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Abstract—We unveil the existence of a vulnerability in Wi-
Fi (802.11) networks, which allows an adversary to remotely
launch a Denial-of-Service (DoS) attack that propagates both in
time and space. This vulnerability stems from a coupling effect
induced by hidden nodes. Cascading DoS attacks can congest an
entire network and do not require the adversary to violate any
protocol. We demonstrate the feasibility of such attacks through
experiments with real Wi-Fi cards, theoretical analysis, and ns-3
simulations. The experiment shows that an attacker can cause the
throughput of a node outside its communication range to vanish.
To gain insight into the root-causes of the attack, we model the
network as a dynamical system and analyze its limiting behavior
and stability. The model predicts that a phase transition (and
hence a cascading attack) is possible in linear networks when
the retry limit parameter of Wi-Fi is greater or equal to 7, and
also characterizes the phase transition region in terms of the
system parameters.

I. INTRODUCTION

W I-FI (IEEE 802.11) is a technology widely used to
access the Internet. Wi-Fi connectivity is provided

by a variety of organizations operating over a shared RF
spectrum. These include schools, libraries, companies, towns
and governments, as well as ISP hotspots and residential
wireless routers. Wi-Fi traffic is also rapidly rising due to
increased offloading by cellular operators [1]. The importance
of Wi-Fi networks and the need to strengthen their resilience
to intentional and non-intentional interference have been rec-
ognized by companies, such as Cisco [2].

Wi-Fi networks rely on simple, distributed mechanisms to
arbitrate access to the shared spectrum and optimize per-
formance. Such mechanisms include carrier sensing multiple
access (CSMA), exponential back-offs, and bit rate adapta-
tion. The behavior of these mechanisms in isolated single-
hop networks has been extensively studied and is generally
well-understood (see, e.g., [3]). However, due to interference
coupling, these mechanisms result in complex interactions in
multi-hop settings, as CSMA cannot prevent collisions caused
by hidden nodes (cf. Section III for more details about the
hidden node problem). As a consequence, different networks
do not always evolve independently, even if they are located
far away.

To understand the consequence of such interactions, suppose
that some node A0 increases the rate at which it generates
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packets, and transmits these packets in accordance with the
IEEE 802.11 protocol. These transmissions may cause packet
collisions at a node, say node B1, concurrently receiving
packets from another node, say node A1. Node A1 may be
unable to hear transmissions by node A0 due to the hidden
node problem. As a result, node A1 keeps retransmitting
packets which collide with the packets sent by node A0. These
retransmissions by node A1 may in turn affect the ability
of other nodes in the network to successfully communicate,
thus causing this phenomenon to propagate. We note that
the total number of packet retransmissions (including the
original transmission) cannot exceed the so-called retry limit,
after which a packet must be dropped. We will show in the
sequel that the retry limit plays a major role in sustaining the
propagation effect.

An optional mechanism, called request-to-send and clear-to-
send (or RTS/CTS), has been designed to combat the hidden
node problem. However, this mechanism increases overhead
and latency especially at high bit rates. Since the cost of
the RTS/CTS exchange usually does not justify its benefits,
it is commonly disabled [4], [5]. Indeed, most manufacturers
of Wi-Fi cards disable RTS/CTS by default and discourage
changing this setting as explicitly stated in [6]–[9]. Therefore,
most Wi-Fi systems today operate without RTS/CTS.

The coupling phenomenon induced by interferences creates
multi-hop dependencies, which an adversary can take advan-
tage of to launch a widespread network attack from a single
location. We refer to such an attack as a cascading Denial-
of-Service (DoS) attack. Cascading DoS attacks are especially
dangerous because they affect the entire network and do not
require the adversary to violate any protocol (i.e., the attacks
are protocol-compliant).

The contributions of this paper are as follows. First, we
unveil the existence of a vulnerability in the IEEE 802.11 stan-
dard, which allows an attacker to launch protocol-compliant
cascading DoS attacks. In contrast to existing jamming attacks,
the attacker does not need to be in the vicinity of the victims.

Second, we introduce a new dynamic system model that
sheds light into the network behavior under attack. The model
shows the existence of a phase transition. When the packet
generation rate of the attacker is lower than the phase transition
point, it has vanishing effect on the rest of the network.
However, once the packet generation rate exceeds the phase
transition point, the network becomes entirely congested.

The theoretical model shows that the sequence of node
utilizations always converges to a fixed point (the utilization
of a node is defined as the fraction of time during which the
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node transmits). We characterize the different types of fixed
points (stable and unstable) and show that a phase transition is
associated with the existence of an unstable fixed point. The
model explicitly predicts for which values of the retry limit a
phase transition (and hence a cascading attack) can occur. In
particular, we show that a phase transition can occur for the
default value of the retry limit in Wi-Fi, which is 7.

Finally, we concretely demonstrate the attack through ex-
periments on a testbed composed of nodes equipped with real
Wi-Fi cards and provide simulation results obtained with the
ns-3 simulator that corroborate the theoretical results in various
network topologies.

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III, we provide brief
background on Wi-Fi and hidden nodes, and introduce the
network model and attack scenario. Section IV presents our
theoretical analysis. We present experimental and simulation
results that verify the findings in Section V. Section VI
concludes the paper.

An earlier version of this paper appeared in the proceedings
of the IEEE Conference on Communications and Network
Security (CNS 2016) [10]. This journal version significantly
expands the theoretical analysis, including detailed proofs and
new results on stability analysis and heterogeneous traffic load,
which can be found in Section IV. Moreover, new simulation
results for networks based on a realistic indoor building model
and ring networks are presented in Sections V.

II. RELATED WORK

In general, the main goal of a DoS attack is to make
communication impossible for legitimate users. Within the
context of wireless networks, a simple and popular means to
launch a DoS attack is to jam the network with high power
transmissions of random bits, hence creating interferences
and congestion. Jamming at the physical layer, together with
anti-jamming countermeasures, have been extensively studied
(cf. [11] for a monograph on this subject).

More recently, several works have developed and demon-
strated smart jamming attacks. These attacks exploit protocol
vulnerabilities across various layers in the stack to achieve
high jamming gain and energy efficiency, and a low probability
of detection [12]. For instance, [13] shows that the energy
consumption of a smart jamming attack can be four orders
of magnitude lower than continuous jamming. However, both
conventional and smart jamming attacks are usually non-
protocol compliant. Moreover, they require physical proximity.
These limitations can be used to identify and locate the
jammer.

In contrast, in this work we show how a protocol-compliant
DoS attack can be remotely launched by exploiting coupling
due to hidden nodes in Wi-Fi. Rate adaptation algorithms
further amplify this attack due to their inability to distinguish
between collisions, interferences, and poor channels. One
potential mitigation is to design a rate adaptation algorithm
whose behaviour is based on the observed interference pat-
terns [14], [15]. However, to the best of our knowledge,
none of these rate adaptation algorithms are used in practice.

Our work is based on Minstrel [16], which is the most
recent, popular, and robust rate adaptation algorithm for Linux
systems.

The attacks that we are investigating bear similarity to
cascading failures in power transmission systems [17], [18].
When one of the nodes in the system fails, it shifts its load
to adjacent nodes. These nodes in turn can be overloaded and
shift their load further. This phenomenon has also been studied
in wireless networks. For instance, [19], [20] model wireless
networks as a random geometric graph topology generated by
a Poisson point process. They use percolation theory to show
that the redistribution of load induces a phase transition in
the network connectivity. However, the cascading phenomenon
that we investigate in this paper is different from cascading
failure studied in those works. In our work, the exogenous
generation of traffic at each node is independent. That is,
a node will not shift its load to other nodes. The amount
of traffic measured on the channel increases due to packet
retransmissions caused by packet collisions, rather than due
to traffic redistribution.

The work in [21] shows that interference coupling can affect
the stability of multi-hop networks. In the case of a greedy
source, a three-hop network is stable while a four-hop network
becomes unstable. In contrast, in our work, the path of each
packet consists of a single-hop. Thus, network instability is
not due to multi-hop communication in our case.

The work in [22] shows that local coupling due to inter-
ferences can have global effects on wireless networks. Thus,
it proposes a queuing-theoretic analysis and approximation to
predict the probability of a packet collision in a multi-hop
network with hidden nodes. It shows that the sequence of the
packet collision probabilities in a linear network converges to
a fixed point.

Our paper differs in several aspects. First, it considers
an adversarial context, and shows how interference-induced
coupling can be exploited to cause denial of service. Second, to
our knowledge, it is the first work to demonstrate the existence
of such coupling on real commodity hardware. Finally, our
analytical model is original and captures the impact of the retry
limit and traffic parameters. A key result is that a cascading
attack can be launched for the default value of the retry limit in
Wi-Fi, a result validated by the experiments and simulations.

III. BACKGROUND AND MODEL

A. IEEE 802.11 Back-off Mechanism
The IEEE 802.11 standard uses the CSMA/CA mechanism

to control access to the transmission medium and avoid
collisions. After a packet is sent, a node waits for a short
interframe slots (SIFS) period to receive an acknolwedgment
(ACK). Whenever the channel becomes idle, the node waits
for a distributed interframe space (DIFS > SIFS) period and
a random backoff before contending for the channel. The
random backoff consists of a random number of backoff
slots, which depends on the so-called contention window.
Specifically, at the r ≥ 1 retransmission attempt (retry count),
the contention window CWr is given by

CWr =

{
2r−1(CW1 + 1)− 1 CWr < CWmax,
CWmax otherwise. (1)
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Fig. 1. Classical hidden node problem. The transmitter and the hidden
node cannot sense each other. The collision happens when they transmit
simultaneously.

The number of backoff slots is chosen uniformly at random in
the interval [0, CWr]. For IEEE 802.11b, the initial contention
window size is CW1 = 31 , the maximum contention window
size is CWmax = 1023, and the duration of a backoff slot
is 20 µs. Note that the case r = 1 corresponds to the initial
packet transmission attempt.

B. The Hidden Node Problem

A typical instance of the hidden node problem is illustrated
in Figure 1. The figure shows three nodes: a transmitter, a
receiver and a hidden node. The dashed circle represents the
transmission range of the node. Since the transmitter and the
hidden node cannot sense each other, a collision happens when
both of them transmit packets at the same time.

A packet collision triggers a retransmission. In IEEE 802.11,
there is an upper limit on the number of retransmissions that
a packet can incur, called retry limit and denoted by R (the
default value is R = 7). If the retry count r of a packet exceeds
the retry limit, the packet is dropped, the retry count is reset to
r = 1, and a new packet transmission can start. The channel
utilization of a node increases with the probability of a packet
collision. In the worst case, the utilization can be R times
larger than in the absence of packet collisions. Therefore, the
access channel of a node can easily be saturated if it is forced
to retransmit packets.

C. Network Model

The network model considered in this paper is shown in
Figure 2. This configuration could arise over different time
and space in more complex network topologies. We consider
N + 1 pairs of nodes. Each node Ai (i = 0, 1, 2, . . ., N )
transmits packets to node Bi. The dashed circle represents the
range of transmission. Node Bi+1 can receive packets from
both node Ai and node Ai+1. However, node Ai and node
Ai+1 cannot hear each other. That is, node Ai is a hidden
node with respect to node Ai+1 (and vice-versa). A packet
collision happens at node Bi+1 when packet transmissions by
node Ai and Ai+1 overlap.

In general, the linear topology considered here represents a
propagation path used by an attack. It is possible for an attack
to be launched in a more general network as long as such a
propagation path exists. We show a concrete example in our
simulations in Section V-C.

Fig. 2. Topology of the network. Node Ai transmits packets to node Bi.
Node Ai is a hidden node with respect to Ai+1.

We assume that all the nodes communicate over the same
channel. Note that there are only three non-overlapping chan-
nels in the 2.4GHz band. Hence, it is common that several
nodes use the same channel over time and space in crowded
areas. For instance, in a dense Wi-Fi network, each cell has
multiple neighboring cells. Since there are only three non-
overlapping channels, some neighboring cells will necessarily
share the same channel (i.e., there could be other pairs of nodes
using different channels which are not shown in Figure 2).

D. Attack Scenario

Our goal is to investigate how node A0 can trigger a
cascading DoS attack, resulting in a congestion collapse over
the entire network. We start by increasing the packet gener-
ation rate at node A0. Node A0 transmits packets over its
channel, in compliance with the IEEE 802.11 standard. The
transmissions by node A0 cause packet collisions at node B1.
These collisions require node A1 to retransmit packets. The
increased amount of packet transmissions and retransmissions
by node A1 impact node A2 and so forth. If this effect keeps
propagating and amplifying, then the result is a network-
wide denial of service, which we refer to as a cascading
Denial of Service (DoS) attack. Because this attack is protocol-
compliant, it is difficult to detect or trace back to the initiator.

E. Impact of exponential back-off

When a hidden node retransmits its packets, it must back
off after each retransmission, which leaves the channel idle for
a certain period of time. The duration of the backoff period
is generally too short to allow for a successful transmission.
Indeed, a packet transmission is successful only if

1) The size of the contention window of the hidden node is
longer than the packet transmission time.

2) The transmitter starts and ends its transmission entirely
during the backoff period of the hidden node.

At 1 Mb/s, the transmission time of an 1500 bytes packet lasts
12 ms. This is longer than the contention window as long as
CWr < CWmax = 1023. Hence, by Eq. (1), a transmission
cannot be successful during the backoff period preceding the
r < 6 retransmission attempt by a hidden node. Note that in
the attack scenarios considered in this paper, each transmitter
is a hidden node (i.e., it does not hear the transmissions of
other nodes). Hence, the backoff counter keeps counting down
and never freezes.
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At the r ≥ 6 retransmission attempt by a hidden node Ai,
CWr = CWmax = 1023. Node Ai back-offs for n slots,
where n is an integer between 0 and 1023 that is picked
uniformly at random (i.e., with probability 1/1024). Since the
length of a backoff slot is 20 µs, the backoff delay is 0.02n ms.
Without loss of generality, assume that node Ai starts backing
off at time t = 0 and ends its backoff at time t = 0.02n
(all the time units are in milliseconds). Node Ai then starts a
packet transmission, which ends at time t = 0.02n+ 0.12.

Node Ai+1 can transmit a packet successfully only if it
starts its transmission during the time interval [0, 0.02n− 12].
This requires n > 600. Assuming that the starting time of the
packet transmission by node Ai+1 is uniformly distributed in
the time interval [0, 0.02n+ 12], the probability that a packet
is successfully transmitted by node Ai+1 is

1023∑
n=600

1

1024
· 0.02n− 12

0.02n+ 12
= 0.059.

Thus, the likelihood of a successful packet transmission is low,
a result validated by the experimental and simulation results
of Section V.

IV. ANALYSIS

In this section, we develop an analytical model that provides
insight into the network behavior under attack. Specifically,
our goals are to explain why and under what conditions an
attacker can congest a remote node and cause its throughput
to vanish, and to shed light into the roles played by the retry
limit R and the traffic load at the different nodes.

A. Model

We consider the linear topology shown in Figure 2. Packet
generations at each node Ai form a Poisson process with
rate λi. The packet size is fixed and the duration of each
packet transmission attempt is T (we assume a fixed bit rate).
A transmission by node Ai+1 is successful only if does not
overlap with any transmission by (hidden) node Ai.

If a packet collides, it is retransmitted until either it is
successfully received or the retry count reaches the limit R.
Let 1 ≤ ri ≤ R represent the mean retry count at node Ai.
Note that the initial packet transmission is included in that
count. Then, the mean service time of a packet at node Ai
is riT . To keep the analysis tractable, timing details of Wi-
Fi, such as DIFS, SIFS, and back-off inter-frame spacing are
ignored. Therefore the upper limit of the utilization equals 1
in our analysis.

We denote the utilization of node Ai by 0 ≤ ui ≤ 1,
where ui represents the fraction of time node Ai transmits.
If ui = 1, node Ai is congested and transmits continuously.
Otherwise, node Ai is uncongested and transmits packets at
rate riλ. Therefore, the utilization of node Ai for all i ≥ 0 is

ui = min{riλiT, 1}. (2)

Note that there is no retransmission at node A0 and r0 = 1.
Our model represents a special case of interacting queues,

which are notoriously difficult to analyze [23]. To make the
analysis tractable, we assume that:

1) Packet transmissions and retransmissions at each uncon-
gested node Ai form a Poisson process with rate riλ.

2) The probability that a packet transmitted by node Ai col-
lides is independent of previous attempts. This probability
is denoted pi.

Our model is similar to the “random-look” model used by
Kleinrock and Tobagi in their analysis of (single hop) random
access networks [24] (see also Ch. 4 of [25]). We stress that
beside these assumptions, the rest of our analysis is exact. Note
that the experiments and simulations shown in Section IV do
not incorporate the simplifications used to make the analysis
tractable, yet they produce the same effects.

B. Iterative analysis of the utilization

Our goal is to find the utilization at each node i ≥ 0 and in
the limit as i→∞. We consider the same scenario as in our
simulations, whereby node A0 (the attacker) varies its traffic
load

ρ0 , λ0T, (3)

while all other nodes Ai (i ≥ 1) have the same traffic load

ρ , λiT, (4)

where 0 < ρ < 1. We aim to understand if and how changes in
the value of ρ0 affect the utilization of nodes that are located
far away as function of the parameters ρ and R.

First, we get the utilization at node A0:

u0 = min{ρ0, 1}. (5)

We next develop an iterative procedure to derive ui+1 from
ui. From (2) and (4),

ui+1 = min{ri+1ρ, 1}. (6)

We first relate ri+1 to pi+1, the probability that a packet
transmitted by node Ai+1 collides. Based on Assumption 2,
the probability that a packet is successfully received after 1 ≤
r ≤ R attempts is (1 − pi+1)(pi+1)r−1 while the probability
that a packet fails to be received after R attempts is (pi+1)R.
Hence, the mean retry count at node Ai+1 is

ri+1 =

R∑
r=1

r · (1− pi+1) · (pi+1)r−1 +R · (pi+1)R

=

R∑
r=1

(pi+1)r−1. (7)

We next relate pi+1 to ui. First, suppose ui < 1 (i.e., node
Ai is uncongested). Assume that node Ai+1 starts a packet
transmission (or retransmission) at some arbitrary time t = t′.
We compute pi+1 by conditioning on whether or not node Ai
is transmitting at time t′. Note that due the Poisson Arrivals
See Time Averages (PASTA) property, the transmission state
of node Ai at time t = t′ is the same as at any random point
of time.

If node Ai transmits at time t′, which occurs with proba-
bility ui, then the packet transmitted by node Ai+1 collides
with probability 1. If node Ai does not transmit at time
t′, which occurs with probability 1 − ui, then a collision
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occurs only if node Ai starts a transmission during the interval
[t′, t′+T ]. Since the packet inter-arrival time on the channel is
exponentially distributed with mean riT , such an event occurs
with probability

(1− e−riλiT ) = (1− e−ui), (8)

based on Assumption 1. Therefore, the unconditional proba-
bility that a packet transmitted by node Ai+1 collides is

pi+1 = 1 · ui + (1− e−ui) · (1− ui)
= 1− e−ui(1− ui). (9)

Next, suppose ui = 1 (i.e., node Ai is congested). In that
case, all the transmissions by node Ai+1 collide and pi+1 = 1.
We note that (9) still provides the correct result.

Putting (6), (7), and (9) together, we obtain

ui+1 = min

{
ρ

R∑
r=1

(
1− e−ui(1− ui)

)r−1
, 1

}
. (10)

C. Limiting behaviour of the utilization

We next analyze the limiting behaviour of the iteration
given by (10). The sequence (ui)

∞
i=0 corresponds to a discrete

non-linear dynamical system [26]. Such systems are generally
complex as they may converge to a point, to a cycle (i.e., they
exhibit periodic behaviour), or not converge at all (i.e., they
exhibit chaotic behaviour).

The main result of this section is to show that the sequence
(ui)

∞
i=0 always converges to a point. However, the limit

depends on the initial utilization u0.
To simplify notation, we define the function

f(ui) , ρ

R∑
r=1

(
1− e−ui(1− ui)

)r−1
. (11)

We then rewrite (10) as follows:

ui+1 = min {f(ui), 1} . (12)

We say that ω ∈ [0, 1] is a fixed point of (12) if

ω = min {f(ω), 1} . (13)

Suppose (13) has K different fixed points (Theorem 2 in
the sequel will show that K ≥ 1). We denote by Ω the ordered
set of all the fixed points of (13). That is,

Ω , {ω1, . . . , ωk, . . . , ωK}, (14)

where ω1 < . . . < ωk < . . . < ωK .
We are next going to show that for any u0 ∈ [0, 1], the limit

of the sequence (ui)
∞
i=0 is one of the elements in Ω. To prove

this result, we will use the following lemma.
Lemma 1: Let u, u′ ∈ (ωk, ωk+1), where k ∈ {1, . . . ,K −

1}. If f(u) > u, then f(u′) > u′. If f(u) < u, then f(u′) <
u′.

Proof: The proof goes by contradiction. Let u, u′ ∈
(ωk, ωk+1). Suppose f(u) > u and f(u′) < u′. Since f
is continuous in (ωk, ωk+1), then by the intermediate-value
theorem there exists a point u′′ between u and u′ such that
f(u′′) = u′′ . Thus, u′′ is a fixed point of (13). This contradicts
the fact that no fixed point exists between ωk and ωk+1.

We now present the main result of this section.
Theorem 1:

1) Let u0 ∈ (ωk, ωk+1), where k ∈ {1, . . . ,K − 1}. If
f(u0) > u0, the sequence (ui)

∞
i=0 converges to ωk+1.

If f(u0) < u0, the sequence (ui)
∞
i=0 converges to ωk.

2) If u0 ∈ [0, ω1), the sequence (ui)
∞
i=0 converges to ω1.

3) If ωK < 1 and u0 ∈ (ωK , 1], the sequence (ui)
∞
i=0

converges to ωK .
Proof:

1) Let ωk < u0 < ωk+1, where k ∈ {1, . . . ,K − 1}. Since
pi ∈ (0, 1). Therefore, the function f is continuous and
monotonically increasing, f(ωk) < f(u0) < f(ωk+1).
Hence, according to (12) and (13), we get

ωk ≤ u1 ≤ ωk+1. (15)

Now, suppose u1 = f(u0) > u0. If u1 = ωk+1, then the
result is proven. If u1 < ωk+1, then by Lemma 1 and
Equation (15), we have u2 = f(u1) > u1. Applying
the same argument inductively, either there exists some
value M ≥ 2 such that ui = ωk+1 for all i ≥ M ,
or the sequence (ui)

∞
i=0 is monotonically increasing and

upper bounded by ωk+1. According to the monotone con-
vergence theorem, the sequence converges. Since there
is no other fixed point between u0 and ωk+1 and f is
continuous, the sequence (ui)

∞
i=0 must converge to ωk+1.

The case u1 = f(u0) < u0 is handled similarly.
2) Similar to Lemma 1, one can show that if there exists

u ∈ [0, ω1) such that f(u) > u, then f(u′) > u′ for all
u′ ∈ [0, ω1). Since f(0) = ρ > 0, the sequence (ui)

∞
i=0

converges to ω1.
3) This is handled similarly to case 2.

In summary, the existence of fixed points is determined by
the utilization of all the nodes except the attacking node. The
fixed points can be computed by solving (13). Once the fixed
points are known, Theorem 1 provides the ranges of utilization
of the attacking node u0 for which the sequence converges to
each fixed point.

D. Phase transition analysis

In the previous section, we showed that the limit of the
sequence of node utilizations (ui)

∞
i=0 must be one of the fixed

points in the set Ω. A phase transition represents a situation
where a small change of u0 leads to an abrupt change of the
limit. Specifically, we focus on the case when the limit jumps
to 1. Formally:

Definition 1 (Network congestion): A network is said to be
congested if (ui)

∞
i=0 converges to 1. Else, the network is said

to be uncongested.
Definition 2 (Phase transition): A network experiences a

phase transition if there exists a fixed point ω ∈ Ω, such that
if u0 < ω the network is uncongested, and if u0 > ω the
network is congested. We refer to ω as the phase transition
point.
We note that a phase transition can possibly occur only if
ωK = 1, since otherwise the network is never congested,
irrespective of u0.
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A network must fall in one of the following three regimes:
1) The network is uncongested for all u0 ∈ [0, 1].
2) The network is congested for all u0 ∈ [0, 1].
3) A phase transition occurs.

Our goal in the following is to determine what regime prevails
under different network parameters.

For this purpose, we investigate the existence and properties
of solutions of (13). First, we investigate the case ω = 1.

Lemma 2: If ρ > 1/R, then
1) ωK = 1.
2) If K = 1, then for all u0 ∈ [0, ωK ] the sequence (ui)

∞
i=0

converges to ωK .
3) If K ≥ 2, then for all u0 ∈ (ωK−1, ωK ] the sequence

(ui)
∞
i=0 converges to ωK .

Proof:
1) Let ρ ≥ 1/R. We compute the RHS of (13) at ω = 1 and

obtain min{f(1), 1} = min{Rρ, 1} = 1, which proves
that a fixed point indeed exists at ω = 1.

2) If ρ > 1/R, then f(1) = Rρ > 1. Since f(1) > 1,
then for all u0 ∈ (0, ωK) , we have f(u0) > u0, based
on an argument similar to Lemma 1, and the sequence
(ui)

∞
i=0 converges to 1, following an argument similar to

Theorem 1.
3) This is handled similarly to Part 2.

Lemma 2 indicates that the sequence (ui)
∞
i=0 can converge

to 1 (depending on u0), if ρ > 1/R. Besides this special case,
(13) can be rewritten

f(ω) = ω. (16)

We look for solutions of (16) that belong to the interval [0, 1].
Each such solution is an element of Ω.

Equation (16) is difficult to work with because it contains
two unknown variables, ρ and R. To circumvent this difficulty,
we introduce the function

hR(ω) ,
ρω

f(ω)
=

ω∑R
r=1 (1− e−ω(1− ω))

r−1 . (17)

For each value of ρ, the solutions of (16) must satisfy

hR(ω) = ρ. (18)

We denote the maximum of hR(ω) by

hmaxR , max
0≤ω≤1

hR(ω).

The following theorem establishes the prevailing network
regimes for different parameters.

Theorem 2:
1) If ρ < 1/R, then the network is uncongested for all u0 ∈

[0, 1].
2) If hmaxR > 1/R and 1/R < ρ < hmaxR , then a phase

transition occurs and the phase transition point is ωK−1.
3) If ρ > hmaxR , then the network is congested for all u0 ∈

[0, 1].
Proof:

1) If ρ < 1/R, then Rρ < 1 and the utilization of each
node is always less than 1. Hence, for any u0 ∈ [0, 1], the
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Fig. 3. Illustration of the different network regimes for different values of
R. For each value of ρ, the fixed points are the solutions of hR(ω) = ρ.
In addition, the fixed point ω = 1 always exists when ρ > 1/R. A phase
transition region exists if the maximum of hR(ω), hmax

R , is strictly greater
than hR(1) = 1/R.

network is always uncongested. Note that since hR(0) =
0, hR(1) = 1/R, and hR is continuous, (18) must have
at least one solution (i.e., at least one fixed point exists).

2) Let ρ ∈ (1/R, hmaxR ). We know that hR(0) = 0 and
hR(1) = 1/R. Since the function hR is continuous, (18)
must have at least one solution (i.e, at least one fixed point
strictly smaller than 1 exists). Also, because ρ > 1/R, a
fixed point point at ω = 1 exists (i.e., ωK = 1), by Part
1 of Lemma 2. Thus, there are K ≥ 2 fixed points.
By Part 3 of Lemma 2, the sequence (ui)

∞
i=0 converges to

ωK for all u0 ∈ (ωK−1, ωK ]. Moreover, by Theorem 1,
the limit of the sequence (ui)

∞
i=0 is no larger than ωK−1

for all u0 ≤ ωK−1. Hence, a phase transition exists at
ωK−1.

3) If ρ > hmaxR , then (16) has no solution. Moreover, since
ρ > hmaxR ≥ hR(1) = 1/R, we get ρ > 1/R. By Parts 1
and 2 of Lemma 2, the sequence (ui)

∞
i=0 converges to 1

for any u0 ∈ [0, 1], and the network is always congested.

Theorem 2 establishes whether the network is always un-
congested, is susceptible to a phase transition, or is always
congested, depending on the network parameters. We illustrate
this theorem for different values of R and ρ, using Figure 3.
First, consider R = 4 as shown in Figure 3(a). Since hmaxR =
1/R = 0.25, there exists no traffic load ρ for which a phase
transition exists. Either the network is always uncongested (for
ρ < 1/R), or it is always congested (for ρ > 1/R).

Next, consider R = 7 as shown in Figure 3(b). There,
hmaxR = 0.166 > 1/R = 0.143. Hence, a phase transition
occurs if ρ ∈ (0.143, 0.166). For instance, consider the case
ρ = 0.15. Then, the equation hR(ω) = ρ has two solutions.
Including the fixed point ω = 1 (since ρ > 1/R), the set Ω
has K = 3 fixed points: {ω1 = 0.265, ω2 = 0.777, ω3 = 1}.
Hence, by Theorem 2, the network is uncongested if u0 <
0.777, and congested if u0 > 0.777.

The case R = 10 also has a phase transition region, as
shown in Figure 3(c). Furthermore, the size of this region is
larger since (1/R, hmaxR ) = (0.1, 0.162).

E. Sufficient condition for phase transition

In the previous section, we showed that a phase transition
exists in the region 1/R < ρ < hmaxR , if hmaxR > 1/R.
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In this section, we derive an explicit lower bound on hmaxR ,
which provides a simple condition for the existence of a
phase transition. First, we establish a relationship between the
derivatives of hR(ω) for different values of R, but a given
value of ω. The proof of the following lemma can be found
in [27].

Lemma 3: For ω ∈ [0, 1], if there exists R∗ ≥ 1 such that
h′R∗(ω) ≤ 0, then h′R(ω) ≤ 0 for all R > R∗.

Next, consider the function hR(ω) as R→∞:

h∞(ω) = (1−
(
1− e−ω(1− ω)

)
)ω

= e−ω(1− ω)ω, (19)

and its derivative

h′∞(ω) = e−ω(1− 3ω + ω2). (20)

The next corollary is the logical transposition of Lemma 3.
Corollary 1: If h′∞(ω) ≥ 0, then h′R(ω) ≥ 0 for all R ≥ 1.
The following lemma establishes that the function hR(ω) is

always strictly increasing in the interval [0, ω), where

ω ,
3−
√

5

2
. (21)

Lemma 4: Let 0 ≤ ω < ω. Then, h′R(ω) > 0, for all R ≥ 1.
Proof: Let the function h∞(ω) and its derivative h′∞(ω)

be defined as in (19) and (20), respectively. Since e−ω is
always positive, h′∞(ω) has the same sign as (1− 3ω + ω2).
The unique root of (1− 3ω + ω2) = 0 for ω ∈ [0, 1] is w̄ as
defined in (21).

Thus, (1 − 3ω + ω2) is positive when 0 ≤ ω < ω, and so
is h′∞(ω). By Corollary 1, h′R(ω) > 0 for 0 ≤ ω < ω and for
all R ≥ 1.

The consequence of Lemma 4 is that for all R ≥ 1,

hmaxR ≥ hR(ω). (22)

This equation provide a lower bound on hmaxR that can easily
be computed. We then obtain the following sufficient condition
for the existence of phase transition.

Lemma 5: Let ω be defined as in (21) and suppose hR(ω) >
1/R. Then, a phase transition is guaranteed to exist for any
ρ ∈ (1/R, hR(ω)).

Proof: From Theorem 2, we know that a phase transition
exists if 1/R < ρ < hmaxR . By (22) and the assumption that
hR(ω) > 1/R, the proof follows.

The next theorem establishes an even more explicit lower
bound on hmaxR .

Theorem 3: Let h∞(ω) and ω be defined as in (19) and
(21), respectively. Then, hmaxR ≥ h∞(ω) ' 0.161.

Proof: By (17),

hR(ω) =
ω∑R

r=1(1− e−ω(1− ω))r−1

>
ω∑∞

r=1(1− e−ω(1− ω))r−1
= h∞(ω). (23)

Thus, by (22) and (23), hmaxR > h∞(ω) ' 0.161. Note that
this bound is asymptotically tight as R → ∞ since hmax∞ =
h∞(ω).

From Theorems 2 and 3, it follows that a phase transition
exists if 1/R < 0.161. Hence:

Corollary 2: A phase transition is guaranteed to exist for
R ≥ 7 and ρ ∈ [1/R, 0.161].
We note that the lower bound on hmaxR is quite tight. For
instance, hmax7 = 0.166. Moreover, hmaxR decreases with
R (this follows from (17), since for any ω ∈ [0, 1] the
denominator increases as R gets larger).

F. Stability of fixed points

In this subsection, we use stability theory to shed further
light into the limiting behaviour of the sequence (ui)

∞
i=0.

Specifically, the sequence (ui)
∞
i=0 converges to stable fixed

points of Ω and diverges from unstable fixed points of Ω.
We will show that the stability of the fixed points of (16) are
determined by the sign of h′R(ω) at those points.

Informally, a fixed point ω is stable (or an attractor), if
there exists a domain containing ω, such that if u0 belongs to
that domain, then (ui)

∞
i=0 converges to ω.

Definition 3 (Stability of a fixed point): Let u0 ∈ [0, 1]. A
fixed point ω ∈ Ω is stable if there exists ε > 0 such that
if |u0 − ω| < ε, the sequence (ui)

∞
i=0 converges to ω. It is

unstable if for all u0 6= ω the sequence (ui)
∞
i=0 does not

converge to ω.
Recall that according to Lemma 2, a special fixed point of

(13) exists at ω = 1, if ρ > 1/R. According to Definition 3,
this fixed point is stable. Besides this special case, the rest
of the fixed points satisfy Equation (16). To establish the
stability of those fixed points, we will employ the following
proposition.

Proposition 1 ( [26]): Suppose that a continuously differ-
entiable function f has a fixed point ω. Then, ω is stable if
|f ′(ω)| < 1 and unstable if |f ′(ω)| > 1.

The next theorem provides a criterion to establish the
stability of a fixed point ω ∈ Ω with respect to the function
hR(ω).

Theorem 4: Consider a fixed point ω ∈ Ω, where ω < 1.
Then ω is stable if h′R(ω) > 0 and unstable if h′R(ω) < 0.

Proof: Let ω ∈ Ω. The derivative of hR(ω) with respect
to ω is

h′R(ω) =
1

Γ(ω)
− ω

(Γ(ω))2
· Γ′(ω) > 0, (24)

where

Γ(ω) ,
R∑
r=1

(
1− e−ω(1− ω)

)r−1
=
f(ω)

ρ
. (25)

If one can show that (24) implies |f ′(ω)| < 1, then according
to Proposition 1, the fixed point ω is stable. We multiply both
sides of (24) by (Γ(ω))2 and obtain

Γ(ω)− ωΓ′(ω) > 0. (26)

Using (25) and (16), we can rearrange (26) as follows:

Γ′(ω) <
Γ(ω)

ω
=
f(ω)

ρω
=

1

ρ
. (27)

From (25) and (27), we get

f ′(ω) = ρΓ′(ω) < 1.
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Fig. 4. Stability of fixed points with R = 10. Given a load ρ = 0.13 (dash
line), Ω contains three fixed points: ω1 = 0.2, ω2 = 0.7 and ω3 = 1. The
fixed point ω1 is stable because h′R(ω1) > 0 and ω2 is unstable because
h′R(ω2) < 0. The fixed point ω3 = 1 exists and is stable because ρ > 1/R.
Therefore, the sequence (ui)

∞
i=0 converges to ω1 if u0 < ω2, and to ω3 if

u0 > ω2.

Since f(ω) is monotonically increasing with ω, for ω ∈ [0, 1],
we conclude

0 < f ′(ω) < 1.

Hence, by Proposition 1, ω is a stable fixed point.
Similarly, h′R(ω) < 0 implies f ′(ω) > 1, which means that

ω is unstable.

Theorem 4 provides a stability analysis of the fixed points
and helps determine the limit of the sequence (ui)

∞
i=0. Con-

sider, for instance, the example shown in Figure 4 with
parameters R = 10 and ρ = 0.13. Under these parameters,
Ω = {ω1, ω2, ω3} = {0.2, 0.7, 1}.

The fixed points ω1 and ω2 are the solutions of hR(ω) = ρ.
According to Theorem 4, ω1 is stable and ω2 is unstable. The
fixed point ω3 = 1 exists and is stable, since ρ > 1/R.

According to Theorem 2, ω2 is a phase transition point.
Hence, the sequence (ui)

∞
i=0 converges to ω1 if u0 < ω2

and the network is uncongested. If u0 > ω2, the sequence
converges to ω3 and the network is congested.

G. Heterogeneous traffic load

In previous subsections, we assumed that node A0 varies its
traffic load ρ0, but all other nodes Ai (i ≥ 1) have the same
traffic load ρ. We now relax this assumption and assume that
nodes Ai (i ≥ 1) have different traffic loads ρi = λiT . We
next prove that a phase transition still occurs, as long as all
the traffic loads fall in the appropriate range.

Theorem 5: Suppose hmaxR > 1/R. If ρi ∈ (1/R, hmaxR ) for
all i ≥ 1, then a phase transition occurs.

Proof: Let ρmax = maxi≥1 ρi and ρmin = mini≥1 ρi.
According to Theorem 2, the network is uncongested when
ρ0 = 0 and the load at each node Ai is ρmax < hmaxR . Hence,
the network must remain uncongested when the load at each
node Ai is smaller than ρmax.

Similarly, the network is congested when ρ0 = 1 and the
load at each node Ai is ρmin > 1/R. Hence, it must remain
congested when the load at each node Ai is larger than ρmin.
Thus, a phase transition occurs when 1/R < ρi < hmaxR for
all i ≥ 1.

60dB

70dB

A0 A1 A2

B0 B1 B2

60dB

70dB 70dB

RF attenuattorSplitter

Fig. 5. Experimental testbed.

This result shows that phase transitions are also possible in
linear networks with heterogeneous traffic loads.

V. EXPERIMENTS AND SIMULATIONS

A. Experiments

We demonstrate the practical feasibility of launching cas-
cading DoS attacks through experiments on a testbed com-
posed of six nodes. The testbed configuration is shown in
Figure 5. We establish an IEEE 802.11n ad hoc network
consisting of three pairs of nodes. Each node consists of a
PC and a TP-LINK TL-WN722N Wireless USB Adapter. We
use RF cables and splitters to link the nodes, isolate them from
external traffic, and obtain reproducible results.

We place 70 dB attenuators on links between node Ai and
Bi (i ∈ 0, 1, 2), and 60 dB attenuators on links between
nodes Ai and Bi+1. The difference in the signal attenuation
of different links ensures that a packet loss occurs if a hidden
node transmits. In practice, such a situation may occur if nodes
Ai and Bi+1 communicate without obstacles, while node Ai
and Bi are separated by an office wall [28].

The transmission power of each node is set to 0 dBm. We
use iPerf [29] to generate UDP data streams and to measure
the throughput achieved on each node. The length of a packet
is the default IP packet size of 1500 bytes.

Figure 6 demonstrates the cascading DoS attack on the
experimental testbed. At first, the packet generation rates of
nodes A0, A1 and A2 are set to 400 Kb/s. We observe that
the throughput of all the nodes remains in the vicinity of 400
Kb/s during the first 300 seconds. After 300 seconds, A0 starts
transmitting packets at 1 Mb/s. As a result, the throughput of
nodes A1 and A2 suddenly vanishes. Once node A0 resumes
transmitting at 400 Kb/s, the throughput of node A1 and node
A2 recovers.

Note that if the values of the attenuators are set equal, some
packets transmitted at the lowest bit rate (i.e., 1 Mb/s) may be
successfully received, even if the packets overlap. The analysis
of this scenario is more complicated but simulations show that
even in this case, cascading attacks are feasible [27, Ch. 4].
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Fig. 6. Throughput performance measurements in testbed. When node A0

starts increasing its packet generation rate, the throughput of nodes A1 and
A2 vanishes.

B. Simulation results for linear topologies

We next compare the results of the analysis of Section IV
with ns-3 simulations, for different settings of the retry limit
R and load ρ. For the simulations, we consider an ad hoc
network composed of 41 pairs of nodes.

1) Region of phase transition: To check whether a phase
transition exists for a given R, we run simulations both for
ρ0 = 0 and ρ0 = 1. If the node utilizations in the limit (i.e.,
for node A40) is the same in both cases, then we assume that
there is no phase transition. If the limits are different, then a
phase transition exists.

Figure 7 indicates that the existence of a phase transition
is related to the retry limit, as predicted by our analysis. For
the case R = 4, there is no phase transition, while a phase
transition occurs in the cases R = 7 and R = 10. In fact, we
observed no phase transition in our simulations for any R ≤ 6.

The analysis also reasonably approximates the phase tran-
sition region. For R = 7, the simulations show that a phase
transition exists if ρ ∈ (0.12, 0.16), while the analysis predicts
ρ ∈ (0.14, 0.17). For R = 10, the simulation results are
ρ ∈ (0.08, 0.14) while the analysis predicts ρ ∈ (0.10, 0.16).
We note that the size of the phase transition region increases
with R, as predicted by the analysis.

2) Heterogeneous traffic load: We next show the feasibility
of a cascading DoS attack in a network where the traffic load
at different node is heterogeneous, in line with the analysis
of Section IV-G. Specifically, the traffic load ρi at each node
Ai (i ≥ 1) is a continuous random variable that is uniformly
distributed between 0.11 and 0.15.

Figure 8 shows the simulation results for retry limit R = 7.
When ρ0, the load of node A0, is below 0.5, the network is
uncongested and the utilizations of nodes Ai oscillate around
0.35 as i gets large. Note that the sequence does not converge
to a fixed value due to the different traffic loads at the different
nodes. However, when ρ0 exceeds 0.6, the sequence of node
utilizations converges to its upper limit, implying that the

Fig. 7. Simulation of the limiting behaviour of the node utilization in a
network of 41 pairs of nodes. For R = 4, the limit is the same when ρ0 = 0
and ρ0 = 1, hence no phase transition is observed. However, for R = 7 and
R = 10, the limits are different, hence showing the existence of a region of
load ρ in which a phase transition occurs.
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Fig. 8. Simulation with heterogeneous traffic load in a network with 41 pairs
of nodes. The traffic load of nodes Ai (i ≥ 1) are uniformly distributed
between 0.11 and 0.15. For R = 7, when the load ρ0 changes from 0.5 to
0.6, the limiting behavior of the sequence of node utilizations differs, thus
indicating the occurrence of phase transition.

network is congested. We note that the convergence to steady-
state is pretty fast, i.e., it is reached after about 10 nodes.

C. Simulation results for other topologies

We next next investigate cascading attacks in other topolo-
gies, specifically a realistic three-dimensional indoor topology
and a ring topolgy.

1) 3D indoor building model: In this section, we use
the ns-3 HybridBuildingsPropagationLossModel
library [30] to demonstrate the feasibility of cascading DoS
attacks in a 3D indoor scenario. Models in this library re-
alistically characterize the propagation loss across different
spectrum bands (i.e., ranging from 200 MHz to 2.6 GHz),
different environments (i.e., urban, suburban, open areas), and
different node positions with respect to buildings (i.e., indoor,
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Fig. 9. Office building model. The building has 20 floors (z-axis) and 6
rooms in each floor (x and y axes).

outdoor and hybrid). The building models take into account
the penetration losses of the walls and floors, based on the
type of buildings (i.e., residential, office, and commercial).

In our simulations, we consider a 20-floor office building
with six rooms in each floor, as shown in Figure 9. We
assume that five pairs of Wi-Fi nodes (Ai, Bi) are active in
the building, where node Ai transmits packets to nodes Bi
(i = 0, 1, 2, 3, 4). The bit rate is set to 1 Mb/s, the retry limit
to R = 7, and the frequency to 2.4 GHz. The generation rate
of UDP packets at nodes Ai, i ≥ 1, is λi = 8.125 pkts/s.
Packets are 2000 bytes long.

We turn on and off transmissions at node A0 to observe how
it impacts the throughput of other nodes. Simulation results
are shown in Figure 10. When node A0 does not transmit,
the throughput of node A4 is 0.13 Mb/s and it incurs no
packet loss. However, when node A0 starts transmitting, the
throughput of node A4 collapses. The throughput of node A4

recovers only after node A0 stops transmitting.
2) Ring topology: We next investigate cascading DoS at-

tacks in a ring topology with 41 pairs of nodes, as shown in
Figure 11. In our previous results for linear topologies, the
effect of an attack disappears once the attacker reduces its
packet generation rate. However, the effect of an attack in a
ring topology can last for a long period of time after the attack
stops.

This result is illustrated in Figure 12. During the first 100
seconds, all the nodes Ai (i = 0, 1, . . . ) generate packets at
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Fig. 10. Simulation results using ns-3 building model. When node A0

transmits, the throughput of remote node A4 collapses.
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Fig. 11. Ring topology under cascading DoS attack. The dash circle represents
the transmission range of the transmitter.
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Fig. 12. Simulation results under a ring topology. When the packet generation
rate of node A0 increases, the throughput of nodes A20 and A40 vanishes.
This effect continues even when the packet generation rate of node A0

decreases.

0.5 Mb/s. At time t = 300 s, node A0 increases its packet
generation rate to 11 Mb/s. As a result, the throughput of
all nodes vanishes. Yet, unlike results in linear topologies, the
throughput of the nodes does not recover after node A0 reduces
its packet generation rate back to 0.5 Mb/s. The cyclic nature
of the topology reinforces the attack even after the trigger
stops.

VI. CONCLUSION

We describe a new type of DoS attacks against Wi-Fi
networks, called cascading DoS attacks. The attack exploits



11

a coupling vulnerability due to hidden nodes. The attack
propagates beyond the starting location, lasts for long periods
of time, and forces the network to operate at its lowest bit rate.
The attack can be started remotely and without violating the
IEEE 802.11 standard, making it difficult to trace back. We
demonstrate the feasibility of such attacks through experiments
on a testbed of nodes equipped with off-the-shelf Wi-Fi cards.
The experiments show that change in the traffic load of the
attacker can lead to a phase transition of a remote node, from
uncongested to congested states.

To provide insight into this phenomenon, we propose a
new dynamical system model to characterize the sequence of
node utilizations, and analyze the limiting behavior of this
sequence. We show that the sequence always converges to
stable fixed points while an unstable fixed point represents
a phase transition point. Based on the system parameters,
we identify when the system remains always uncongested,
congested, or experiences a phase transition caused by a DoS
cascading attack.

The analysis predicts that a phase transition occurs for R ≥
7 in a linear network topology and provides a simple and
explicit estimate of traffic load at each node under which a
phase transition occurs (i.e., ρi ∈ (1/R, 0.161) for all i ≥
1). The network is always congested when the traffic load
is above the phase transition regime and always uncongested
when the traffic load is below the phase transition regime.
We also generalize our results to heterogeneous traffic load
scenarios.

The theoretical results are corroborated with simulations
and experiments. In terms of accuracy, our model is accurate
in predicting that the throughput vanishes during cascading
attacks (as shown by the real network experiments) as well
as predicting the values of the retry parameter R for which
cascading attacks are feasible. Notably, cascading attacks are
feasible for the default value R = 7 used in IEEE 802.11.
The analysis is also accurate in predicting the size of the
phase transition region which increases with R. However, the
analysis is less accurate in pinpointing the exact boundaries
of the phase transition region (which is about 20% off). We
defer the refinement of this particular aspect of the analysis
to future work, as it would likely require a more complicated
model.

Exploiting the coupling vulnerability in different network
configurations represents an interesting area for future work.
Experience in the security field indeed teaches that once a
vulnerability is identified, more potent attacks are subsequently
discovered (consider, for instance, the history of attacks on
WEP [31] and MD5 [32]). In particular, it is possible that
interactions between different wireless protocols that use the
same spectrum (e.g., Wi-Fi, Bluetooth, and Zigbee [33]) could
create a similar security issue.

Several approaches are possible to mitigate cascading DoS
attacks. First, one could enable the RTS/CTS exchange, al-
though this solution has several drawbacks, including major
performance degradation under normal network operations,
as mentioned in the introduction. Devising a scheme that
triggers RTS/CTS under certain circumstances (e.g., multiple
consecutive packet losses) could be an interesting area for

future research. The second approach is to lower the retry
limit. However, this could also negatively impact performance.
Other approaches worth investigating include using shortening
packet duration [27, Ch. 5], dynamic channel selection [34],
and full-duplex radios [35].
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