in terms of the ϕ = 0
equilibrium, thus by definition f = f0 yields an equilibrium
where no customers have incentive to utilize spectrum. If the
admission fee is set higher than f0, then the fee is certainly
higher than any customer is willing to pay to join the queue,
which has the same effect. This demonstrates the first claim.

Similarly, f1 will be the highest admission fee ensuring
that all customers have incentive to join the queue and utilize
spectrum. Certainly f = f1 is defined in terms of the ϕ = 1
equilibrium; and any fee less than f1 must also result in all
customers having incentive to utilize spectrum as the provider

would be charging a lower admission fee than every customer
is willing to pay, thus demonstrating the second claim.

If otherwise f1 < f < f0, then it is the case that there exists
some ϕ∗ ∈ (0, 1) such that f = 1 − C(ϕ∗). By definition,
this is an equilibrium state. That no other ϕ ̸= ϕ∗ can be an
equilibrium is a consequence of the customers’ behavior as
demonstrated in Lemma 1. If ϕ < ϕ∗, the utility is positive,
and a newly arriving commercial user has incentive to utilize
the spectrum. Conversely, if ϕ > ϕ∗, the utility is now negative
and therefore there is no incentive for newly arriving customers
to utilize the spectrum. Therefore, the mixed equilibrium ϕ∗

is unique, where ϕ∗ is defined in Equation (7).
We conclude the equilibrium analysis by noting that no

restriction was placed on the value of the admission fee f .
Thus negative values are admitted, in which case f is instead
an admission subsidy. While a profit maximizing provider has
no incentive to set a negative admission fee, providers with
other objectives may benefit from paying a subsidy (e.g. a
public utility which has an objective of spectrum utilization
inducing customers to join the queue when the reward is
less than the costs of delay and preemption). As a result,
this analysis is applicable to situations beyond the profit
maximizing scenario.

B. Profit Maximization and Social Welfare

Under our model, a monopolistic provider controls the level
at which the admission fee f is set. As such, the game is dom-
inated by the provider’s actions, notwithstanding preemptions
caused by EESS users. As we consider a commercial shared
spectrum setting, we assume that the provider’s objective is
profit maximization. Because customer arrivals form a random
process, we define the profit in terms of expectation per time
unit. Equilibrium states are defined in terms of the relationship
between the admission fee f and the customer queuing utility
Q(ϕ). The rate of customers who join the queue equals λϕ.
Therefore, the profit expression to optimize is

P =

{
λϕQ(ϕ) if Q(ϕ) > 0,

0 if Q(ϕ) ≤ 0.
(8)

As the provider is monopolistic, optimizing P potentially
results in a non-optimal state in terms of the social welfare,
or net utility, of all users combined. Specifically, the Price of
Anarchy (PoA) is defined as the ratio of the optimal social
welfare to the social welfare at a given equilibrium state [30].
A PoA of 1 represents a scenario where the equilibrium state
is also a socially optimal one; values greater than 1 represent
wasted costs from non-cooperation. However, we claim that
in this setting, this is not a concern.

Theorem 2: The admission fee f which maximizes the
provider profit yields the socially optimal state.

Proof: As with the profit, we consider the social welfare
in terms of expected value per time unit due to the number
of customers being a random variable. In this light, the
utility of the λ customers depends on whether or not they
utilize spectrum. The utility of the provider is simply the



admission fees collected from customers opting to utilize
spectrum access. This results in the following expression:

λ (ϕ[Q(ϕ)− f ] + (1− ϕ)0) + λϕf (9)

As the payment of f from customer to provider has a net
social utility of 0, and customers opting against utilizing
spectrum have a utility of 0, the resulting expression simplifies
to λϕQ(ϕ), which is the expression for P when Q(ϕ) > 0.

From Lemma 1, we know that Q(ϕ) is monotone decreasing
in ϕ. Thus, the value can transition from positive to negative
at most once in the interval ϕ ∈ [0, 1]. If it does, then there
also exists some interval (0, ϕ′) where λϕQ(ϕ) is positive.
Thus, the maximum value of the social welfare must exist in
the interval (0, ϕ′). As the expression is equivalent to P , this
also yields the profit maximizing equilibrium from which the
corresponding admission fee f is derived. Otherwise, if there
is no transition between positive and negative values of Q(ϕ),
it must be the case that Q(ϕ) < 0 for any ϕ > 0. Therefore, the
social utility must also be negative in this interval. Therefore
the socially optimal state is ϕ = 0, where no customers join
the queue, yielding a social utility of 0. However, this is also
the maximum profit a provider will realize in this scenario as
no customer will utilize spectrum without being paid a subsidy
to overcome the lack of incentive to join the queue.

As the provider profit maximization state is socially optimal,
the PoA is 1 by definition. By extension, it is not necessary
for a regulatory body to intervene for the purposes of inducing
a socially optimal state (so long as the provider is acting in a
rational manner). While such an outcome has been observed
in prior studies for classical queues [29], that it continues to
hold here is not obvious at first glance, due to the cost of
preemptions and the generality of our model regarding the
distribution of breakdown periods.

Given that computing the optimal social state and profit
maximization state are equivalent, we compute the fee f > 0
corresponding to the equilibrium ϕ∗ > 0 which optimizes the
profit P . We define the following quantities, where α, β are
the shorthand values defined earlier (see Table I):

Cd =
2µeeα(µ− Cpλee)

β
; (10)

Cd =
2(Cpλee − µ)µeeα(µµee − λα)2

(K − 2)λα3(λα− 2µµee)− µ2µ2
eeβ

; (11)

ϕmax =
µµee

λα
−

√
Cdµ2µ2

ee(Keeλeeµ+Kα2)

λ2α3(Cd(K − 2)α− 2(Cpλee − µ)µee)
.

(12)
The following theorem establishes the profit-maximizing fee.

Theorem 3: Let f1 be given by Equation (6), Cd, Cd,
and ϕmax be given by Equations (10)-(12), and the queuing
parameters be fixed and valid. Then the provider maximizes
its profits under the following conditions:

1) All the customers join the queue (i.e., ϕ = 1) and f = f1,
if 0 < Cp < µ/λee and 0 < Cd ≤ Cd.

2) A fraction ϕ = ϕmax of the customers join the queue, and
f = Q(ϕmax), if 0 < Cp < µ/λee and Cd < Cd < Cd.

3) Otherwise, the provider is unable to generate profit.
Proof: To show this result, we claim that P is either

monotone with respect to ϕ, or unimodal with a unique
maximum over the interval ϕ ∈ (0, 1). We evaluate this
derivative in Appendix B. Based upon this evaluation, we
determine that the maximum value of P depends on the values
of Cd and Cp and the queuing parameters:

• If 0 < Cp < µ/λee and 0 < Cd ≤ Cd, P increases
with respect to ϕ over the entire interval. Therefore, the
maximum value of P occurs at ϕ = 1 with corresponding
admission fee f = f1 as previously defined.

• If on the other hand 0 < Cp < µ/λee and Cd <
Cd < Cd, P is a unimodal function increasing for
ϕ ∈ (0, ϕmax) and decreasing from ϕ ∈ (ϕmax, 1).
Therefore, the maximum value of P occurs at ϕ = ϕmax,
with corresponding admission fee f = Q(ϕmax).

• Otherwise, P is monotone decreasing with respect to ϕ,
and as P = 0 when ϕ = 0, no admission fee f > 0 results
in provider profits. Therefore, the maximum value of P
occurs at ϕ = 0, and no customers opt to join the queue.

Thus, we find that while the provider profit maximization is
socially optimal, in general not all customers are incentivized
to join the queue in a profit maximization scenario. The costs
of queuing delay and preemption must be sufficiently small
relative to the queuing parameters for ϕ = 1 to be the profit
maximizing equilibrium. This is of particular concern when
considering scenarios in which customer traffic approaches the
saturation point - the more customers present, the more likely
preemptions occur despite the EESS radiometers occupying
the spectrum for a small fraction of time.

C. Numerical Results

We next perform numerical analyses to illustrate our theoret-
ical results. We utilize the EESS and commercial distributions
derived in Section III-B: i.e., EESS users follow arrival and
service distributions where λee = 3 × 10−4, µee = 0.04 and
Kee = 2.11; and commercial users follow arrival distribution
λ = 0.14, with service distribution µ = 0.16 and K = 1.5,
such that if ϕ = 1 the effective load is ρ′ = 0.9.

a) Evaluating the Impact of the Delay and Preemption
Costs: We begin by evaluating the result of Theorem 3, using
our derived parameters to visualize the relationship between
the costs of delay Cd and preemption Cp and their impact
on the profit maximizing equilibrium state ϕmax. The results
for Cd ∈ (0, 0.2) and Cp ∈ {1, 10, 100, 1000} are plotted in
Figure 4. We find that so long as Cp < µ/λee = 515.33, there
will be regions where ϕmax = 1 and profit is maximized when
all customers join the queue. This follows from a consequence
of the fact that the rate of EESS arrivals λee is much smaller
than the mean customer service length 1/µ. Thus, while users
are sensitive to preemptions, unless the cost of preemption is
3 to 4 orders of magnitude greater than the reward, there will



Fig. 4: Plot of the profit optimizing equilibrium ϕmax resulting
from cost of delay Cd in the range (0, 0.2), for cost of
preemption Cp ∈ {1, 10, 100, 1000}, using the parameters for
EESS users and customers derived in Section III-B with an
effective traffic load of ρ′ = 0.9 when ϕ = 1 (i.e. all customers
join). We see that as Cd increases in this range, the profit
maximizing equilibrium rapidly drops to 0; conversely, Cp

must be very large relative to the reward to produce regions
where ϕmax = 0 for any delay cost. These results show that
customers are primarily sensitive to the delay cost.

exist scenarios where customers will opt to join the queue, as
the likelihood of preemption is relatively small.

Conversely, the profit maximizing equilibrium ϕmax drops
to 0 rapidly as a function of Cd for fixed values of Cp <
µ/λee, demonstrating that the customers are more sensitive
to delay than preemption in this setting. Indeed, while Cp

represents a per-preemption cost with a low probability of
being incurred, Cd is a per-time unit delay cost incurred until
the completion of service. Thus, in this scenario, values of
Cd less than 20% of the reward result in scenarios where
customers lack incentive to join the queue and the maximum
profit is 0. Thus, customers are more sensitive to each other’s
traffic, than they are to the effects of preemption.

b) Evaluating the Impact of EESS Spectrum Usage Pa-
rameters: Having established sensitivity to preemption, we
consider the impact of changes in spectrum usage by EESS
radiometers on customer behavior. Indeed, future EESS usage
requirements may entail more frequent arrival times than cur-
rently observed. This drives interest in analyzing the sensitivity
of the equilibrium states as λee varies from 3 × 10−4 and
6 × 10−4 to represent a doubling of EESS arrivals over the
currently observed frequency. There are no other changes to
the queuing parameters, resulting in an effective load range
ρ′ ∈ [0.9, 0.91] when ϕ = 1.

We let Cd = 13 × 10−3 and Cp ∈ {1, 10, 100}. Note that
for λee = 3 × 10−4, ϕmax = 1 for each of the selected
values of Cp. Plotting the corresponding profit maximizing
equilibria in Figure 5(a), we find that when Cp is sufficiently
small (i.e. within one order of magnitude of the value of the
reward), the profit maximizing equilibrium remains ϕmax = 1.

Therefore, despite the increase in EESS traffic, the relatively
low sensitivity to preemption results in profit maximization
still occurring when all customers join the queue. Conversely,
if the cost of preemption is two orders of magnitude greater
than the reward (e.g. Cp = 100), then situations where ϕmax is
a mixed equilibrium state arise. Specifically, here we find that
λee > 3.49×10−4 results in ϕmax < 1. This EESS arrival rate
represents one arrival every 2,865 seconds, or a 16% increase
over the observed rate from our trace data. Thus, if customers
value preemption is sufficiently high, a marginal increase in
EESS traffic may result in some customers not wanting to join
the queue and utilize the available spectrum. However, even
if λee doubles, the corresponding ϕmax = 0.93, meaning that
only 7% of the customers do not join the queue. Thus, while
profit maximization does not occur when all customers join
the queue, the vast majority of customers will still opt to do
so in this scenario.

In Figure 5(b), we plot the corresponding provider profits
P for our scenarios. For Cp = 1 and Cp = 10, we find that
an increase in EESS traffic has a limited impact on provider
profits. However, in the case Cp = 100, the realized profit
decreases with the increased EESS traffic; while the likelihood
of preemption is still relatively low, the increased sensitivity
to preemption forces the provider to charge a lower fee to
convince customers to join the queue. As EESS traffic doubles,
the profit decreases by 40%, despite only 7% fewer customers
joining the queue. Yet, the doubling of EESS arrivals only
decreases the available white-space for customer transmissions
from 99.2% to 98.4%. Thus, marginal decreases in available
spectrum can result in profit decreases which are much larger.
Therefore, a high sensitivity to preemption could be a con-
cern as EESS usage of available spectrum changes, despite
customer behavior generally being dominated by sensitivity
to delay from other customers entering the system, as shown
in the previous example.

V. CONCLUSIONS

In this work we propose a spectrum sharing framework on
frequency bands utilized by the Earth Exploration Satellite-
Service, which comprises passive radiometers in orbit and
thus individual radiometers only requiring access to spectrum
for a brief period as they pass overhead in a given location.
Leveraging concepts from queuing theory and game theory,
we develop an economic model for spectrum sharing between
EESS users and a commercial tier. Utilizing traces of EESS
data from the Boston area during September 2023, we demon-
strate that commercial user delay can be modeled using an
M/G/1 queue with server breakdowns, where the breakdown
periods caused by EESS arrivals follow a general distribution.
Accordingly, we develop a queuing game that captures the
customer rewards gained by spectrum access, as well as
costs proportional to the delay in the queue and frequency
of preemptions under service. We fully solve the game as
a function of the system parameters, including providing a
closed-form expression for the Nash equilibrium, which is
also proven to be unique. We further determine the regime



(a) Optimal equilibrium vs. EESS arrival rate (b) Maximum profit vs. EESS arrival rate

Fig. 5: Plots of the profit maximizing equilibrium (left) and corresponding provider profit (right) as a function of EESS user
arrival rate, with customer queue statistics and EESS service parameters derived from Section III-B, and costs of delay and
preemption Cd = 13 × 10−3 and Cp ∈ {1, 10, 100}, respectively. We find that when the cost of preemption is not too high
(i.e. CP ≤ 10), increase in EESS traffic does not affect the optimal equilibrium (i.e., ϕmax = 1, throughout) and has a limited
impact on the provider’s profit. However, when Cp = 100, we see that increases in EESS traffic result in the profit maximizing
equilibrium becoming a mixed state (i.e, ϕmax < 1). In this case, the decreasing fraction of customers joining the queue results
in profits decreasing at a fast clip.

of parameters under which a commercial provider is ensured
to make profit and derive the profit-maximizing fee.

An important insight from the analysis is there is no
requirement for external intervention to induce a socially
optimal state, because the profit maximization and social wel-
fare optimization objectives coincide (i.e., the PoA equals 1).
This reduces the regulatory overhead required to administer
spectrum access on EESS bands. Further, our EESS trace
data suggests that 99.2% of spectrum capacity is available
on EESS bands, thus making such frequencies desirable for
commercial use as the probability of EESS preemption is low.
Indeed, generally customers are far more sensitive to delay
than preemption to the point where the cost of preemptions
must be one hundred times greater than the reward of service
to have an appreciable impact on customer decision-making.
In such a scenario, increases in EESS arrivals can result in
provider profit decreases of 40% compared to prior EESS
usage levels, despite only a 7% decrease in the fraction of
customers willing to utilize the spectrum and a 0.8% decrease
in spectrum availability for customers. Thus, when planning
spectrum access policies, customer sensitivity to preemption
must be carefully accounted for. Nevertheless, even in this
case, we find that there are significant societal benefits to such
a spectrum sharing paradigm, as a large fraction of potential
customers would be able to access spectrum and commercial
service would be profitable.

Future work includes further refinement of our model
through undertaking precise measurements of antenna patterns
to confirm the nature of each instrument’s exclusion zone,
in order to refine estimates of antenna usage for spectrum
planning purposes. In addition, analysis of additional EESS

spectrum bands is required to determine which bands should
be prioritized for spectrum sharing, given availability for
commercial use balanced against customer tolerance for pre-
emption and frequency range requirements of commercial
applications.
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APPENDIX A
PROOF OF LEMMA 1

To prove the claim in Lemma 1, we assert that even a
marginal increase in the fraction of customers entering the

queue to utilize spectrum reduces the utility of all customers
electing to do so. Conversely, a decrease in the fraction of
customers joining the queue increases the utility of customers
who opt to join. The net utility for an individual customer is
given by Q(ϕ)−f ; f is set by the provider, who optimizes the
fee in terms of Q(ϕ) to achieve a targeted equilibrium state.
Therefore, Q(ϕ) is the quantity to consider when evaluating
customer behavior as the admission fee varies. Applying Equa-
tions (2) and (3) and the notational shorthand α = λee + µee,
Q(ϕ) is expressed as

1−
[
Cd

(
Keeλµ

2µee +Kλαϕ

2µµeeα(µµee − λαϕ)
+

α

µµee

)
+ Cp

λee

µ

]
.

The only term containing a ϕ is a quotient, however the re-
strictions ϕ ∈ [0, 1] and the stability assumption ρ′ < 1 imply
that the denominator must be greater than 0. By inspection,
we conclude the expression is continuous and differentiable
over the interval ϕ ∈ [0, 1]. Computing the derivative yields:

−
Cd

(
Keeλeeµ+Kα2

)
2(µµee − λαϕ)2

.

Given that the individual parameters must be positive by
their definitions, and the previously stated stability assumption
and restricted domain of ϕ, we conclude the derivative is
negative for all ϕ ∈ [0, 1]. Therefore, as a function of ϕ, the
net utility is monotone decreasing, the physical interpretation
being that of the Lemma’s claim: increasing the fraction of
customers in the queue decreases the utility for all customers.

APPENDIX B
BEHAVIOR OF PROVIDER PROFIT P AS A FUNCTION OF ϕ

In Theorem 3, the proof depends on evaluating the derivative
of P with respect to ϕ to determine the behavior of P as
ϕ changes and in turn determine where the maximum value
exists on the interval ϕ ∈ [0, 1]. We assert that as P = λϕQ(ϕ)
and Q(ϕ) was previously determined to be differentiable in
Lemma 1, so too is P as a function of ϕ. Computing said
derivative yields

λ(µ− Cpλee)

µ
− Cdλ

(
µµeeβ

2α(µµee − λαϕ)2

+
(K − 2)λα2ϕ(2µµee + λαϕ)

2µµee(µµee − λαϕ)2

)
.

Evaluating this quantity over ϕ ∈ (0, 1) given the restric-
tions on the parameters, we find that to be positive requires
Cp < µ/λee. There are two additional sub cases based on
the value of Cd. If Cp ≤ Cp as defined in Equation (11),
the derivative is positive for all ϕ ∈ (0, 1). Otherwise, if
Cp < Cp < Cp, for Cp as defined in Equation (10), the
derivative will be positive in the interval (0, ϕmax) as defined
in Equation (12). Otherwise, the derivative is negative over
the interval ϕ ∈ (0, 1). Thus, we establish bounds for the
maximum profit and its associated equilibrium, enabling the
completion of the proof of Theorem 3.


