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Abstract—Accurate root cause analysis plays a key role for
developing mitigation strategies and understanding attack paths.
Many security analysis tools rely on threat databases to accurately
report information related to vulnerabilities, such as root cause
weaknesses or affected platforms. However, these databases are
not entirely correct, with many instances of missing or erroneous
information linked to vulnerabilities. This paper presents a
method for automated correction of invalid Common Weakness
Enumeration (CWE) mappings of Common Vulnerability and
Exposure (CVE) entries in the National Vulnerability Database
(NVD), which can also be applied to other threat databases.
We systematically investigate the prevalence of incorrect or
missing root-cause mappings, revealing that more than half of
CVEs are linked to invalid or insufficiently detailed CWEs,
particularly those categorized as Prohibited or Discouraged.
Through a longitudinal analysis of the NVD, we detect trends
in manual updates to CVE-CWE mappings and show how these
can inform predictions for future corrections. We develop and
present FixV2W, an automated correction method that uses a
Knowledge Graph embedding model to predict and rank best-
fitting CWE matches for correcting previously invalid CVE-CWE
mappings. We evaluate FixV2W using invalid mappings that were
subsequently corrected by the NVD. Notably, focusing on the top-
10 ranked answers for correcting prohibited mappings, we show
that FixV2W finds the correct CWE in 65% of the cases, and a
candidate within the same branch as the correct CWE in 93%
of the cases. Moreover, most of the correct mappings appear at
the first or second ranks.

Index Terms—Vulnerability, NVD, Weakness, Knowledge
Graphs, Embedding.

I. Introduction

Many security analysis tools [1]–[3] identify vulnerabilities
by scanning libraries and dependencies, providing reports that
include detected vulnerabilities and their severity scores. The
accuracy of vulnerability databases is critical for security anal-
ysis tools, which many open-source software (OSS) developers
and security professionals rely on for risk assessment and miti-
gation. The National Vulnerability Database (NVD) [4] serves
as a key resource by providing enrichment metadata -additional
information regarding the vulnerability- for Common Vul-
nerabilities and Exposures (CVEs) [5], including mappings
to Common Weakness Enumeration (CWE) [6], Common
Platform Enumeration (CPE) [7] and CVSS (Common Vul-
nerability Scoring System) scores. Similar to the NVD, other
databases [8]–[10] also provide additional information on
the CVE records, such as purl [11], or their own severity
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Fig. 1: The proportion of invalid mappings versus valid CVE-
CWE mappings among 280,000+ CVE (as of December 17,
2024). The diagram shows that valid mappings currently
represent less than half of the entries in the NVD.

scores, while also including the data provided by the NVD.
These mappings enable automated security tools to assess
vulnerabilities, identify trends, and recommend mitigation. In
particular, CWE mappings provide highly valuable information
on the root causes of vulnerabilities, thus contributing to better
understanding on how to mitigate them.

Unfortunately, the NVD has been plagued with incomplete
and inaccurate analyses [12], as well as significant delays
in the analysis of newly reported CVE, which has left OSS
developers and organizations in the dark for extended periods.
NVD, although ensuring that it will go back to its processing
pace before the huge drop in February 2024, is not even
halfway done with more than 30,000 newly reported CVE in
2024 and first few months of 2025. Although recent problems
have taken most of the spotlight, missing or inaccurate data has
in fact been a long-lasting problem. Through our longitudinal
analysis, our paper sheds further light into this issue.

Strikingly, our analysis of NVD entries as of December
2024, shown in Figure 1, determines that 55% of all CVE
appearing in the NVD have been mapped to invalid or missing
CWEs, that is CWE that are fully invalid (Prohibited), lacking
sufficient detail (Discouraged), or just serving as placeholders
for missing entries (CWE-Other and CWE-noinfo). Note that
the Prohibited and Discouraged tags were introduced in 2019



by MITRE for certain entries in the CWE list [13], aiming to
discourage CVE Numbering Authorities (CNAs) from using
generic CWE entries containing no or insufficient information
to conduct proper root cause analysis of vulnerabilities. While
the use of Prohibited CWEs was discontinued after 2019, we
detected that 5% of all CVE submitted since 2019 are still
mapped to Discouraged CWE.

While incomplete or invalid CVE-CWE mappings represent
the majority of mappings in the NVD, little research has been
conducted on how this situation has emerged and evolved over
time, and how to address this problem in a systematic way (see
Section II for some of the related work on this topic). As such,
the contributions of this paper are two-fold: (i) we perform an
analysis of the evolution of the NVD over a long time period
(from 2016 till now), to gain a thorough understanding of the
prevalence and manifestations of this problem; (ii) we develop
a rigorous method, based on the theory of knowledge graphs
(KGs) [14], to fix this problem in a systematic and scalable
manner.

A. Contributions
We summarize our contributions as follows:
• We systematically analyze the NVD to measure the

amount of invalid and missing CVE-CWE mappings
and their prevalence. Interestingly, we discover that only
few invalid mappings have been corrected, even after
the concepts of Prohibited and Discouraged CWEs were
introduced in 2019.

• Our longitudinal analysis reveals that a significant portion
of updates to CVE-CWE mappings occur within the same
branch on the CWE hierarchy [15], generally one hop or
two hops away. We leverage this finding in the design of
our automated correction method.

• We propose and thoroughly evaluate FixV2W, a novel
method for correcting CVE-CWE mappings using Knowl-
edge Graph Embeddings (KGE) on an ontology consisting
of the relationships between CVE, CWE, and CPE,
representing vulnerability data in the NVD. Remarkably,
our model does not require additional data or semantic
input, such as LLMs.

• We demonstrate that our methods are able to correct
Prohibited and Discouraged CVE-CWE mappings with
a mean rank of 1.86 and 1.03, respectively, among the
predictions where the correct CWE is found within the
top-10 answers. Furthermore, our validation data set is
distinct from our training data set. Namely, our model
is validated under an open-world assumption (OWA)
which is generally considered more realistic than the
closed-world assumption (CWA) predominantly used in
the evaluation of knowledge graphs [16].

The significance of our results is as follows. Correcting
errors in the root cause mappings of CVE and automating
the CVE-CWE mapping correction process can significantly
improve the quality of security and threat databases. This
improvement is expected to yield higher accuracy in the
numerous security analysis tools, software security practices

and mitigation plans relying on data provided by the NVD [17]
and other vulnerability databases. When CVEs are mapped to
generic, outdated, or discouraged CWE, security tools may
fail to provide meaningful insights, weakening the overall
cybersecurity posture of organizations and OSS ecosystems.
Enhanced accuracy also boosts confidence in security tools,
reducing fatigue from false reports and increasing the adoption
of security measures in the software development life-cycle.
Beyond accuracy, improved mappings can streamline and
speed-up vulnerability assessments, allowing analysts to focus
on actual threats rather than false reports. This allows organi-
zations to prioritize remediation efforts effectively, addressing
critical vulnerabilities first.

The remainder of this paper is organized as follows. In
section II, we discuss related work. In Section III, we detail
the methodology we followed for conducting our longitudinal
analysis, and explain how we built our knowledge graph
and implemented our automated correction method, FixV2W
based on this KG ontology. Next, in Section IV, we present
results from the longitudinal analysis and the accuracy of our
correction method using real data sets collected from the NVD
in 2021 (for training) and in 2024 (for validation). Lastly, we
present a conclusion for our research in Section VI.

II. Related Work
Analyzing the NVD has been in the spotlight of many re-

searchers and we see that different issues have been addressed
by different studies. Some studies focus on the CVSS accuracy,
or missing metadata, whereas others focus on the viability of
the CVE data, and completeness of related information. On
the other hand, methods to automate and correct related fields
such as CWE have been of interest to a smaller audience. We
next discuss several studies that use machine learning methods
to automate CVE to CWE mappings using natural language
processing (NLP), Neural Networks, Knowledge Graphs and
Large Language Models (LLMs).

We first review studies on measuring data quality of vulner-
ability databases. Zhang et al. [18] present a model to predict
zero-day vulnerabilities based on the NVD. They find that
data in the NVD presents many limitations, including missing
version information, data errors and late vulnerability release
times. We deduct from their study that correcting errors in the
NVD is the first and critical step to using the database for
such predictive models. Anwar et al. [12] assess the quality of
NVD, addressing incorrect vendor information and vulnera-
bility publication dates that affect CVSS scores. They develop
an automation tool to correct these errors. While their work
examine missing or incorrect CVE entry information, we focus
on relationships between CVE and CWE entries. Nguyen et
al. [19] study vulnerabilities in Google Chrome, revealing that
many originated from early versions and highlighting errors
in vulnerability data. This supports our assertion that CVE-
CPE mappings can be flawed, leading to incorrect enrichment
metadata. Kühn et al. [20] apply machine learning and NLP to
improve the NVD’s information quality, focusing on the atomic
accuracy of CVE entries (e.g., security relevant tags and the



CVSS score). In contrast, we analyze the NVD focused on the
root causes of the vulnerabilities (namely their weaknesses),
and correcting mappings between CVEs and CWES.

Next, we discuss related work on automating CVE to CWE
mappings. ThreatZoom [21] employs an adaptive hierarchical
neural network for CVE to CWE matching, achieving 92%
coarse-grain accuracy with the NVD and 75% with MITRE’s
CVE database. Their method focuses on unclassified CVE,
where the validation set is unavailable and generated by
domain experts. In contrast, we focus on correcting erro-
neous mappings across the entire CVE database, and we
provide exact match predictions for 63% of the test set.
Moreover, our model is lightweight and does not require any
semantic information. CVE2CWE [22] uses NLP and a TF-
IDF algorithm to assess semantic similarity between CWEs
and unseen CVEs, reporting 70% and 57% similarity for
the top 25 and 50 CWEs, respectively, without validation.
Notably, only 50 of the 130 CWEs in the CWE-1003 list were
considered, and this test set’s accuracy is significantly lower
than ours. VulnScopper [23] uses ULTRA, a KG foundation
model and expanding on it using OpenAI’s Ada LLM to
create the description-level representation. Our model achieves
similar accuracy with higher MRR, and is only based on
KG embeddings without the need for additional semantics-
processing. Z. Shi et al. [24] focuses on predicting candidates
for future associations, such as CVE-CWE mappings, using
KGs. On an open-world evaluation, Shi [24] achieves a 0.443
mapping accuracy for top 10 returned CWE-CVE mapping
results. Lastly, although not published, CyberSecAI developed
a closed grounded system based on ChatGPT called CWE
GPT [25] as part of MITRE’s CWE working group. This tool
aims to reduce hallucinations exiting in such LLM models,
via supplying the model with CWE specifications, to help the
model make more informed decisions. While initial results
appeared to seem promising, the study shows that the model
cannot eliminate hallucinations.

To the best of our knowledge, this is the first work that
focuses on specifically on correcting the incorrect data within
the NVD. While others focus on mapping new CVEs or cor-
recting the labeling of existing mappings, our model focuses
on correcting the CVE-CWE mappings themselves, leveraging
the longitudinal trends revealed in our work.

III. Methodology
In this section, we describe our methodology in two parts:

first, we detail our longitudinal study to systematically analyze
the NVD to measure the amount of invalid and missing
metadata, and to identify key trends; second, we detail our
knowledge-graph prediction method FixV2W for correcting
invalid CVE-CWE mappings.

A. Longitudinal Analysis of NVD data
We start with providing a brief background on common con-

cepts and key information needed to understand the motivation
of our work. Next, we explain the process for our longitudinal
analysis along with the significance of the data.
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Fig. 2: A slice of the CWE Hierarchy, showing CWE-707 is
Parent of CWE-228 and other CWE, CWE-228 is parent of
CWE-229 and other CWE. CWE-707 is labeled Discouraged
for CVE root cause mapping, due to lack of detail. At each
level, the detail for the weakness description increases.

1) Background and Terminology: Common Vulnerabilities
and Exposures (CVE) is a system, created by MITRE, for
referencing publicly known vulnerabilities. Each new vulner-
ability submitted to the CVE list gets assigned a CVE ID. A
vulnerability is submitted by a Certified Numbering Authority
(CNA), which is usually the vendor of the affected product.

The Common Weakness Enumeration (CWE) list is created
and maintained by MITRE. The CWE list is a categorization
system for hardware and software weaknesses, that under
certain circumstances, could contribute to the introduction of
vulnerabilities. A CWE ID can refer to weaknesses, categories
or views. A category is a collection of weaknesses based on
some common characteristic or attribute. Views are similar,
and they group weaknesses for other types of reasons, such as
existing in the same Top 25 CWE list of a year. Weaknesses are
connected to each other in a hierarchy where one CWE is the
Parent or Child or Peer of another. The hierarchy often starts
with a category, followed by a class/base weakness (which is
very general), and ends with a variant weakness (much more
detailed). An example CWE branch depicting the hierarchy is
shown in Figure 2.

CWE is highly valuable resource for understanding the root
cause of vulnerabilities, and represents a key component of the
metadata associated with a vulnerability. Until 2019, all kinds
of CWE were used for root cause mapping of vulnerabilities.
Since 2019, some of these CWEs have been labeled by MITRE
as Prohibited or Discouraged. The Prohibited tag directly
forbids the use of CWEs such as categories and views, which
are not valid CWE ID. These CWEs are simply lists of other
CWEs which relate to a concept or share a common feature.
See Figure 3 for an example CWE category and its members.
On the other hand, CWE with Discouraged tag are valid
weaknesses, but they do not provide enough detail to represent
a clear root cause. When possible, CNAs are encouraged to
find a more detailed CWE that more explicitly describes how
the vulnerability came to life.
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CWE-916: Use of Password Hash With Insufficient Computational Effort

CWE-1392: Use of Default Credentials

Fig. 3: An example of CWE category (CWE-255), which is
Prohibited. CWE Category members are allowed for mapping
and considered in our prediction.

The National Vulnerability Database (NVD) was designed
to provide enrichment data on each CVE record that is
submitted to the CVE list, since 2005. If relevant information
is not provided by the CNA, the NVD “enriches” the CVE
record via providing relevant information associated with the
vulnerability, such as its root cause weakness (CWE), affected
platforms (CPE), and a severity score (CVSS).

The CWE-1003 view, also known as Weaknesses for Sim-
plified Mapping of Published Vulnerabilities, consists of 130
CWE. NVD uses the CWE-1003 view for providing root cause
information to CVEs, but this list has obvious shortcomings.
While it is inevitable that this view is not completely represen-
tative of CWE list with 940+ unique weakness records, NVD
uses two placeholder CWE, CWE-Other and CWE-noinfo,
when the root cause is not found among the CWE in the CWE-
1003 view. As seen in Figure 1, more than a quarter of all
CVE are mapped to either of those placeholder CWEs, when
a good match certainly exists in the CWE database.

2) Analysis of the NVD: In a large dataset where entries are
connected in an intricate way, it is important to analyze trends
within a bigger picture. For instance, one can imagine that
10 CVEs being mapped to the wrong CWE would not create
much of a problem, whereas 10,000 CVEs being mapped to
the wrong CWE would degrade the data accuracy significantly.

Therefore, we analyzed the CVE data in the NVD along
with the history of updates, cumulatively and focusing on
the updates on CVE-CWE relationships (i.e the enrichment
metadata). We select the NVD for our analysis and methods
due to its public availability and popularity, as it is being
relied on by many security tools and databases. Apart from
the NVD, there are public and private vulnerability databases,
e.g., [8]–[10], and security advisories maintained by each
CNA individually. We envision that our methods should be
applicable to these databases as well.

CVE-CWE mappings are updated for many reasons, and the
updates in the NVD are categorized into several groups (e.g.,

CWE Remap, Modified Analysis, etc.) to make it easier for
processing the tens of thousands of update data. For instance, a
CWE Remap event refers to a change in the root cause mapping
of the CVE record, whereas Modified Analysis may mean
updates to the description, or other fields, such as CAPEC
(Common Attack Pattern Enumeration and Classification)and
KEV (Known-Exploited Vulnerabilities) [26].

The NVD CVE History API is our primary resource.
Quite simply, one can filter with CVE name or modification
start and end date for fetching all the updates. We use both
functionalities for obtaining the following three datasets (which
were saved into .json files):

• DATASET #1: This dataset is a snapshot of the NVD
as of August 4, 2021. This dataset is used to build
our knowledge graph and train our prediction algorithm
FixV2W.

• DATASET #2: This dataset is a snapshot of the NVD as
of December 17, 2024, and includes every CVE record
from 2002 until December 2024. In the absence of other
ground truths, we assume that valid mappings in this
datasets are correct (cf. Section V for further discussion).
Combining Datasets #1 and #2, we extract all updates
from invalid to correct mappings, which we use as a
test set to evaluate the performance of FixV2W. Dataset
#2 also reveals how many CVEs are still left without a
root cause (CWE) mapping (that is, their mappings are
invalid). We use this dataset to obtain the results shown
in Figures 1 and 5.

• DATASET #3: This dataset records each and every update
made to any CVE, between July 2016 (when the CWE-
1003 list was introduced) and December 2024. We use
this dataset to obtain the results shown in Figures 6 and 7.

B. Knowledge Graph Construction
We start with a background on knowledge graphs con-

struction and evaluation terminology. Then we explain the
construction and use of the knowledge graphs (KG) and
embedding process and lastly, we present the automated cor-
rection process of the invalid CWE-CVE mappings, using our
FixV2W algorithm.

1) Background and Terminology: A Knowledge Graph is a
graph-structured representation of knowledge that captures the
relationship between different entities. These graphs organize
data in a machine-readable format and allow the user to
connect and retrieve data as needed.

Entities are basic building blocks in a knowledge graph.
They can represent any object or concept. In our knowledge
graph, entities are CVE, CWE and CPE entries.

Relationships define connections between entities in a
knowledge graph. This connection describes how two entities
are related to each other, and in our work the relation types
are MatchingCVE, MatchingCWE, RelatedTo (en-
compassing HasMember, ParentOf etc. CWE relationships).
Figure 4 demonstrates these relationships.

A triple is the basic unit of information in a knowledge
graph, consisting of a subject, a predicate (relationship) and
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Fig. 4: Knowledge Graph slice, representing relationships
between CVE (blue cells), CPE (pink cells) and CWE (green
cells). Orange cells are CWE categories.

an object. We often refer to triples as mappings. An example
triple as shown in Figure 4 can be given is (CVE-2020-17533,
Matching CWE, CWE-252).

It is common practice to use knowledge graphs to train
embedding models, to predict information such as unseen
relationships between entities. Embedding models train with
existing data, as well as via creating a set of false triples
that the data is evaluated against. Embedding models train
by learning the semantic architecture of the graph, the process
consists of minimizing the loss function [27] over a set of
triples. If the embedding model can succeed in ranking the
positive (correct) triple higher than the negative (incorrect)
triples (i.e. a smaller rank value), we can say that the model
is successful.

The Mean Rank (MR) and Mean Reciprocal Rank (MRR) are
rank-based metrics that are used to evaluate the performance
of Knowledge Graph Embeddings. MR is the average of all
the ranks for the triples in the test set we are evaluating.
This metric is a way to get an idea about the performance
of the embedding model. The ideal case is that the positive
triples rank in the top positions (with smallest ranks) and the
negative triples follow the positive ones. MRR is the mean of
all reciprocal ranks for the triples in the test set. This metric
is particularly important for understanding the distribution of
ranks, namely, a perfect MRR of 1 means that all the triples
in the test set are ranked at the first position, whereas a low
MRR indicates that many triples have high ranks.

For a set V T representing the test set of CVEs, we obtain
rank(v), the rank for each entry v ∈ V T . The MRR and MR
values are then calculated as follows:

MRR =
1

|V T |
∑

v∈V T

1

rank(v)
and MR =

1

|V T |
∑

v∈V T

rank(v).

2) Knowledge Graph for Correcting Vulnerability Meta-
data: Our KG consists of vulnerabilities (CVE) and their
enrichment metadata, CWE and CPE. The CWE list itself is
connected in a hierarchical way, using relationships such as
Parent Of, Child Of, Peer Of, and using views and
categories to which each CWE belongs. An example slice of
this KG can be seen in Figure 4, where multiple CVE are
connected to the same CPE, and multiple CPE are connected to
the same CVE, via the Matching CVE predicate. Similarly,

a CVE can have multiple Matching CWE predicates, and
CWE can be connected to several other CWE via Related
To or Has Member predicates.

We use the TransE model for predictive tasks in our work,
as prior work [24] shows that this embedding model performs
best in an ontology similar to ours. The TransE embedding
model uses a scoring function that computes the distances
between each node pair, then over several epochs, it aims to
minimize the loss function that is computed using these scores.
The TransE scoring function computes a similarity between
the embedding of the subject translated by the embedding
of the predicate and the embedding of the object, using the
L1 norm (Manhattan Distance) [28] or L2 norm (Euclidean
Distance) [29]. Such scoring function is then used on positive
and negative triples in the loss function [30].

In our training process, we use the Adam optimizer, Mul-
ticlass NLL (Negative log-likelihood) Loss and LP regular-
izer [30].

3) Knowledge Graph prediction for CVE-CWE mappings:
As indicated on the CWE website, we know that some CWEs
are not suitable for use in root-cause mapping of vulnerabili-
ties. These CWE are labeled Prohibited; and some CWE are
not detailed enough for use in root cause mappings, which are
labeled Discouraged. Prohibited CWE are categories or views
that group similar weaknesses under a concept or a common
element. Until recently, these were actively being used in en-
richment metadata of new vulnerabilities in the NVD. Among
invalid entries, Prohibited CWEs are of specific interest as it is
definitely known that they are unacceptable. Similarly, in most
cases the Discouraged CWEs are not acceptable due to lack
of clarity and detail, therefore we demonstrate our method on
both sets.

Without prior knowledge, one would use all possible CWE
mappings (CWE-1003) and score those to obtain the most
likely matches. However, since we know that the categories
and views include relevant and valid CWE and the intended
root cause mapping likely can be found among the CWE in
the category/view, we narrow down the possible CWEs and
run the prediction function focused on this set. Moreover, we
also evaluate our model for fine-grain (direct neighbor) and
coarse-grain (CWE in the same branch) predictions among
the top 10 candidates returned by the embedding model.

For the rest of this section, the list of CVEs in Dataset #1
(the training set) is denoted as V 1 and the list of CVEs in
Dataset #2 (the validation set) is denoted as V 2. CVE elements
in these sets are denoted as V 1 = {v11 , v12 . . . , v1n} and V 2 =
{v21 , v22 , . . . , v2m} where n = |V 1| and m = |V 2|.

The CWE list is denoted as W = {w1, w2, ..., wk} and
represents the set of all existing CWEs, where k = |W |.
The NVD’s CWE slice (i.e., the CWE-1003 list) is defined
as WNVD. Clearly, WNVD ⊂ W . We also define weaknesses
in the prohibited CWE list, as WP (note that similar sets
can be defined for discouraged and other invalid CWEs). The
members of this list are w ∈ WP .

For ranking the possible matches, the KG embedding model
is queried with two elements of a triple, in our case the subject



Algorithm 1 FixV2W

1: Determine V P = {v ∈ V 1} such that v is mapped to a
prohibited CWE.

2: procedure FixV2W(V P )
3: for all v ∈ V P do:
4: Determine set of allowed CWEs WA(v)
5: for all w ∈ WA(v) do:
6: Form triple M = (v, w)
7: Calculate score s = Predict(M)
8: end for
9: Reorder elements in WA(v) in descending order

of the score s found for each w ∈ WA(v)
10: end for
11: return WA(v) for each v ∈ V P

12: end procedure

and predicate. The model calculates the scores for all possible
completions. When all possible matches are scored, these are
sorted from highest score to lowest, and positions in which
each triple are is called the rank. The triple with the highest
score is returned at rank #1.

For the task of predicting the correct CWE mapping for
a CVE, we define V P as all CVEs that were mapped to an
invalid CWE in Dataset #1. For each v ∈ V P , we consider a
candidate list WA(v) of allowed CWEs and use this set for
the prediction function using the KG embedding model. Note
that WA(v) ⊂ WNVD (e.g., we can restrict to CWEs that are
within the same branch or are children of the Prohibited CWE
used in Dataset #1). The prediction function runs for each CVE
v in V P and each CWE w ∈ WA(v) and calculates the score
s for each mapping M = (v, w). Last, the algorithm returns
the reordered list of weakness candidates WA(v) sorted in
descending order, where the CWE with the highest score is
returned at the first position, the next largest at the second and
so on.

The Predict(M) function is a method that the KG embed-
ding uses to calculate the score of a given mapping (triple).
Given a subject and predicate, we can calculate the score for
triple completion run on the object. Similarly, if the predicate
was unknown, we can run the same function (knowing subject
and object) to obtain a score for the test triple. We used
Ampligraph [27] Python package for the implementation of
our method, which provides the embedding model functions.

a) Example run of Algorithm 1: Consider v =
CVE-2013-1913, a vulnerability that was mapped to an in-
valid category CWE-189 Numeric Errors in Dataset #1. In
Dataset #2, this CVE mapping was corrected to CWE-190
Integer Overflow or Wraparound, which is allowed and the
accurate root cause for this vulnerability.

We start with extracting the members of the allowed cat-
egory (line 4), which returns the following list: WA(v) =
{CWE-128, CWE-190, CWE-191, ..., CWE-1389}. For each
item in this list, we form a triple, and calculate the scores s
for each of these triples using the embedding model (line 8):

Algorithm 2 Evaluate-FixV2W

1: Get test set V T = {v ∈ V 1 and v ∈ V 2} such that v is
mapped to a prohibited CWE w1 in Dataset #1 and to an
allowed CWE w2 in Dataset #2

2: Run procedure FixV2W(V T )
3: for all v ∈ V T do:
4: Scan the sorted candidate list of weaknesses w ∈

WA(v), starting from the first element
5: if ∃w such that w = w2 then
6: Exact match found
7: Return rank of w
8: end if
9: if ∃w such that w is a direct neighbor of w2 then

10: Fine grain match found
11: Return rank of w
12: end if
13: if ∃w such that w is in the same branch as w2 then
14: Coarse grain match found
15: Return rank of w
16: end if
17: end for
18: return Accuracy, MR and MRR of exact matches, fine

grain matches, and coarse grain matches

• Predict(CVE-2013-1913, CWE-128) = −11.15623
• Predict(CVE-2013-1913, CWE-190) = −10.707506
• . . .
• Predict(CVE-2013-1913, CWE-1389) = −12.5468

Lastly, we order the scores in descending order (line 9),
with the first item having the highest rank and being strongest
candidate. Since FixV2W determines that CWE-190 is the
triple with the highest score, we mark this prediction as an
exact match of top rank, following Algorithm 2.

IV. Results and Evaluation

In this section, we present our results and key takeaways
obtained by the longitudinal analysis and the methods for
fixing invalid mappings.

A. Longitudinal Analysis of CVE data

Our analysis of CVE-CWE mapping updates reveals that
the NVD has many erroneous data, which still requires fixing.
in particular, we detect many CVEs with Discouraged or
Prohibited CWE mappings. Although prioritizing new updates
is understandable and undeniably more urgent, we discuss in
this section that many of these errors can be easily corrected
with the help of our algorithms.

a) Invalid or missing CWEs: Using Dataset #2, we
classify CVEs according to the years they were submitted.
Figure 5 shows that between 2008 and 2024, between 15% and
30% of CVE reported each year ends up without a valid CWE
mapping. Moreover, among the 280,000+ CVE that currently
exist in the database, 18.4% have empty CWE metadata, while
10.8% are mapped to CWE-Other and 10% are mapped to
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Fig. 5: The ratio of CVE without a specific CWE mapping for CVE published between 2008 and 2024.

CW
E-

79

CW
E-

no
in

fo

CW
E-

78
7

CW
E-

20

CW
E-

11
9

CW
E-

89

CW
E-

20
0

CW
E-

12
5

CW
E-

35
2

CW
E-

41
6

0

2,000

4,000

N
um

.o
f

m
ap

pi
ng

s
to

CV
E

Fig. 6: Most occurring newly mapped CWEs between 2016-
2024. From left to right, top 3 are CWE-79: Cross-Site
Scripting, CWE-noinfo and CWE-787: Out-of-bounds Write.

CWE-noinfo (see Figure 1). Moreover, a total of 16.2% of all
CVEs are mapped to either Prohibited or Discouraged CWEs.

b) The use of CWE-Other and CWE-noinfo: A total of
4000 updates between July 2016 and December 2024 were
remaps into CWE-noinfo. In fact, Figure 6 that among the
top 3 CWE used to provide root cause mappings to CVEs,
CWE-noinfo is number 2. While CWE-Other indicates
that the appropriate CWE mapping may exist, but is not
found in the subset (CWE-1003), CWE-noinfo provides no
information about the root cause of CVE whatsoever. This
brings up the question if the CWE-1003 list is adequate.
Considering that the list was formed in 2016, and last updated
in 2019, an update may be in order for more accurate root
cause mapping.

c) Commonly misused CWE: Figure 7 shows that certain
CWEs are more often misused, from most often misused to
less: CWE-119, CWE 200, CWE-20 and so on. Mappings
of CVEs to those CWEs are also updated more often. All of
these CWE are now labeled DISCOURAGED for vulnerability
mapping since they lack specificity, therefore cannot tell much
about a root cause of a CVE. We present and evaluate our
approach for fixing those in Section III-B3.
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Fig. 7: Most removed CWEs between 2016-2024, from left
to right. The top 3 are CWE 119: Improper Restriction of
Operations within the Bounds of a Memory Buffer, CWE-200:
Exposure of Sensitive Information to an Unauthorized Actor,
and CWE 20: Improper Input Validation.

d) Updated CWE mappings that are related: For the rest
of the CVE remaps to valid CWE, 60% of remaps end up at
most two hops away from the old CWE value, whereas more
than 90% are in the same branch. Some examples are shown in
Table I. This means that the correct CWE can be reached from
the old incorrect CWE, via searching the related weakness
chains, and usually going from parent to child i.e. from less
to more detailed CWE within the same chain [31]. Leveraging
this clue, we designed our FixV2W algorithm on searching for
the correct CWE mapping within the same branch.

e) CWE and CVSS score relationship: CVSS scores
are generally updated along with the CWE mappings, and
sometimes afterwards. Among the 1000+ updated CVE-CWE
mappings that also had a CVSS score update, between 2016
and 2024, we see that 729 of them (68%) was the first time
this CVE ever had a CVSS score. The average CVSS score is
7.4 (High) with more than 60 Critical severity score instances.
For the remaining 328 pairs (31%), we saw that 250 CVSS
scores (23%) decreased and 69 of them (6%) increased. Our
results indicate that correct root cause detection can inform



TABLE I: The most observed Old CWE to New CWE pairs
for the same CVE Record, that were updated between 2018
and 2022. Pairs are either in the same chain for valid CWE,
or the new CWE may be a member of the old CWE category.

CWE ID Pair Occurrences Same Chain Is Mem-
ber

CWE-Any - CWE-noinfo 38% - -
CWE-119 - CWE-787 6% Yes -
CWE-77 - CWE-78 3% Yes -
CWE-119 - CWE-125 2% Yes -
CWE-264 - CWE-732 1% - No∗
CWE-255 - CWE-522 1% - Yes
CWE-264 - CWE-269 1% - No∗
CWE-416 - CWE-787 1% Yes -
CWE-190 - CWE-787 1% Yes -
CWE-284 - CWE-732 1% Yes -
CWE-399 - CWE-772 1% - Yes
∗ CWE-264: ”Permissions, Privileges, and Access Controls” is a category

with no members.

CVSS scoring, and is an important resource for understanding
factors that affect the severity of vulnerabilities

To summarize, we see several trends in CVE change history
data and in the NVD that can inform our predictions for
correcting and automating CVE-CWE mappings. It is no
surprise that there are errors within a database at this scale.
Our analysis specifically sheds light into problematic root
cause weakness mappings of CVE.

B. Knowledge Graph Predictions for CVE-CWE mappings
In this section we evaluate our methodology FixV2W for

automatically fixing invalid CVE-CWE mappings. In Sec-
tion III-B, we described the data and ontology for the creation
of our knowledge graph. Using this knowledge graph, we next
move on to evaluation and results.

a) Correcting Prohibited CVE-CWE mappings: After
processing the results for the predictions provided by the
embedding model, we calculated several accuracy metrics for
the test set.

For evaluation, we detected 10026 CVE that were mapped to
prohibited CWEs in the Dataset #1, and only 502 of them (2%)
were updated to valid CWEs in Dataset #2. The updated CVE-
CWE mappings are used as a test set to validate the predictions
returned by FixV2W. We compare the updated (correct) CWE
to the top 10 candidates returned by the embedding model,
sorted by their scores. If the correct CWE is found among
the candidate list, we flag this as the exact match, and later
evaluate how good this match is via calculating MR, MRR
and Hits@N metrics.

Otherwise, the candidates in the list are evaluated for their
closeness to the correct CWE, depending on whether they are
a direct parent/child or they are in the same branch. If fine-
grain or coarse-grain matches were found, we calculate again
the Mean Rank (MR) and Mean Reciprocal Rank (MRR) and
Hits@N metrics to evaluate model’s performance, as described
in Algorithm 2.

Among the test set of 502 Prohibited CVE-CWE mappings,
FixV2W is able to predict the exact match as the first

TABLE II: CWE mapping prediction results for CVE-2013-
1913. Higher score yields higher ranking. CWE-190 is the
updated mapping for this CVE as of December 2024. FixV2W
ranks this CWE at the top of its candidate list.

Rank Predicted CWE Score

1. CWE-190 -10.707
2. CWE-476 -10.844
3. CWE-125 -10.949
4. CWE-119 -11.075
5. CWE-79 -11.156
...

prediction for 52% of CVEs, and among the top 10 results for
65% of the CVEs. In Table II, we show an example prediction
result for an exact match, for CVE-2013-1913 which was
previously mapped to CWE-189 (Numeric Errors) Category.
This CVE later was updated to CWE-190 (Integer Overflow or
Wraparound) weakness, which is a member of the CWE-189
category, and the model predicted the correct update at the top
position. The significance of the exact match prediction is that
these results require minimal to no manual analysis afterwards,
considering that more than half of the correct mappings were
predicted at the top rank. Among those CVE where the model
has returned an exact match, the distribution of the ranks is
shown in Figure 8(a).

For the rest of the test set where 35% of the CVE-CWE
mappings were not predicted within the top 10 positions,
we performed a fine-grain and coarse-grain evaluation, as
explained in Section III. We realized that most of the time,
the direct parents/children or neighbors in the same CWE
branch were predicted by the KG instead. In Figure 8(b), we
see that among the remaining 35%, a direct parent or child
was predicted for 7%, taking the unpredicted slice down to
a 28%. Lastly, we see in 8(c) that for those CVE where an
exact match or a fine-grain match cannot be found, a CWE in
the same branch has been predicted for 28%, resulting in an
overall 7% remaining CVE that our model could not return
any related CWE at all.

To summarize, for the ability to predict the correct CWE
within the top 10 positions, we report the exact match predic-
tion rate at 65%, fine-grain at 72% and coarse-grain at 93%.
Moreover, we see that most of the correct predictions are found
at the first rank.

• For the exact match predictions in the top-10 ranks (327
cases), we achieve a MR of 1.862 and MRR of 0.848.

• For the fine-grain predictions in the top-10 ranks (327
exact match + 38 direct parent/child), we achieve a MR
of 2.175 and MRR of 0.797.

• For the coarse-grain predictions in the top-10 ranks (327
exact match + 141 CWE in branch), we achieve a MR of
2.252 and MRR of 0.765.

When it comes to the rest of the 7% of CWE that the model
was not able to predict, we find that all of the prohibited
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CWE that CVE were previously mapped have no candidate
weaknesses among the members of the prohibited category or
view that belong to the CWE-1003 list. Since the only possible
values for CWE mappings are in the CWE-1003 list, this leaves
the model no possible CWE to choose from, therefore it cannot
provide a prediction.

b) Correcting Discouraged CVE-CWE mappings: Simi-
lar to the task for correcting Prohibited CVE-CWE mappings,
we calculated the model performance for exact match, fine-
grain and coarse-grain predictions. Overall, 1591 Discouraged
mappings were detected in Dataset #1 where the old mapping
was updated by December 2024 (in Dataset #2). Among
these, 877 were to other invalid mappings (nearly 50%). For
the remaining 715 and considering again the top 10 ranked
answers, FixV2W was able to find the exact match for 127
CVE, and coarse grain match for 247 of them. Thus, 331
unique records were successfully predicted by the model. We
see again that the correct predictions are mostly returned at
the top position especially for the exact match set.

• For the exact match predictions, we achieved a MR of
1.039 and MRR of 0.980.

• For the fine-grain predictions our results are the same as
exact match, i.e. the model did not find any direct parent
or children if the exact match was not found.

• For the coarse grain predictions (127 Exact match + 247
CWE in branch) we achieved a MR of 1.400 and MRR
of 0.901.

Since the model could return a prediction for 374 CVE-
CWE queries among 715, this puts the overall prediction rates
to: 17% for exact match and fine-grain prediction and 52%
for coarse grain prediction. However, when we examine the
set of CVEs that the model cannot predict, we see that none
of the CWE in the old invalid mappings had any children in
the CWE-1003 list. In this case, it is a better idea to use the
entire CWE-1003 list for prediction.

Excluding this set of CVEs, where the CWE options for the
predictions are an empty set, we can report a prediction rate
of 38% for exact matches and 100% for coarse-grain matches.

C. Performance & System Requirements

There exist set of requirements for easy replication of our
model such as computational compatibility and resources.
Our team worked on a shared computing cluster provided by
Boston University, which includes 2 sixteen-core 2.8 GHz Intel
Gold 6242 processors. In one of the processors, we used up to
8 cores in the parallelization of our code. We used Tensorflow
1.13.1 version and Python 3.7.10. Along with these, we used
an older version of Ampligraph (1.4.0) since the 2.x versions
did not include some of the functions that were needed in our
methods. For scalability, our codes can be parallelized and
quries can be run in parallel, if the system allows. For instance,
for the test set of 773 Discouraged CVE-CWE mappings,
FixV2W predictions were completed in 32.1 minutes on a
single CPU, and when we utilized 32 parallel processors, the
queries were completed in just 6.51 minutes. On an A1000
GPU (CUDA), the queries completed in 4.11 minutes and two
parallel GPUs completed all 773 queries in 2.1 minutes.

We obtain our data from the NVD via API requests and
process those for easy access in the code and to refrain
from loading unnecessary data to the program memory. We
processed CVE-CWE mappings, the query test set and CWE
data, which are all included in our tutorial folder. The source
codes and the files that we processed (and are required to run
the codes) can be found in our GitHub page [32].

V. Limitations and Threats to Validity

a) Dataset Accuracy: For both our predictions and val-
idations, we rely on the NVD. We begin our analysis with
the assumption that the NVD contains errors, yet we still use
it to train our model. To address this, we are working on
integrating “corrected” data into our knowledge graph (KG)
and re-training the models. This process is time-intensive and
requires ongoing updates.

Additionally, the latest dataset from the NVD serves as our
validation set (i.e., we assume that valid mappings in that
dataset are correct). Since there may still be errors in the
updated data, the accuracy of our results is closely tied to the
accuracy of the NVD. Looking ahead, we plan to explore more



TABLE III: Example of a CVE which was updated by the
NVD from a Discouraged CWE (CWE-269) to another Dis-
couraged CWE (CWE-697). The FixV2W method predicts a
more accurate CWE mapping at the first rank.

CVE CVE-2021-
23999

If a Blob URL was loaded through some
unusual user interaction, it could have been
loaded by the System Principal and granted
additional privileges that should not be
granted to web content. This vulnerability
affects Firefox ESR <78.10, Thunderbird
<78.10, and Firefox <88.

CWE-
NVD

CWE-697:
Incorrect
Comparison

The product compares two entities in a
security-relevant context, but the compari-
son is incorrect, which may lead to resultant
weaknesses.

CWE-
FixV2W

CWE-271:
Privilege
Dropping /
Lowering
Errors

The product does not drop privileges before
passing control of a resource to an actor that
does not have those privileges.

reliable validation methods, but for this study, we acknowledge
this as a limitation.

b) Results Evaluation: The fine-grain and coarse-grain
predictions are valuable results that greatly reduce the need
for manual analysis. However, since the exact CWE was not
returned by the model, it is necessary to find the exact match
either manually or with another layer of automation. On the
other hand, we are assuming that the updated CWE is the best
match for the CVE, provided by the NVD or CNA. While
we hope that this is the case, at least for the accuracy of
the validation, we realize this is not always the case and
a better mapping exists in the same branch that was not
provided by the NVD. Consider CVE-2021-23999, the NVD
updated its mapping from Discouraged CWE-269: Improper
Privilege Management to another Discouraged CWE, CWE-
697: Incorrect Comparison. As seen in Table III, CWE-271:
Privilege Dropping / Lowering Errors is a better and more
detailed CWE that fits the CVE description, since the System
Principal does not drop privileges when passing control to the
web content, and is returned as the best prediction from our
model. While this is not always the case, we see instances
where FixV2W appears to be more accurate than the current
CWE mapping provided by the NVD, used as the ground truth.

VI. Conclusion
In this work, we introduced FixV2W, a simple, yet effective

approach for correcting invalid mappings in the NVD, which
can be applied to broader vulnerability database applications.
We found that more than half of the CVE in the NVD database
have CWE mappings that need to be fixed. FixV2W is based
on a knowledge graph representation of the NVD database,
on which we train an embedding model to predict hidden
relationships. We leverage our findings from the longitudinal
study to inform predictions for better CVE-CWE mappings.
Namely, if a CVE was mapped to an invalid CWE, the children
of that CWE (for Discouraged CWE) or members belonging
to the same category or view (for Prohibited CWE) are good
candidates.

We show that, after filtering, we can predict the correct
mapping, either exact match or fine-grain or coarse-grain
matches, with high accuracy. In many cases, the correct match
appears at the first or second rank of the list returned by
FixV2W.

We envision that the FixV2W method will be used as
the first step in fully-automating the CVE-CWE mapping
correction task, for increasing the accuracy of the database as
well as many security analysis tools that rely on the NVD and
other vulnerability databases. Since the coarse-grain prediction
does not give an exact root cause prediction for the CVE, we
will be working on combining other methods with our fine
and coarse-grain predictions, for accuracy improvements and
for applying our method to the rest of the CVE-CWE mappings
that remain incorrect.
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