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Abstract—We investigate security vulnerabilities of wideband
spectrum sensors to denial of service (DoS) attacks, launched by
an adversary with limited power budget. We survey traditional
spectrum analysis methods and compressed-sensing (CS) spectrum
sensors in terms of their operation principles and system
performance metrics. We develop and simulate end-to-end system
models of the wideband spectrum sensors to evaluate their
detection probabilities and false alarm probabilities in both
non-adversarial and adversarial environments. We show that
sweeping spectrum scanners are inherently secure against DoS
attacks due to their high dynamic range and small instantaneous
bandwidth (BW) equal to their resolution bandwidth. Next, we
evaluate Nyquist-rate FFT-based spectrum sensors and show that
they are only vulnerable to high-power DoS attacks due to their
wide instantaneous BW equal to their Span. These traditional
spectrum sensors, however, have high energy consumption for
wideband RF spectrum sensing either due to their long scan time
or high power. Thus, CS spectrum sensors have recently been
proposed as an alternative for RF spectrum sensing thanks to their
low energy consumption and fast scan time. A major contribution
of this paper is to show that CS spectrum sensors are vulnerable
to stealthy DoS attacks (i.e., the attacks are hard to detect). For
the same attacker power budget, we further show that the attacks
become more potent if the adversary uses multiple attack signals
with low power rather than a single attack signal with high power.
Finally, we discuss possible countermeasures against the attacks.

Index Terms—spectrum scanner, cognitive radio, compressed
sensing, security

I. INTRODUCTION

The next-generation of radio receivers require spectrum
agility and content awareness to facilitate accessing a shared
pool of spectrum in the sub-6 GHz frequency band [1], [2].
Fast and energy-efficient signal monitoring over a wideband
spectrum (e.g., 1GHz and beyond) is necessary to support short
dynamic links. Thus, spectrum sensors must be employed to
detect incumbent (primary user) signals and interferers (e.g.,
other secondary users and external sources of interference).
Detecting strong interference signals is also important to prevent
the compression or desensitization of receivers [3].

Traditional architectures for spectrum analysis are typically
organized into two main categories: (1) sweeping spectrum
scanners with high sensitivity and low power but slow scan
time (proportional to the number of bins) and (2) Nyquist-rate
FFT-based spectrum sensors with short scan times but high
power consumption (to a first order, energy consumption
remains the same for the traditional spectrum monitoring
systems resulting in a fixed trade-off between scan time and
power consumption).

Compressed-sensing (CS) [4], [5] techniques have recently
been proposed to break the traditional RF spectrum scanning
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trade-offs between energy consumption, scan time, and
hardware complexity [6], [7]. CS analog-to-information
converters (AICs) have been demonstrated with very short scan
times (i.e., in the order of a few µs) and significant energy
savings (two orders of magnitude lower than for traditional
spectrum sensors).

To our knowledge, all of the existing spectrum sensor
hardware introduced in the literature have been designed
under the assumption of a non-adversarial environment. Yet, to
ensure their viability in future dynamic shared spectrum access
(DSSA) applications, it is crucial to understand the behavior
of traditional and CS spectrum systems when they are facing
adversarial conditions. Indeed, under such circumstances, the
performance of spectrum sensors should gracefully degrade
rather than completely break down.

While there exists a large literature on attacks on spectrum
sensing, these attacks focus on sensing functionalities above
the hardware level. Examples include attacks on cooperative
spectrum sensing [8]–[10], primary user emulation (PUE)
attacks [11], [12], and attacks on components of cognitive radios
(e.g., learning components) [13], [14]. We refer to [12] for a
survey of security issues in spectrum sensing and sharing.

In this paper, we conduct a thorough security assessment
of the aforementioned three types of sensors (i.e., sweeping
spectrum scanners, Nyquist-rate FFT-based spectrum sensors,
and CS spectrum sensors). For the case of CS spectrum sensors,
we further consider two different AIC architectures (i.e.,
Modulated Wideband Converter (MWC) [6] and Quadrature
Analog-to-Information Converter (QAIC) [15]), which we
review in the sequel. We develop detailed simulation models of
these systems and benchmark their behavior in non-adversarial
environments. Next, for each of these sensing systems, we
evaluate if it is possible for an adversary to mount a DoS attack
(i.e., make the system effectively unusable) and furthermore
make the attack stealthy (i.e., avoid being detected).

Our main contributions are as follows: (1) We show that
sweeping spectrum scanners are inherently secure against DoS
attacks; (2) Nyquist-rate FFT-based spectrum sensors are only
vulnerable to high-power DoS attacks (i.e.. the attacker’s
power is about 45dB higher than that of legitimate signals).
Furthermore, the attacks can be detected. (3) CS spectrum
sensors are vulnerable to stealthy, DoS attacks. Interestingly,
the attacks become more potent if the adversary uses multiple
low-power signals rather than a single high-power signal. We
discuss possible countermeasures to attacks on CS systems,
which come at the expense of higher energy consumption or
longer scan times. Hence, these results indicate that there is no
“free lunch.”

The rest of this paper is organized as follows. Section II
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reviews the different types of spectrum sensors and introduces
our notation, performance metrics, and sensing scenarios. In
Section III, we introduce simulation models for each sensor type
and evaluate the performance of the sensors in non-adversarial
environments. Then, in Section IV, we conduct a security
assessment of the sensors to DoS attacks, and discuss possible
countermeasures. We conclude the paper in Section V.

II. BACKGROUND

A. RF Signal Model and Spectrum Scenario

We review terminology and metrics related to spectrum
scanning, with an emphasis on compressed sensing [6], [7],
[15]–[17].

• Multi-Band Signal Model: We consider multi-band signals
[16], [19] that are real-valued, square-integrable signals
x(t) satisfying two properties: the signal of interest x is
sparse in the frequency domain and the fourier transform,
X(f) is only valid in the frequency range of F =
(�fMAX ,�fMIN ]

S
[fMIN , fMAX).

As shown in Figure 1, for a real-valued signal x(t), F has
been partitioned into N = 2N0 disjoint spectrum bands
with a resolution bandwidth of RBW [7]. The sparse
Fourier transform X(f) is supported on only K = 2K0 <

N = 2N0 of these bands. These 2K0 bands are referred
to as the active bins or supports when their power level is
above a signal-level detection threshold.

• Sparsity: The key underlying assumption of CS systems
is that of sparsity. Sparsity makes it possible to
uniquely determine the original spectrum of a band-limited
signal without requiring Nyquist rate sampling of the
instantaneous bandwidth [4]. Signals of interest are
sparse if they can be represented by a sparse vector
in a well-chosen basis. Specifically, a sparse vector of
dimension N0 has K0 nonzero coefficients where K0 ⌧
N0. The sparsity level is defined as S = K0/N0 [17], [18].
Note that if the spectral occupancy S0 = K0/N0 is small,
then the support of X(f) has a Lebesgue measure which
is much smaller than the Nyquist rate of the instantaneous
bandwidth, that is K0RBW ⌧ fNyq = 2fMAX [7], [16].

• Spectrum Scenario: In this paper, we consider a case
study of RF spectrum sensing under non-adversarial and
adversarial spectrum conditions in a 1.26GHz of interest
spectrum band ranging from 2.57GHz to 3.83GHz with a
20MHz RBW resulting in N0 = 63 spectrum bins [15],
[17]. In this scenario, there are 3 non-adversarial signals,
i.e. desired signals, that are above the signal-level detection
threshold, K0 = 3. The sparsity level for this scenario is
S = 3/63 which indicates a spectrum occupancy of 4.8%.
The K0 = 3 signals can be located in any of the N0 = 63
spectrum bins. The goal is to efficiently locate those K0

signals while satisfying a reliable detection performance,
e.g. high detection and low false alarm probabilities.

• Adversary: Adversarial signals are introduced with varying
number of attack signals under a constant power budget.
The goal is to analyze the impact of the attacker power
budget and power allocation on the detection of the desired
signals as well as the detection of the attacker.

B. RF Spectrum Sensing Performance Metrics

We next detail key system performance metrics of traditional
and CS RF spectrum scanners and sensors that are designed
to detect up to K0 desired signals located in any of N0

spectrum bins. These metrics include the scan time and energy
consumption required to capture information in a certain
instantaneous bandwidth and dynamic range [7]. A reliable
detector satisfies target detection and false alarm probabilities
which are statistical in nature.

• Detection and False Alarm Probabilities: The detection
probability PD is the probability that a spectrum sensor
correctly reports a signal in the RF spectrum as being active
[15]. The false alarm probability PFA is the probability
that a spectrum sensor incorrectly reports a spectrum bin
as being occupied while there is no signal present [15].
For the rest of the paper, the PD and PFA simulation
results are reported based on the correct detections and the
false alarms from 125 iterations (number of experiments,
NE ). Consider that experiment i produces (CDi ) correct
detections and (FAi ) false alarms, then [15]:

PD =
1

NE

NEX

i=1

CDi

K0
and PFA =

1

NE

NEX

i=1

FAi

N0 �K0
(1)

The threshold choice for the signal detection impacts
the reliability and performance of the detector [20]. For
instance, if the threshold value is close to the noise floor,
PD will be maximized at the expense of increase in PFA

[7]. In this paper, we assume a signal-detection threshold
that is 10dB above the noise floor.

• Scan Time: The scan time Tscan is defined as the sum
of the detector response time Tresp and the digital signal
processing (DSP) time Trec [15]. The DSP time is
proportional to Ns/fs, where fs is the analog-to-digital
converter (ADC) sampling rate and Ns is the number
of samples collected from the ADCs [15]. The detector
response time is proportional to the settling time of the
low-pass anti-aliasing filters connected to the ADCs [15].

• Energy Consumption: Energy consumption for a scan E is
defined as the product of the power consumption Power

with the scan time Tscan [15]:

E = Power · Tscan = Power · [Tresp + Trec ]. (2)

• Instantaneous Bandwidth: The instantaneous bandwidth
(or Span) represents the bandwidth of which signals can
be successfully and rapidly detected, while meeting target
detection and false alarm probabilities [7].

• Dynamic Range: The dynamic range (DR) of a spectrum
sensor is defined as its ability to successfully detect a
weak signal in the presence of strong signals over the
instantaneous bandwidth [15], [16]. The dynamic range is
typically limited by the resolution of ADCs employed by
the spectrum sensors.



C
om

pl
ex

 C
om

bi
ne

r

y
x(t)

xI(t)

xQ(t)

Gain

fs=20MSps

LPF
BW=10MHz

fI/Q=2.58GHz to 3.82GHz 
with 20MHz steps

ADC

ADC E
ne

rg
y 

D
et

ec
to

r

8 bits

RF Spectrum 
2.57-3.83GHz

Fig. 2: Sweeping Spectrum Scanner

In the next two subsections, we review traditional and
CS spectrum sensing techniques in terms of their hardware
architectures and design choices.

C. Traditional Spectrum Analysis Techniques

• Sweeping Spectrum Scanner: A traditional sweeping
spectrum scanner shown in Fig. 2 captures the spectrum
information in a time-multiplexed fashion by sweeping the
local oscillator frequency of the quadrature downconverter
mixers in a single-branch hardware [7]. Sweeping spectrum
scanners offer a high sensitivity and high dynamic
range across small instantaneous BW equal to its RBW
[21]–[23]. However, this approach requires a long scan
time especially for fine resolutions. Therefore, the tradeoff
between the scan time and resolution bandwidth make
them incompatible for DSSA scenarios with short dynamic
links [16].

• Nyquist-rate FFT-based Spectrum Sensor: To reduce the
scan time, a Nyquist-rate ADC or multi-branch spectrum
sensors can be used at the expense of increased power
consumption and hardware complexity [7]. We only
consider the Nyquist-rate FFT-based spectrum sensors in
this paper. The architecture of such spectrum sensors is
shown in Fig. 3.
Note that this approach does not scale well to high
frequencies and becomes power hungry for capturing a
large instantaneous BW. Nyquist-rate approach captures
the interest spectrum band very rapidly by reducing Tresp

through high filter bandwidth and Trec through high
sampling rate. In the digital back end, the detector performs
an FFT with a dimension of N0 to recover the signals
above the signal-detection threshold in each individual bin
with a bandwidth equal to RBW [23].

D. Compressed-Sensing Spectrum Sensors

Compressed sensing [4], [5], [24] offers a very fast signal
detection with scan times in the order of µs over GHz-wide
spectrum by sampling the spectrum at sub-Nyquist rate.
Existing CS spectrum sensors have been demonstrated with two
orders-of-magnitude lower energy consumption compared to the
traditional spectrum sensors [7].

A key design parameter for CS spectrum sensors is the
number of incoherent measurements (m) required for the
successful detection of K0 signals while satisfying the target
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Fig. 3: Nyquist-rate FFT-based Spectrum Sensor

PD and PFA. The number of incoherent measurements required
in a CS AIC, m, is given by:

m ⇡
⌃
C ·K0 · log

✓
N0

K0

◆
/q
⌥

(3)

where K0 is the number of active signals above the threshold,
N0 is the number of spectrum bins, and C is a constant in the
range of 2 to 4 [15], [16]. CS theory [4], [5], [24] demonstrates
the successful recovery and reconstruction of a sparse signal, i.e.
K0 active signals in N0 spectrum bins, from only few incoherent
measurements, where K0 < m << N0. Each incoherent
measurement is traditionally collected from a single unique
hardware branch. Therefore, the total number of incoherent
measurements corresponds to the number of hardware branches
in a CS AIC. The number of branches m may be traded for the
increased sampling rate in each branch by an odd integer factor
of q, where q = 1, 3, 5, ... [6], [16].

Each incoherent measurement is obtained by mixing
the signal of interest with unique, low cross-correlation
pseudorandom binary sequences (PRBSs) [6]. PRBS mixing
aliases the signal spectrum information in each bin to other
bins widely known as a spread spectrum technique [30]. By
using a single copy of this aliased spectrum around baseband
and sampling at the sub-Nyquist rate of the instantaneous
bandwidth, e.g., Span, the sparse signal processing algorithm
can still disentangle this folding and recover the signal supports
from fewer measurements than in the Nyquist case [15].
Widely-used sparse signal processing algorithms in the CS
digital back end [7] are Orthogonal Matching Pursuit (OMP)
[25], [26], convex relaxations based on l1 minimization [27],
and other greedy methods such as CoSamp [28]. In this paper,
we use a simple greedy algorithm, namely OMP, for signal
support recovery.

CS architectures can broadly be organized into two main
categories.

• Modulated Wideband Converter: A Modulated Wideband
Converter (MWC) [6], [29], shown in Fig. 4, is a
multi-branch low-pass CS architecture that senses the
spectrum from DC to a maximum frequency of interest
fMAX [6]. Since the MWC operates on a real signal x(t),
it will detect 2K0 active signal supports out of 2N0

spectrum bins. Each branch of the MWC consists of a
low-noise amplifier, a mixer driven by a unique PRBS
at its local oscillator port, a low-pass anti-aliasing filter,
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and an analog-to-digital converters (ADCs) sampling at a
sub-Nyquist rate of the instantaneous bandwidth.
Unique PRBSs with low cross-correlation are preferred
since they satisfy the restricted isometry property and
incoherency for the successful CS measurements [15].
Even though the ADC samples at a sub-Nyquist rate equal
to the resolution bandwidth RBW , the PRBS generator
with a clock frequency of fCLK operates at the Nyquist-rate
of the maximum frequency of interest, i.e., fCLK � 2 ·
fMAX. Capturing the entire spectrum from DC to fMAX

makes the PRBS generator the most power-hungry block
of this architecture. The generation and distribution of
the high-frequency PRBSs further increase the hardware
complexity [7]. Therefore, such low-pass CS architectures
do not scale well to high frequencies for RF spectrum
sensing applications.

• Quadrature Analog-to-Information Converter: A
Quadrature Analog-to-Information Converter (QAIC),
shown in Fig. 5, is a multi-branch band-pass CS
architecture designed for energy-efficient sensing of an
RF spectrum [15]. It only senses the active signals in a
band-pass frequency range with a minimum frequency
fMIN > 0 by limiting the RF bandwidth with a quadrature
downconverter. In contrast to the MWC, the QAIC samples
a complex signal, i.e. I(t) ± j · Q(t). It will detect K0

active signal supports out of N0 spectrum bins. Due to the
RF bandwidth limiter, the clock frequency of the PRBS
generator is now reduced to fCLK � Span = fMAX � fMIN

[15]. Therefore the QAIC architecture scales well to higher
frequencies in contrast to low-pass CS architectures [15],
[16].
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Fig. 6: Nyquist-rate FFT-based spectrum sensor detection probability

PD (black curves) and false alarm probability PFA (red curves) vs SNR

for varying number of signals from K0 1 to 4 with a signal-detection

threshold 10dB above the noise floor.

III. SPECTRUM SENSOR MODELS

In this section, we develop a behavioral hardware model
in MATLAB for each spectrum sensor architecture shown in
Fig. 2-5 and benchmark their performance in non-adversarial
environments. In the next section, we use these models to
evaluate the performance of the spectrum sensors under attacks.

We next detail our simulation model. A noise generator
is used to model thermal noise in wireless communication
channels as an Additive White Gaussian Noise (AWGN). ADC
quantization noise is also considered for an 8-bit ADC. The
noise power level relative to the signal power level is set with
the signal-to-noise ratio (SNR) parameter by changing the total
integrated noise power over the N0 bins in the interest Span.
The threshold value is set above the noise floor with a margin
of 10dB.

The input signal spectrum is modeled as K0 signals in the RF
frequency band of interest ranging from 2.57GHz to 3.83GHz.
These signals are generated in baseband as a band-limited noise
signal and upconverted to K0 RF center frequencies randomly
chosen out of 63 bins. The total integrated signal power is kept
constant for the non-adversarial experiments in which we vary
the number of signals K0 from 1 to 4.

• Nyquist-rate FFT-based Spectrum Sensor: The
Nyquist-rate FFT-based spectrum sensor model captures
the entire 1.26GHz instantaneous bandwidth ranging from
2.57GHz to 3.83GHz with a wideband I/Q downconverter
operating at 3.2GHz and ADCs operating at 1.26GSps
in each I and Q branch. To detect K0 signal, this
1.26GHz-wide spectrum is subdivided into 63 RBW-wide
bins by performing an FFT with a size of 63 in the
digital back end. Design parameters for the Nyquist-rate
FFT-based spectrum sensors associated with the use case
are listed in Table I.
We first model and analyze the performance of
Nyquist-rate FFT-based spectrum sensors under varying
noise conditions. When there are equal-power strong or
weak signals present over the instantaneous bandwidth,
the effect of the quantization noise is negligible under the
assumption of an automatic gain control block adjusting



TABLE I: System Parameters - Traditional and CS Spectrum Sensors

System Parameters QAIC MWC Nyquist FFT Sweeping Scanner
I/Q Downconverter 3.2GHz N/A 3.2GHz 2.58GHz-3.82GHz

I/Q Filter BW 630MHz N/A 630MHz 10MHz
fPRBS 1.26GHz 10.22GHz N/A N/A

Anti-Aliasing LPF BW 10MHz 10MHz N/A N/A
Sampling Rate (fs) 20MSps 20MSps 1.26GSps 20MSps

N0 (PRBS Length for CS) 63 511 63 63
Hardware Branches 8I/Q (16) 16 I/Q (2) I/Q (2)
N/A: Not Applicable
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Fig. 7: Sweeping spectrum scanner detection probability PD (black

curves) and false alarm probability PFA (red curves) vs SNR for

varying number of signals from K0 1 to 4 with a signal-detection

threshold 10dB above the noise floor.

the signals to fit into the full scale of the ADC.
For the results presented in Fig. 6, we vary the SNR
from -12dB to 12dB for K0=1,2,3, and 4. Each PD and
PFA value is reported from 125 iterations (NE = 125).
Simulated PD results in Fig. 6 demonstrate that PD is
� 90 for SNR of -4.75dB for K0 = 2, while the same PD

is obtained for SNR of -1.75dB for K0 = 4.
The signal power per active bin is halved in the K0 = 4
case compared to the K0 = 2 case, and this explains the
3dB drop in PD . Simulated PFA results in Fig. 6 illustrates
that PFA only depends on the threshold value and when
the threshold is 10dB higher than the noise floor, there is
almost no false alarm.

• Sweeping Spectrum Scanner: The sweeping spectrum
scanner model consists of an I/Q mixer driven by a tunable
LO signal with an initial frequency at 2.57GHz+RBW/2.
This LO frequency is increased by RBW until it reaches
to 3.83GHz�RBW/2 to scan each bin sequentially. For
the sweeping spectrum scanner model, ADCs only operate
at the rate of 20MSps (RBW) for each I and Q branch.
We perform a simple energy detection by calculating the
power of a complex signal in each RBW and compare it
to the signal-detection threshold. Design parameters for the
sweeping spectrum scanner associated with the use case are
listed in Table I.
We also analyze the sweeping spectrum scanner
performance in the presence of noise only. In this
scenario, it does not matter for the PD performance if
the signals are equal power or not since there is an AGC
block before the digitization of the signal to fit the signal
into the full scale of ADC in each RBW. However, we

-4 0 4 8 12 16 20 24
SNR

0

10

20

30

40

50

60

70

80

90

100

D
e
te

ct
io

n
 (

P
D

) 
&

 F
a
ls

e
 A

la
rm

 (
P F

A
) 

P
ro

b
a
b
ili

tie
s 

(%
)

Simulated P
D

, K
0
 = 1

Simulated P
D

, K
0
 = 2

Simulated P
D

, K
0
 = 3

Simulated P
D

, K
0
 = 4

Simulated P
FA

, K
0
 = 4

Simulated P
FA

, K
0
 = 3

Simulated P
FA

, K
0
 = 2

Simulated P
FA

, K
0
 = 1

Fig. 8: CS QAIC detection probability PD (black curves) and false

alarm probability PFA (red curves) vs SNR for varying number of

signals from K0 1 to 4 with a signal-detection threshold 10dB above

the noise floor and 40 samples (Ns = 40).

keep the total integrated signal power constant with equal
power K0 signals for the consistency of different models.
For the results presented in Fig. 7, we vary the SNR
from -12dB to 12dB for K0=1,2,3, and 4. Each PD and
PFA value is reported from 125 iterations (NE = 125).
Simulated PD results in Fig. 7 demonstrate that PD is
� 90 for SNR of -4.75dB for K0 = 2, while the same
PD is obtained for SNR of -1.75dB for K0 = 4. The
signal power per active bin is halved in the K0 = 4 case
compared to the K0 = 2 case, and this explains the 3dB
drop in PD . Since the detection threshold is 10dB above
the noise floor, PFA is low.

• CS QAIC: The CS QAIC model employs a RF band
limiter consisting of a wideband RF I/Q downconverter
to downconvert the spectrum ranging from 2.57GHz to
3.83GHz to complex baseband spectrum from -630MHz
to +630MHz. The complex baseband signal is mixed with
8 unique PRBSs with a length of 63 and a chipping
frequency (fPRBS ) of 1.26GHz in each I and Q hardware
branches. Since PRBS mixing aliases and spreads the
signal information in each RBW, we used low-pass filters
with a 3-dB bandwidth of 10MHz and ADCs operating
at 20MSps in each I and Q branch to digitize the aliased
spectrum information in only one of the spectrum bins
centered around DC. CS support recovery disentangles this
aliased information to find the signal support locations by
using the OMP algorithm [25].
The OMP is an iterative algorithm that finds the largest
signal support that is above the signal-detection threshold
by checking the correlations with the measurement residual
and updates the residual as each signal support is recovered
[25]. The CS system-measurement-matrix row dimension
and the recovery threshold are the two design parameters
for setting the number of OMP iterations [7]. In our
model, we assume the OMP iterations are equal to the CS
system-measurement-matrix row dimension which is the
number of incoherent measurements m. Design parameters
for the CS QAIC associated with the use case are listed in
Table I.
We model and analyze the CS QAIC performance in
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Fig. 9: CS MWC detection probability PD (black curves) and false

alarm probability PFA (red curves) vs SNR for varying number of

signals from K0 1 to 4 with a signal-detection threshold 10dB above

the noise floor and 40 samples (Ns = 40). Both PD and PFA curves

are shifted to right on the SNR axis by 9.1dB or 10 log(511/63) in

contrast to the CS QAIC due to the additional noise folding in low-pass

CS architectures.

the presence of noise only with a varying number of
signals, hence different sparsity conditions. For the results
presented in Fig. 8, we vary the SNR from -4dB to 24dB
for K0=1,2,3, and 4. Each PD and PFA value is reported
from 125 iterations (NE = 125) and 40 samples are used
for the sparse signal processing (Ns = 40). Simulated PD

results in Fig. 8 demonstrate that PD is � 90 for SNR of
roughly 3.5dB for K0 = 1, while the same PD is obtained
for SNR of 9.5dB for K0 = 3. We note that the detection
probability and false alarm plots are shifted to right on the
SNR axis in contrast to the traditional spectrum sensors
due to the noise folding of PRBS mixers. PD does not
reach above 90% for K0 = 4 signals since the number
of incoherent measurements (m = 8I/Q) is designed for
successful detection of K0 = 3 signals. The signal-level
detection threshold is 10dB above the noise floor and it
limits the false alarm significantly below 10%.

• CS MWC: The CS MWC model is a low-pass architecture
that senses the spectrum from DC to fMAX . The clock
frequency of the PRBS generator must be � 2 · fMAX .
We assume a linear feedback shift register implementation
in our model resulting in a length of 511 for 20MHz
RBW with a clock frequency of 10.22GHz. The CS MWC
model operates on a real signal with K = 2K0 active
bins in the 2.57GHz to 3.83GHz interest band. Input signal
spectrum mixed with 16 unique PRBSs in each hardware
branch. Since PRBS mixing aliases and spreads the signal
information in each RBW, we used low-pass filters with
a 3-dB bandwidth of 10MHz and ADCs operating at
20MSps in each branch to digitize the aliased spectrum
information in only one of the spectrum bins centered
around DC. CS support recovery disentangles this aliased
information to find the signal support locations by using
the OMP algorithm [25]. Design parameters for the CS
MWC associated with the use case are listed in Table I.
For the RF spectrum sensing application where there are
no signals of interest below fMIN = 2.57GHz, the MWC
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Fig. 10: Nyquist-rate FFT-based spectrum sensor performance under

an adversarial environment with a high-power attacker. Desired signal

detection probability PD (black curves) and false alarm probability

PFA (red curves) are shown for varying attacker power (PAtt ) for

KAtt = 1 relative to desired signal power (PSig ) for K0 = 3 for

SNR= 0, 3, 6, and 12dB.

has degraded sensitivity due to the extra noise folding in
from DC to 2.57GHz range in contrast to the CS QAIC.
For the results presented in Fig. 9 where we vary the SNR
from 0dB to 30dB for K0=1,2,3, and 4, PD and PFA curves
have a 9.1dB SNR shift or 10 log(511/63) in contrast to
the CS QAIC that is proportional to the ratio of the length
of the PRBSs.

IV. SECURITY OF SPECTRUM SENSORS

A. Threat Model

Clearly, no protection is possible against an adversary with
unlimited resources. Hence, we assume that the adversary
has a limited transmission power PAtt. We assume that the
adversary can split its power into KAtt � 1 different signals.
Under such constraints, the goal of an adversary is to reach a
certain objective, where the specific objective depends on the
adversary’s type.

We consider two types of adversaries:

• Type-I adversary: This adversary aims to make the
spectrum sensing system effectively unusable to its users.
Thus, the Type-I adversary aims to lower the probability
of detection of legitimate signals PD to an unacceptably
low value or maximize the probability of false alarm PFA

to an undesirable high value.
• Type-II adversary: This adversary aims to transmit without

being detected by the legitimate users (i.e., low Attacker
PD ). For instance, transmitting outside the dynamic range
or below the sensitivity level of the legitimate spectrum
sensor may allow an adversary to maintain deniability.

In the rest of this section we first investigate the security
of spectrum sensors and scanners to Type-I adversaries (i.e.,
DoS attacks). We then consider the combination of Type-I and
Type-II adversaries (i.e., stealthy DoS attacks). We evaluate the
impact of different settings of the parameters PAtt and KAtt

on the effectiveness of the attacks.
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Fig. 11: Nyquist-rate FFT-based spectrum sensor performance under

an adversarial environment with varying number of attacker signals for

a constant adversary power budget. Top plot shows the desired signal

detection probability PD (black curves) and false alarm probability

PFA (red curves) and bottom plot shows the attacker PD (blue curves)

for varying attacker power (PAtt ) for KAtt=1, 2, 3, and 4 relative to

desired signal power (PSig ) for K0 = 3 for SNR= 0dB.

B. Denial of Service Attack against Spectrum Sensors (Type-I

Adversary)

We first consider the case of a Type-I adversary that aims
to launch a denial of service (DoS) attack against spectrum
sensors.

• Traditional Spectrum Sensors: Nyquist-rate FFT-based
spectrum sensors and sweeping spectrum scanners are
analyzed and simulated under varying number of
adversarial signals with a constant total integrated power
for the attacker. For these simulations, we keep the number
of desired signals K0 = 3 and use SNR of 0, 3, 6, and
12dB. For these SNR values, the simulated PD is at 100%
in a non-adversarial environment. We illustrate the impact
of the attacker’s total power budget relative to the total
power of the desired signals and the effect of changing the
number of adversarial signals (by reducing the power of
each adversarial signal proportionally).
A key finding is that Nyquist-rate FFT-based spectrum
sensors are vulnerable against denial of service attacks only
when the attacker signal power is significantly higher than
the desired signal power since the AGC block prior to the
ADC will scale the signals across the entire Span and fit the
amplitude of the large adversarial signals into the full scale
of the ADC. Since there are large adversarial signals and
relatively smaller desired signals present simultaneously
over the same instantaneous BW (or Span), the detection
of desired signals is limited by the quantization noise.
Fig. 10 shows the Nyquist-rate FFT-based spectrum sensor
performance with a single attacking signal. In this case, the
attacker can only degrade the desired signal PD to 65%
when their power is 45dB higher than the desired total
signal power for 3 signals when the SNR is 0dB and this
power has to be increased by roughly 2.5dB for SNR 12dB.
Fig. 11 demonstrates the Nyquist-rate FFT-based spectrum
sensor performance when the attacker varies the number of
adversarial signals for KAtt = 1 to 4 with a constant total
power budget. The top plot illustrates the desired PD (black
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Fig. 13: Sweeping spectrum scanner performance under an

adversarial environment with varying number of attacker signals for

a constant adversary power budget. Top plot shows the desired signal

detection probability PD (black curves) and false alarm probability

PFA (red curves) and bottom plot shows the attacker PD (blue curves)

for varying attacker power (PAtt ) for KAtt=1, 2, 3, and 4 relative to

desired signal power (PSig ) for K0 = 3 for SNR= 0dB.

curves) with respect to the total attacker power budget.
When there are 4 moderate-power adversarial signals rather
than 1 large-power adversarial signal, the desired signal
PD degrades by 6dB due to the possibility of higher
peak amplitudes when they are in phase, hence elevated
quantization noise impact for the desired signals.
Sweeping spectrum scanners are inherently secure against
denial of service attacks under a stationary spectrum
scenario. The sweeping spectrum scanner senses signals in
each frequency bin individually, so an attack signal in one
bin does not affect signal detection in another bin. Since
the AGC block adjusts and maximizes the gain for each
RBW in a time-multiplexed fashion, both weak desired and
large adversarial signals enjoy the maximum gain and fit
into the full scale of the ADC while sweeping through each
RBW sequentially. This results in minimized degradation
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Fig. 14: CS QAIC performance under an adversarial environment with

varying number of attacker signals for a constant adversary power

budget. Top plot shows the desired signal detection probability PD

(black curves) and false alarm probability PFA (red curves) and bottom

plot shows the attacker PD (blue curves) for varying attacker power

(PAtt ) for KAtt=1 to 6 relative to desired signal power (PSig ) for

K0 = 3 for SNR= 12dB.

due to quantization noise. Hence, the small instantaneous
bandwidth of the sweeping scanner makes it more secure
compared to the Nyquist-rate FFT based spectrum sensor.
Fig. 12 demonstrates the sweeping spectrum scanner
performance when there is only a single attacker under a
varying SNR from 0 to 12dB. The simulated PD (black
curves) illustrates that the attacker can not harm the
detection performance of the sweeping spectrum scanner
even with a large power budget. Further, PD of the desired
K0 = 3 signals does not degrade under varying number of
adversarial signals as shown in Fig. 13.

• CS Spectrum Sensors: CS sensors are designed to operate
under an assumption of a maximum sparsity level. When
the number of signals exceeds the expected sparsity level,
i.e., under signal support overload [17], traditional CS
detectors perform poorly and yield a low PD . For example,
if a CS AIC is designed to detect maximum K0 = 3
signals with PD � 90% but deployed in a spectrum with
K0 = 6 signals, the measured PD degrades drastically
from � 90% and stays around a maximum value of
50% for 6 signals with unreliable detection results since
the number of hardware branches, i.e., the number of
measurements, are lower than the theoretical limit for the
required branches given in (3) for successful detection of
signals by satisfying a target PD of � 90% [7], [17].
An attacker can leverage this robustness vulnerability to
launch a denial of service attack on existing CS spectrum
sensors such as the MWC and the QAIC. This DoS attack,
which we refer to as a signal-overload attack results in a
catastrophic breakdown of existing CS monitoring systems
when the spectrum becomes nonsparse.
Under the assumption of an adversary with a limited
power budget, we analyze the most effective denial of
service attacks against the CS spectrum sensors to lower
their PD or maximize their PFA. Specifically, is it more
advantageous for an adversary to transmit few signals at
high power or a larger number of signals at lower power?
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Fig. 15: CS MWC performance under an adversarial environment with

varying number of attacker signals for a constant adversary power

budget. Top plot shows the desired signal detection probability PD

(black curves) and false alarm probability PFA (red curves) and bottom

plot shows the attacker PD (blue curves) for varying attacker power

(PAtt ) for KAtt=1 to 6 relative to desired signal power (PSig ) for

K0 = 3 for SNR= 21dB.
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Fig. 16: CS QAIC performance under an adversarial environment with

varying number of attacker signals for a constant adversary power

budget. Top plot shows the desired signal detection probability PD

(black curves) and false alarm probability PFA (red curves) and bottom

plot shows the attacker PD (blue curves) for varying attacker power

(PAtt ) for KAtt=1 relative to desired signal power (PSig ) for K0 = 3
for SNR= 9, 12, 15, and 20dB.

Since the adversary has a limited power budget, we assume
that the adversary keeps the total integrated power the same
across the two possible scenarios.

– High-power few signals: Fig. 14 for KAtt = 1, 2
and Fig. 16 demonstrate the impact of a high-power
attacker with only a single or a few adversarial signals
on the QAIC performance. When the total attacker
power for KAtt = 1 is equal to the total signal power
for K0 = 3 desired signals, PD starts to degrade and
flattens around 90% due to the increased number of
signals from 3 to 4 to recover with 8I/Q incoherent
measurements. PD of the desired signals remain at
practically usable levels. Fig. 15 for KAtt = 1 and 2
illustrates the impact of the same high-power attacker
with only a few signals on the MWC performance.
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Fig. 17: CS QAIC performance under an adversarial environment with

varying number of attacker signals for a constant adversary power

budget. Top plot shows the desired signal detection probability PD

(black curves) and false alarm probability PFA (red curves) and bottom

plot shows the attacker PD (blue curves) for varying attacker power

(PAtt ) for KAtt=6 relative to desired signal power (PSig ) for K0 = 3
for SNR= 9, 12, 15, and 20dB.

The main difference between the CS QAIC and
MWC performance in an adversarial condition is the
additional 9.1dB SNR degradation of the MWC. As
shown in Fig. 15, the CS MWC requires a 21dB SNR
to provide the same performance under an attack in
contrast to the CS QAIC requiring a 12dB SNR shown
in Fig. 14.

– Low-power large number of signals: Fig. 14 for
KAtt = 3 to 6 and Fig. 17 illustrate a more
dangerous attack when a large number of low-power
adversarial signals exist. For example, if we consider
the KAtt = 3 case for the QAIC, when the total
attacker power is only a few dB above the signal
power, PD drastically degrades and stays around 50%
since there are only 8I/Q measurements and that is the
theoretical limit for the required number of branches
as given in (3) for the successful detection of 3
signals. As shown in Fig. 17, if the attacker has 6
signals that utilizes the same attacker power budget as
the single attacker, 6 lower power adversarial signals
harm the spectrum sensor performance significantly.
Under a malicious attack with a large number of
low-power signals such as KAtt = 6, the QAIC
and the MWC performance do not degrade gracefully
anymore resulting in a complete break down as shown
in Fig. 14 and Fig. 15 respectively. In addition to the
unacceptable PD performance for the desired signals,
both CS spectrum sensors also fail at detecting the
attack which satisfies the Type-II adversary threat
model. We discuss this attack scenario in detail next
in Section IV-C.

C. Stealthy Interferer (Type-II Adversary)

The second type of adversary is a stealthy interferer.
This adversary aims to transmit without being detected by
the spectrum sensors. For the attack scenarios discussed in
Section IV-B, we also simulate and report the attacker detection
probability (Attacker PD ) shown as bottom plots with blue

curves for traditional spectrum sensors in Fig. 11, Fig. 13,
and CS spectrum sensors in Fig 14 - Fig. 17. Each of the
traditional spectrum sensors can locate the attacker with a
100% detection probability when the attacker aims to harm the
desired signal detection. However, for CS spectrum sensors such
as MWC and QAIC, attackers can maintain their deniability
while drastically degrading the desired signal PD . As shown in
Fig. 17, if the adversary generates six signals in the spectrum
band of interest, CS spectrum sensors completely break down
and provide unreliable results when the total attacker power is
only a few dB above the signal power, e.g., PAtt�PSig � 2dB,
regardless of how high the SNR is. Further, the adversary can
transmit without being detected by a CS spectrum sensor (with a
maximum 60% detection probability) even when the total power
budget for those six adversarial signals is significantly higher
than the total power budget for the three desired signals, e.g.,
PAtt�PSig � 8dB for the QAIC. Even at a high SNR of 21dB,
MWC is vulnerable to a Type-II adversary with a large number
of adversary signals, KAtt > 4, as shown in Fig. 15 bottom
plot.

D. Countermeasures for CS Spectrum Sensors

Traditional spectrum sensors are much more robust against
attacks compared to the CS-based spectrum sensors. As
demonstrated, the attack signals introduced had little effect
on the performance of the sweeping spectrum scanner. The
Nyquist-rate FFT-based spectrum sensor can be attacked due
to the limit in its dynamic range over a wide instantaneous
bandwidth, by introducing high-power attack signals along with
the low-power signals. If a higher resolution ADC is employed,
the adversary would have to invest a larger amount of power to
cause similar levels of performance degradation.

CS spectrum sensors on the other hand present more serious
security issues. A possible adaptive action in response to a
Type-I DoS attack for CS spectrum sensors is to relax the
threshold of recovery algorithms in the DSP. Hence, the CS
AIC becomes blind to lower power signals and detects signals
above the new threshold reliably with a high PD [17]. Another
successful mitigation technique against this type DoS attack on
the monitoring system might be to employ sparsity estimation
with adaptive thresholding in DSP and hardware virtualization
through time segmentation to avoid system failure [17]. Sparsity
estimation technique takes advantage of the residual information
provided by the OMP algorithm in DSP. Monitoring the residual
allows the CS spectrum sensor to lower the detection threshold
adaptively. If the residual is high, the CS spectrum sensor
increases the time-segmented measurements through hardware
virtualization for successful detection of the additional signals
below the threshold level at the expense of increased scan time
[17]. Further, sparsity estimation through the OMP residual
monitoring [17] might be a useful technique for attacker
detection against Type-II adversary.

V. CONCLUSIONS

The paper presents a security evaluation platform for
wideband spectrum sensors. We discuss the trade-offs
between security and sensor performance in terms of energy
efficiency and scan time for traditional spectrum sensors
and compressed-sensing architectures. Models for end-to-end
system evaluation are developed for traditional spectrum
analysis methods such as sweeping spectrum scanners and



Nyquist-rate FFT-based spectrum sensors and also for CS
spectrum sensors such as the MWC [6] and the QAIC [15].
These models are first analyzed in order to demonstrate their
operation and performance in terms of detection (PD ) and false
alarm (PFA) probabilities under a non-adversarial environment
with varying wireless channel noise conditions.

Since the goal of this work is to assess the security
vulnerabilities of these spectrum sensors, we secondly introduce
two threat models for denial of service (DoS) attacks and
stealthy interferers who aim to maintain deniability. These
adversary types are modeled with varying number of attacker
signals and power budgets to illustrate the effectiveness of
the attacks on the detection and false alarm probabilities
performance of the wideband spectrum sensors.

Sweeping spectrum scanners are inherently secure against
these adversary models due to their small instantaneous
BW equal to their RBW and high dynamic range. On the
other hand, Nyquist-rate FFT-based spectrum sensors are only
vulnerable against the high-power DoS attacks due to their wide
instantaneous bandwidth and limited dynamic range. However,
both of the traditional spectrum sensors typically have a high
energy consumption due to their long scan time or high power
consumption.

CS spectrum sensors have been proposed as fast and
low energy-consuming alternatives for wideband spectrum
sensing. The CS spectrum sensors rely on the sparsity of the
spectrum. In this paper, we show that existing architectures,
such as MWC and QAIC which are architected with a fixed
sparsity assumption, are vulnerable to DoS attacks and stealthy
interferers. Recent compressed-sensing techniques proposed in
[17], such as sparsity estimation by monitoring the residual of
the CS OMP algorithm and increasing the number of incoherent
measurements through time segmentation, might be useful for
attacker detection and providing physical-layer security against
the DoS attacks considered in this paper, albeit at the expense of
increased scan time and energy consumption. The evaluation of
these new CS spectrum sensing techniques in various adversarial
contexts represents an interesting area for future work.
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